ON τ -TILTING FINITENESS OF TENSOR PRODUCT ALGEBRAS BETWEEN SIMPLY CONNECTED ALGEBRAS

KENGO MIYAMOTO AND QI WANG

ABSTRACT. This report is based on joint work with Qi Wang ([8]). The aim of this report is to discuss the finiteness of τ -tilting modules over the tensor product of two simply connected algebras. Moreover, we completely determine τ -tilting finite tensor products between path algebras. In addition, we determine the boundary of τ -tilting finiteness of tensor products between simply connected algebras in most cases.

1. INTRODUCTION

Throughout this paper, we will use the symbol k to denote an algebraically closed field, and tensor products are always taken over k. An algebra is always assumed to be an associative basic connected finite-dimensional k-algebra. For an algebra A, we write A^{op} for the opposite algebra of A. Modules are always finitely generated right A-modules. We denote by mod-A the category of modules over A. For simplicity of notation, let $\overrightarrow{A_n}$ stand for the Dynkin quiver of type A associated with the linear orientation.

Let A be an algebra. The notion of support τ -tilting A-modules was introduced in [2] as to complete the class of classical tilting modules from the viewpoint of mutations. The set of isomorphism classes of support τ -tilting modules is related to several sets of important objects arising from representation theory. For example, it is well-known that there are bijections between the set of isomorphism classes of support τ -tilting A-modules and

- the set of two-term silting complexes in the perfect derived category,
- functorially finite torsion classes in mod-A,
- the set of left finite semibricks,
- *t*-structures and co-*t*-structures.

Therefore, the study of support τ -tilting modules has applications to those representationtheoretic classifications. In this context, τ -tilting finite algebra is introduced by Demonet, Iyama and Jasso in [6]. Such algebras are studied by several authors, for example [1], [3]. Moreover, the second author Q. Wang showed that a simply connected algebra is τ -tilting finite if and only if it is representation-finite ([9]). In the report, we focus on the τ -tilting finiteness for the tensor product $A \otimes B$ between two τ -tilting finite simply connected algebras A and B.

The detailed version of this paper will be submitted for publication elsewhere.

Acknowledgements

This work was partially supported by JSPS KAKENHI 20K14302 and JSPS KAKENHI 20J10492.

2. Tensor product algebras, simply connected algebras, and τ -tilting finite algebras

2.1. Tensor product algebras. Let A and B be algebras. Then the tensor product $A \otimes B$ can be given the structure of a k-algebra by defining the multiplication on the elements of the form $a \otimes b$ by $(a_1 \otimes b_1)(a_2 \otimes b_2) = a_1a_2 \otimes b_1b_2$. We call the algebra $A \otimes B$ the tensor product of algebras A and B. For example, the $n \times n$ lower triangular matrix algebra of an algebra A, that is,

$$T_n(A) = \begin{pmatrix} A & 0 & \cdots & 0 \\ A & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A & A & \cdots & A \end{pmatrix}$$

is isomorphic to $A \otimes \mathsf{k} A_n$.

A presentation of the tensor product algebra $A \otimes B$ by a quiver and relations is given from the presentations of A and B. Assume that $A \simeq kQ_A/\mathcal{I}_A$ and $B \simeq kQ_B/\mathcal{I}_B$ are two bound quiver algebras. To give a presentation of $A \otimes B$, we define the tensor product of bound quivers (Q_A, \mathcal{I}_A) and (Q_B, \mathcal{I}_B) , say $(Q_A \otimes Q_B, \mathcal{I}_A \diamond \mathcal{I}_B)$, as follows.

• The quiver $Q_A \otimes Q_B$ has the vertex set $(Q_A \otimes Q_B)_0 = (Q_A)_0 \times (Q_B)_0$ and the arrow set $(Q_A \otimes Q_B)_1 = ((Q_A)_1 \times (Q_B)_0) \cup ((Q_A)_0 \times (Q_B)_1)$ with the source map s and the target map t defined by

$$s(\alpha \times v) = s_A(\alpha) \times v, \ s(u \times \beta) = u \times s_B(\beta),$$

$$t(\alpha \times v) = t_A(\alpha) \times v, \ t(u \times \beta) = u \times t_B(\beta)$$

for $(\alpha, v) \in (Q_A)_1 \times (Q_B)_0$ and $(u, \beta) \in (Q_A)_0 \times (Q_B)_1$, where $s_A(\alpha)$ (resp. $t_A(\alpha)$) is the source of α (resp. the target of α) and $s_B(\beta)$ (resp. $t_B(\beta)$) is the source of β (resp. the target of β).

