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Abstract. This report is based on joint work with Qi Wang ([8]). The aim of this
report is to discuss the finiteness of τ -tilting modules over the tensor product of two
simply connected algebras. Moreover, we completely determine τ -tilting finite tensor
products between path algebras. In addition, we determine the boundary of τ -tilting
finiteness of tensor products between simply connected algebras in most cases.

1. Introduction

Throughout this paper, we will use the symbol k to denote an algebraically closed field,
and tensor products are always taken over k. An algebra is always assumed to be an
associative basic connected finite-dimensional k-algebra. For an algebra A, we write Aop

for the opposite algebra of A. Modules are always finitely generated right A-modules. We

denote by mod-A the category of modules over A. For simplicity of notation, let
→
An stand

for the Dynkin quiver of type A associated with the linear orientation.
Let A be an algebra. The notion of support τ -tilting A-modules was introduced in

[2] as to complete the class of classical tilting modules from the viewpoint of mutations.
The set of isomorphism classes of support τ -tilting modules is related to several sets of
important objects arising from representation theory. For example, it is well-known that
there are bijections between the set of isomorphism classes of support τ -tilting A-modules
and

• the set of two-term silting complexes in the perfect derived category,
• functorially finite torsion classes in mod-A,
• the set of left finite semibricks,
• t-structures and co-t-structures.

Therefore, the study of support τ -tilting modules has applications to those representation-
theoretic classifications. In this context, τ -tilting finite algebra is introduced by Demonet,
Iyama and Jasso in [6]. Such algebras are studied by several authors, for example [1], [3].
Moreover, the second author Q. Wang showed that a simply connected algebra is τ -tilting
finite if and only if it is representation-finite ([9]). In the report, we focus on the τ -tilting
finiteness for the tensor product A ⊗ B between two τ -tilting finite simply connected
algebras A and B.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Tensor product algebras, simply connected algebras, and τ-tilting
finite algebras

2.1. Tensor product algebras. Let A and B be algebras. Then the tensor product
A ⊗ B can be given the structure of a k-algebra by defining the multiplication on the
elements of the form a⊗ b by (a1⊗ b1)(a2⊗ b2) = a1a2⊗ b1b2. We call the algebra A⊗B
the tensor product of algebras A and B. For example, the n× n lower triangular matrix
algebra of an algebra A, that is,

Tn(A) =


A 0 · · · 0
A A · · · 0
...

...
. . .

...
A A · · · A


is isomorphic to A⊗ k

→
An.

A presentation of the tensor product algebra A⊗ B by a quiver and relations is given
from the presentations of A and B. Assume that A ≃ kQA/IA and B ≃ kQB/IB are two
bound quiver algebras. To give a presentation of A⊗ B, we define the tensor product of
bound quivers (QA, IA) and (QB, IB), say (QA ⊗QB, IA ⋄ IB), as follows.

• The quiver QA ⊗ QB has the vertex set (QA ⊗ QB)0 = (QA)0 × (QB)0 and the
arrow set (QA ⊗QB)1 = ((QA)1 × (QB)0) ∪ ((QA)0 × (QB)1) with the source map
s and the target map t defined by

s(α× v) = sA(α)× v, s(u× β) = u× sB(β),

t(α× v) = tA(α)× v, t(u× β) = u× tB(β)

for (α, v) ∈ (QA)1× (QB)0 and (u, β) ∈ (QA)0× (QB)1, where sA(α) (resp. tA(α))
is the source of α (resp. the target of α) and sB(β) (resp. tB(β)) is the source of
β (resp. the target of β).
• The ideal IA ⋄ IB in k(QA ⊗ QB) is generated by ((QA)0 × IB) ∪ (IA × (QB)0)
and elements of the form (a, βcd)(αab, d) − (αab, c)(b, βcd), where αab and βcd run
through all arrows αab : a→ b in (QA)1 and βcd : c→ d in (QB)1.

Then, the pair (QA ⊗QB, IA ⋄ IB) becomes a presentation of A⊗B.

Example 1. Let A and B be the following algebras:

A := k(1
x−→ 2

y−→ 3)/(xy), B := k(1′
α−→ 2′

β−→ 3′
γ−→ 4′

δ←− 5′)/(αβγ).