• The ideal $\mathcal{I}_A \diamond \mathcal{I}_B$ in $\mathsf{k}(Q_A \otimes Q_B)$ is generated by $((Q_A)_0 \times \mathcal{I}_B) \cup (\mathcal{I}_A \times (Q_B)_0)$ and elements of the form $(a, \beta_{cd})(\alpha_{ab}, d) - (\alpha_{ab}, c)(b, \beta_{cd})$, where α_{ab} and β_{cd} run through all arrows $\alpha_{ab} : a \to b$ in $(Q_A)_1$ and $\beta_{cd} : c \to d$ in $(Q_B)_1$.

Then, the pair $(Q_A \otimes Q_B, \mathcal{I}_A \diamond \mathcal{I}_B)$ becomes a presentation of $A \otimes B$.

Example 1. Let A and B be the following algebras:

$$A := \mathsf{k}(1 \xrightarrow{x} 2 \xrightarrow{y} 3)/(xy), \quad B := \mathsf{k}(1' \xrightarrow{\alpha} 2' \xrightarrow{\beta} 3' \xrightarrow{\gamma} 4' \xleftarrow{\delta} 5')/(\alpha \beta \gamma).$$

Then the tensor product $A \otimes B$ is presented by the quiver

and the ideal generated by $\alpha_i \beta_i \gamma_i$ $(i = 1, 2, 3), x_{k'} y_{k'}$ $(k = 1, 2, \dots, 5)$ and all commutativity relations for each square.

2.2. Simply connected algebras. In this subsection, we recall the definition and some properties of simply connected algebras. For details, see [5].

Let (Q, \mathcal{I}) be a connected bound quiver. For an arrow $\alpha \in Q_1$, we write α^{-1} for the formal inverse of α . Let a and b be vertices of Q. A walk from a to b is a formal composition $\alpha_1^{\varepsilon_1}\alpha_2^{\varepsilon_2}\cdots\alpha_m^{\varepsilon_m}$, where $\alpha_i \in Q_1$ and $\varepsilon_i \in \{\pm 1\}$ for $i = 1, 2, \ldots, m$. For each vertex $a \in Q_0$, we understand the trivial path e_a as the stationary walk at a. If w is a walk from a to b and w' is a walk from b to c, the multiplication ww' is given by concatenation of w and w'. We denote by Q^* the set of all walks of Q. Then, the homotopy relation $\sim_{\mathcal{I}}$ is defined to be the smallest equivalence relation on Q^* satisfying the following three conditions.

- αα⁻¹ ~_I e_a and α⁻¹α ~_I e_b for each arrow a → b.
 For each minimal relation Σ^m_{i=1} λ_iw_i in I, we have w_i ~_I w_j for all 1 ≤ i, j ≤ m.
- If u, v, w and w' are walks such that $u \sim_{\mathcal{I}} v$ and $w \sim_{\mathcal{I}} w'$, then we have $wuw' \sim_{\mathcal{I}} v$ wvw' whenever the multiplications are defined.

We write [w] for the equivalence class of a walk w. The multiplication on Q^* induces the multiplication $[w] \cdot [w'] = [ww']$.

Let $a \in Q_0$ be a fixed vertex, $\pi_1(Q, \mathcal{I}, a)$ the set of equivalence classes of all walks from a to a. It is easily seen that $\pi_1(Q, \mathcal{I}, a)$ becomes a group via the above multiplication. It is well-known that the group $\pi_1(Q, \mathcal{I}, a)$ does not depend on the choice of $a \in Q_0$. We call the group $\pi_1(Q, \mathcal{I}) := \pi_1(Q, \mathcal{I}, a)$ the fundamental group of (Q, \mathcal{I}) .

A connected triangular algebra A is called *simply connected* if, for every presentation (Q,\mathcal{I}) of A, the fundamental group $\pi_1(Q,\mathcal{I})$ is trivial.

- (1) Let $A \simeq \mathbf{k}Q/\mathcal{I}$ be a bound quiver algebra such that Q is a tree. Example 2. Then, A is simply connected.
 - (2) The quiver of a simply connected Nakayama algebra is $\vec{A_n}$ for some $n \ge 1$.