Then the tensor product A⊗B is presented by the quiver

(1, 1′) (1, 2′) (1, 3′) (1, 4′) (1, 5′)

(2, 1′) (2, 2′) (2, 3′) (2, 4′) (2, 5′)

(3, 1′) (3, 2′) (3, 3′) (3, 4′) (5, 5′)

α1 // β1 // γ1 // δ1oo

α2 // β2 // γ2 // δ2oo

α3

//
β3

//
γ3

//
δ3

oo

x1′ ��

y1′ ��

x2′ ��

y2′ ��

x3′ ��

y3′ ��

x4′��

y4′��

x5′��

y5′��

and the ideal generated by αiβiγi (i = 1, 2, 3), xk′yk′ (k = 1, 2, . . . , 5) and all commuta-
tivity relations for each square.

2.2. Simply connected algebras. In this subsection, we recall the definition and some
properties of simply connected algebras. For details, see [5].

Let (Q, I) be a connected bound quiver. For an arrow α ∈ Q1, we write α−1 for
the formal inverse of α. Let a and b be vertices of Q. A walk from a to b is a formal
composition αε1

1 αε2
2 · · ·αεm

m , where αi ∈ Q1 and εi ∈ {±1} for i = 1, 2, . . . ,m. For each
vertex a ∈ Q0, we understand the trivial path ea as the stationary walk at a. If w is a walk
from a to b and w′ is a walk from b to c, the multiplication ww′ is given by concatenation
of w and w′. We denote by Q∗ the set of all walks of Q. Then, the homotopy relation
∼I is defined to be the smallest equivalence relation on Q∗ satisfying the following three
conditions.

• αα−1 ∼I ea and α−1α ∼I eb for each arrow a
α−→ b.

• For each minimal relation
∑m

i=1 λiwi in I, we have wi ∼I wj for all 1 ≤ i, j ≤ m.
• If u, v, w and w′ are walks such that u ∼I v and w ∼I w′, then we have wuw′ ∼I
wvw′ whenever the multiplications are defined.

We write [w] for the equivalence class of a walk w. The multiplication on Q∗ induces
the multiplication [w] · [w′] = [ww′].
Let a ∈ Q0 be a fixed vertex, π1(Q, I, a) the set of equivalence classes of all walks from

a to a. It is easily seen that π1(Q, I, a) becomes a group via the above multiplication. It
is well-known that the group π1(Q, I, a) does not depend on the choice of a ∈ Q0. We
call the group π1(Q, I) := π1(Q, I, a) the fundamental group of (Q, I).

A connected triangular algebra A is called simply connected if, for every presentation
(Q, I) of A, the fundamental group π1(Q, I) is trivial.

Example 2. (1) Let A ≃ kQ/I be a bound quiver algebra such that Q is a tree.
Then, A is simply connected.

(2) The quiver of a simply connected Nakayama algebra is
→
An for some n ≥ 1.

Remark 3. Let A and B be algebras. Then, A ⊗ B is simply connected if and only if A
and B are simply connected.

2.3. τ-tilting finite algebras. In this subsection, we recall the definition of τ -tilting
finite algebras and collect some results on τ -tilting finite algebras which are needed to
discuss τ -tilting finiteness of algebras, see [2, 6]

Definition 4. Let A be an algebra, and τ the Auslander–Reiten translation on mod-A.
A module M ∈ mod-A is τ -rigid if HomA(M, τM) = 0, and it is τ -tilting if, in addition,



the number of non-isomorphic indecomposable direct summands of M coincides with the
number of isomorphism classes of simple A-modules. We call M support τ -tilting if there
is an idempotent e ∈ A such that M is a τ -tilting module over A/AeA. The algebra A is
called τ -tilting finite if there are only finitely many isomorphism classes of basic τ -tilting
A-modules.

According to [6], the following statements are equivalent for an algebra A:

• A is τ -tilting finite.
• A has only finitely many isomorphism classes of support τ -tilting modules.
• A has only finitely many isomorphism classes of A-modules X such that EndA(X)
is a division algebra. Such a module X is called a brick.

Example 5. (1) All representation-finite algebras are τ -tilting finite.
(2) Any local algebra Λ has precisely two basic support τ -tilting modules Λ and 0.

Thus, Λ is τ -tilting finite.
(3) Let A = kQ, where Q is acyclic. By Gabriel’s theorem, A is representation-finite if

and only if Q is one of Dynkin quivers. If Q is not a Dynkin quiver, the Auslander–
Reiten quiver of A contains a preprojective component which has infinitely many
vertices. Since any preprojective module is a brick, A is τ -tilting infinite. As a
consequence, A is τ -tilting finite if and only if Q is a Dynkin quiver.

It is well-known that if A is τ -tilting finite, then the following assertions hold ([2, 6]).

(1) The quotient algebra A/I is τ -tilting finite for any two-sided ideal I in A.
(2) The idempotent truncation eAe is τ -tilting finite for any idempotent e of A.
(3) The opposite algebra Aop is τ -tilting finite.

3. τ-tilting finiteness of tensor product algebras

To determine that a tensor product algebra of simply connected algebras is τ -tilting
finite or not, we have the following strategy.

(a) As there are surjective k-algebra homomorphisms A⊗B → A and A⊗B → B, it
is enough to consider when A and B are τ -tilting finite.

(b) If A, B and C are non-local algebras, then A⊗B⊗C is τ -tilting infinite [3, 8]. Thus,
we only consider tensor product algebras which have exactly two components.

(c) The tensor product algebra A ⊗ B is τ -tilting finite if and only if A ⊗ B is
representation-finite since A⊗B is also simply connected.

(d) A simply connected algebra is representation-finite if and only if it does not have

one of concealed algebras of Euclidean type D̃n (n ≥ 4), Ẽ6, Ẽ7, Ẽ8 as a factor
algebra. Such algebras are classified by Happel–Vossieck [7]. Therefore, one can
determine that a simply connected algebra is τ -tilting finite or not.

3.1. The case of path algebras. In the first place, we classify τ -tilting finite tensor
products A⊗B when one of A and B is a path algebra, and this classification is complete.
We denote by An (n ≥ 1) the Dynkin diagram of type An. The first main result is as
follows.

Theorem 6. Let A be a path algebra of finite connected acyclic quiver with n ≥ 2 simple
modules. Then, the following statements hold.



(1) Let B be a path algebra. Then, A⊗B is τ -tilting finite if and only if A ≃ k(1→ 2)
and B is isomorphic to one of path algebras of A2, A3 or A4.

(2) Let B be a simply connected algebra. If k(1→ 2)⊗ B is τ -tilting finite, then any
connected component of the separated quiver of the quiver of B is of type An.

(3) Assume that n ≥ 3 and B is a simply connected algebra which is not a path algebra.
Then, A⊗ B is τ -tilting finite if and only if A is isomorphic to a path algebra of
A3 and B is isomorphic to a Nakayama algebra with radical square zero.

By the above result, we have determined τ -tilting finite path algebras AQ with coef-
ficients in a path algebra A. We remark that the statement (2) in the above result is
included in [3, Theorem 3.2].

Example 7 (Method to show τ -tilting infiniteness). We define ε := (ε1, ε2) with ε1, ε2 ∈
{+,−} to be the orientation of A3 as follows.{

i −→ i+ 1 if εi = +,
i+ 1 −→ i if εi = −.

We write Aε
3 for the path algebra of type A associated with the orientation ε.

From now on, we show that the tensor product Aε
3 ⊗ Aω

3 is τ -tilting infinite for any
choice of ε and ω. Then, we need only to consider the following four cases:

• ε = (++), ω = (++)
• ε = (++), ω = (−+)
• ε = (+−), ω = (+−)
• ε = (+−), ω = (−+)

For each case, we prove that the tensor product Aε
3⊗Aω

3 has a tame concealed algebra as
a quotient, which is indicated by the black points below. Here, all squares of the quiver
below are commutative.

Now, we consider the case ε = (++), ω = (++). The algebraA
(++)
3 ⊗A(++)

3 is presented
as follows.

◦ • •

• • •

• • ◦

// //

// //

// //

��

��

��

��

��

��

Then, the algebra A
(++)
3 ⊗A

(++)
3 admits a tame concealed algebra of type D̃4 as a factor,

see the Happel–Vossieck list [7]. This implies that A
(++)
3 ⊗A

(++)
3 is τ -tilting infinite.

Other cases can be shown in the same way.

3.2. General cases. Now, we discuss the τ -tilting finiteness of the tensor product of
algebras A ⊗ B such that A and B are simply connected algebras which are not path
algebras. We may assume that both A and B have at least 3 simple modules in this
section. Recall that A is a simply connected Nakayama algebra (Nakayama algebra for

short) if and only if the Gabriel quiver of A is of the form
→
An. From simply observation,

we have the following.