Remark 3. Let A and B be algebras. Then, $A \otimes B$ is simply connected if and only if A and B are simply connected.

2.3. τ -tilting finite algebras. In this subsection, we recall the definition of τ -tilting finite algebras and collect some results on τ -tilting finite algebras which are needed to discuss τ -tilting finiteness of algebras, see [2, 6]

Definition 4. Let A be an algebra, and τ the Auslander–Reiten translation on mod-A. A module $M \in \mathsf{mod}\text{-}A$ is τ -rigid if $\mathsf{Hom}_A(M, \tau M) = 0$, and it is τ -tilting if, in addition, the number of non-isomorphic indecomposable direct summands of M coincides with the number of isomorphism classes of simple A-modules. We call M support τ -tilting if there is an idempotent $e \in A$ such that M is a τ -tilting module over A/AeA. The algebra A is called τ -tilting finite if there are only finitely many isomorphism classes of basic τ -tilting A-modules.

According to [6], the following statements are equivalent for an algebra A:

- A is τ -tilting finite.
- A has only finitely many isomorphism classes of support τ -tilting modules.
- A has only finitely many isomorphism classes of A-modules X such that $\operatorname{End}_A(X)$ is a division algebra. Such a module X is called a *brick*.

Example 5. (1) All representation-finite algebras are τ -tilting finite.

- (2) Any local algebra Λ has precisely two basic support τ -tilting modules Λ and 0. Thus, Λ is τ -tilting finite.
- (3) Let A = kQ, where Q is acyclic. By Gabriel's theorem, A is representation-finite if and only if Q is one of Dynkin quivers. If Q is not a Dynkin quiver, the Auslander– Reiten quiver of A contains a preprojective component which has infinitely many vertices. Since any preprojective module is a brick, A is τ -tilting infinite. As a consequence, A is τ -tilting finite if and only if Q is a Dynkin quiver.

It is well-known that if A is τ -tilting finite, then the following assertions hold ([2, 6]).

- (1) The quotient algebra A/I is τ -tilting finite for any two-sided ideal I in A.
- (2) The idempotent truncation eAe is τ -tilting finite for any idempotent e of A.
- (3) The opposite algebra A^{op} is τ -tilting finite.

3. $\tau\text{-tilting finiteness of tensor product algebras}$

To determine that a tensor product algebra of simply connected algebras is τ -tilting finite or not, we have the following strategy.

- (a) As there are surjective k-algebra homomorphisms $A \otimes B \to A$ and $A \otimes B \to B$, it is enough to consider when A and B are τ -tilting finite.
- (b) If A, B and C are non-local algebras, then $A \otimes B \otimes C$ is τ -tilting infinite [3, 8]. Thus, we only consider tensor product algebras which have exactly two components.
- (c) The tensor product algebra $A \otimes B$ is τ -tilting finite if and only if $A \otimes B$ is representation-finite since $A \otimes B$ is also simply connected.
- (d) A simply connected algebra is representation-finite if and only if it does not have one of concealed algebras of Euclidean type \widetilde{D}_n $(n \ge 4)$, \widetilde{E}_6 , \widetilde{E}_7 , \widetilde{E}_8 as a factor algebra. Such algebras are classified by Happel–Vossieck [7]. Therefore, one can determine that a simply connected algebra is τ -tilting finite or not.

3.1. The case of path algebras. In the first place, we classify τ -tilting finite tensor products $A \otimes B$ when one of A and B is a path algebra, and this classification is complete. We denote by \mathbb{A}_n $(n \ge 1)$ the Dynkin diagram of type A_n . The first main result is as follows.

Theorem 6. Let A be a path algebra of finite connected acyclic quiver with $n \ge 2$ simple modules. Then, the following statements hold.

- (1) Let B be a path algebra. Then, $A \otimes B$ is τ -tilting finite if and only if $A \simeq k(1 \rightarrow 2)$ and B is isomorphic to one of path algebras of \mathbb{A}_2 , \mathbb{A}_3 or \mathbb{A}_4 .
- (2) Let B be a simply connected algebra. If $k(1 \rightarrow 2) \otimes B$ is τ -tilting finite, then any connected component of the separated quiver of the quiver of B is of type \mathbb{A}_n .
- (3) Assume that n ≥ 3 and B is a simply connected algebra which is not a path algebra. Then, A ⊗ B is τ-tilting finite if and only if A is isomorphic to a path algebra of A₃ and B is isomorphic to a Nakayama algebra with radical square zero.

By the above result, we have determined τ -tilting finite path algebras AQ with coefficients in a path algebra A. We remark that the statement (2) in the above result is included in [3, Theorem 3.2].

Example 7 (Method to show τ -tilting infiniteness). We define $\varepsilon := (\varepsilon_1, \varepsilon_2)$ with $\varepsilon_1, \varepsilon_2 \in \{+, -\}$ to be the orientation of \mathbb{A}_3 as follows.

$$\begin{cases} i \longrightarrow i+1 & \text{if } \varepsilon_i = +, \\ i+1 \longrightarrow i & \text{if } \varepsilon_i = -. \end{cases}$$

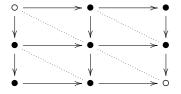
We write $\mathbf{A}_{3}^{\varepsilon}$ for the path algebra of type A associated with the orientation ε .

From now on, we show that the tensor product $\mathbf{A}_3^{\varepsilon} \otimes \mathbf{A}_3^{\omega}$ is τ -tilting infinite for any choice of ε and ω . Then, we need only to consider the following four cases:

• $\varepsilon = (++), \quad \omega = (++)$ • $\varepsilon = (++), \quad \omega = (-+)$ • $\varepsilon = (+-), \quad \omega = (+-)$ • $\varepsilon = (+-), \quad \omega = (-+)$

For each case, we prove that the tensor product $\mathbf{A}_3^{\varepsilon} \otimes \mathbf{A}_3^{\omega}$ has a tame concealed algebra as a quotient, which is indicated by the black points below. Here, all squares of the quiver below are commutative.

Now, we consider the case $\varepsilon = (++)$, $\omega = (++)$. The algebra $\mathbf{A}_3^{(++)} \otimes \mathbf{A}_3^{(++)}$ is presented as follows.



Then, the algebra $\mathbf{A}_{3}^{(++)} \otimes \mathbf{A}_{3}^{(++)}$ admits a tame concealed algebra of type \widetilde{D}_{4} as a factor, see the Happel–Vossieck list [7]. This implies that $\mathbf{A}_{3}^{(++)} \otimes \mathbf{A}_{3}^{(++)}$ is τ -tilting infinite.

Other cases can be shown in the same way.

3.2. General cases. Now, we discuss the τ -tilting finiteness of the tensor product of algebras $A \otimes B$ such that A and B are simply connected algebras which are not path algebras. We may assume that both A and B have at least 3 simple modules in this section. Recall that A is a simply connected Nakayama algebra (Nakayama algebra for short) if and only if the Gabriel quiver of A is of the form $\overrightarrow{A_n}$. From simply observation, we have the following.

Proposition 8. Let A and B be two simply connected algebras. Then the following statements hold.

- (1) If both A and B are not Nakayama algebras, then $A \otimes B$ is τ -tilting infinite.
- (2) If A is a Nakayama algebra which is not radical square zero, and B is not a Nakayama algebra, then $A \otimes B$ is τ -tilting infinite.
- (3) If both A and B are Nakayama algebras which are not radical square zero, then $A \otimes B$ is τ -tilting infinite.
- (4) If both A and B are Nakayama algebras with radical square zero, then $A \otimes B$ is τ -tilting finite.

Proof. (1), (2), and (3) We notice that there are surjections $A \otimes B \to \mathbf{A}_3^{\varepsilon} \otimes \mathbf{A}_3^{\omega}$ for some orientations ε and ω . Thus, the assertion follows from the fact that $\mathbf{A}_3^{\varepsilon} \otimes \mathbf{A}_3^{\omega}$ is τ -tilting infinite (see, Example 7).

(4) Let A and B be two simply connected Nakayama algebras with radical square zero. By the construction of a presentation of $A \otimes B$, it is special biserial. Therefore, the algebra $A \otimes B$ is of finite representation type.

In the case that both A and B are not path algebras, we may give a visualization table below to illustrate the τ -tilting finiteness of $A \otimes B$. In the table below, F means τ -tilting finite, IF means τ -tilting infinite, and "F or IF" means that there are both cases. We denote by rad(A) the Jacobson radical of A and by |A| the number of isomorphism classes of simple A-modules.