Proposition 8. Let A and B be two simply connected algebras. Then the following
statements hold.

(1) If both A and B are not Nakayama algebras, then A⊗B is τ -tilting infinite.
(2) If A is a Nakayama algebra which is not radical square zero, and B is not a

Nakayama algebra, then A⊗B is τ -tilting infinite.
(3) If both A and B are Nakayama algebras which are not radical square zero, then

A⊗B is τ -tilting infinite.
(4) If both A and B are Nakayama algebras with radical square zero, then A ⊗ B is

τ -tilting finite.

Proof. (1), (2), and (3) We notice that there are surjections A⊗B → Aε
3 ⊗Aω

3 for some
orientations ε and ω. Thus, the assertion follows from the fact that Aε

3 ⊗Aω
3 is τ -tilting

infinite (see, Example 7).
(4) Let A and B be two simply connected Nakayama algebras with radical square zero.

By the construction of a presentation of A⊗B, it is special biserial. Therefore, the algebra
A⊗B is of finite representation type. □
In the case that both A and B are not path algebras, we may give a visualization table

below to illustrate the τ -tilting finiteness of A⊗B. In the table below, F means τ -tilting
finite, IF means τ -tilting infinite, and “F or IF” means that there are both cases. We
denote by rad(A) the Jacobson radical of A and by |A| the number of isomorphism classes
of simple A-modules.

A⊗B (A,B: simply connected)

B :Nakayama
B:Not Nakayama

rad2 = 0
rad2 ̸= 0

n = 3 n ≥ 4 |B| = 3 |B| = 4 |B| ≥ 5

A:Nakayama
rad2 = 0

n = 3 F F Open F F or IF F or IF

n ≥ 4 F F F or IF F F or IF IF

rad2 ̸= 0 Open F or IF IF IF IF IF

A:Not Nakayama

|A| = 3 F F IF IF IF IF

|A| = 4 F or IF F or IF IF IF IF IF

|A| ≥ 5 F or IF IF IF IF IF IF

3.3. The case that B is not Nakayama. In this subsection, we consider the case that
B is not a Nakayama algebra. Then it is only in the case that A is isomorphic to a
Nakayama algebra with radical square zero that A⊗B may be τ -tilting finite. We denote
by N(n) the simply connected Nakayama algebra with n simple modules and radical
square zero.

Theorem 9. Let B be a simply connected not Nakayama algebra. Then the following
assertions hold.



(1) If B has at least 5 simple modules, then N(n)⊗B is τ -tilting infinite for all n ≥ 4.
(2) If B has at least 5 simple modules and N(3)⊗B is τ -tilting finite, then B or Bop

satisfies the following conditions.
(a) B or Bop has the algebra

k

(
1 42 3

α // βoo γoo

)/
⟨γβ⟩,

as a quotient.
(b) B and Bop do not have both the algebras

k

 1 3

2

4
α //

β��

γoo
/

⟨αβ, γβ⟩

and (4-3) as a quotient.
(3) If B has precisely 4 simple modules, then N(n) ⊗ B is τ -tilting finite if and only

if either B or Bop is isomorphic to

k

(
1 42 3

α // βoo γoo

)/
⟨γβ⟩.

(4) If B has precisely 3 simple modules, then N(n)⊗B is τ -tilting finite for all n ≥ 3.

3.4. The case that B is Nakayama. Let B be a Nakayama algebra which is not radical
square zero. Then, we may suppose that B has at least 4 simple modules and B is not
a path algebra. In this case, determining the τ -tilting finite tensor product of algebras is
complicated. However, we have a partial solution.

Theorem 10. Let B be a Nakayama algebra which is not radical square zero. Assume
that B has the algebra

Λ = k(1
α−→ 2

β−→ 3
γ−→ 4)/⟨αβγ⟩

as a quotient. Then, N(n)⊗B is τ -tilting infinite for all n ≥ 4.

As a corollary of our classification, we determine algebras over which enveloping algebras
of simply connected algebras are τ -tilting finite. Let A be an algebra. The enveloping
algebra of A is Ae := A⊗ Aop.

Corollary 11. Let A be a simply connected algebra. Then, the enveloping algebra Ae is
τ -tilting finite if and only if A is a simply connected Nakayama algebra with radical square
zero.
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