$A \otimes B \ (A, B: \text{ simply connected})$			B :Nakayama			B:Not Nakayama		
			$rad^2 = 0$		$rad^2 \neq 0$	D.NOt Wakayama		
			n=3	$n \ge 4$		B = 3	B = 4	$ B \ge 5$
A:Nakayama	$rad^2 = 0$	n = 3	F	F	Open	F	F or IF	F or IF
		$n \ge 4$	F	F	F or IF	F	F or IF	IF
	$rad^2 \neq 0$		Open	F or IF	IF	IF	IF	IF
A :Not Nakayama $ A = 3$ $ A = 4$ $ A \ge 5$		F	F	IF	IF	IF	IF	
		A = 4	F or IF	F or IF	IF	IF	IF	IF
		$ A \ge 5$	F or IF	IF	IF	IF	IF	IF

3.3. The case that *B* is not Nakayama. In this subsection, we consider the case that *B* is not a Nakayama algebra. Then it is only in the case that *A* is isomorphic to a Nakayama algebra with radical square zero that $A \otimes B$ may be τ -tilting finite. We denote by N(n) the simply connected Nakayama algebra with *n* simple modules and radical square zero.

Theorem 9. Let B be a simply connected not Nakayama algebra. Then the following assertions hold.

- (1) If B has at least 5 simple modules, then $N(n) \otimes B$ is τ -tilting infinite for all $n \geq 4$.
- (2) If B has at least 5 simple modules and $N(3) \otimes B$ is τ -tilting finite, then B or B^{op} satisfies the following conditions.
 - (a) B or B^{op} has the algebra

$$\mathsf{k}\left(1 \xrightarrow{\alpha} 2 \xleftarrow{\beta} 3 \xleftarrow{\gamma} 4\right) \Big/ \langle \gamma \beta \rangle,$$

as a quotient.

(b) B and B^{op} do not have both the algebras

$$\mathsf{k} \left(\begin{array}{c} 1 \xrightarrow{\alpha} 3 \xleftarrow{\gamma} 4 \\ \downarrow^{\beta} \\ 2 \end{array} \right) \Big/ \langle \alpha \beta, \gamma \beta \rangle$$

and (4-3) as a quotient.

(3) If B has precisely 4 simple modules, then $N(n) \otimes B$ is τ -tilting finite if and only if either B or B^{op} is isomorphic to

$$\mathsf{k}\left(1 \xrightarrow{\alpha} 2 \xleftarrow{\beta} 3 \xleftarrow{\gamma} 4\right) \Big/ \langle \gamma \beta \rangle.$$

(4) If B has precisely 3 simple modules, then $N(n) \otimes B$ is τ -tilting finite for all $n \geq 3$.

3.4. The case that *B* is Nakayama. Let *B* be a Nakayama algebra which is not radical square zero. Then, we may suppose that *B* has at least 4 simple modules and *B* is not a path algebra. In this case, determining the τ -tilting finite tensor product of algebras is complicated. However, we have a partial solution.

Theorem 10. Let B be a Nakayama algebra which is not radical square zero. Assume that B has the algebra

$$\Lambda = \mathsf{k}(1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4) / \langle \alpha \beta \gamma \rangle$$

as a quotient. Then, $N(n) \otimes B$ is τ -tilting infinite for all $n \geq 4$.

As a corollary of our classification, we determine algebras over which enveloping algebras of simply connected algebras are τ -tilting finite. Let A be an algebra. The *enveloping* algebra of A is $A^{\mathsf{e}} := A \otimes A^{\mathsf{op}}$.

Corollary 11. Let A be a simply connected algebra. Then, the enveloping algebra A^{e} is τ -tilting finite if and only if A is a simply connected Nakayama algebra with radical square zero.

References

- T. Adachi, Characterizing τ-rigid finite algebras with radical square zero, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4673–4685.
- [2] T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
- [3] T. Aihara and T. Honma, τ-tilting finite triangular matrix algebras, J. Pure Appl. algebra 225 (2021), no 12.
- [4] T. Aihara, T. Honma, K. Miyamoto and Q. Wang, Report on the finiteness of silting objects, Proc. Edinburgh Math. Soc. 64 (2021), no. 2, 217–233.

- [5] I. Assem, Simply connected algebras, Resenhas IME-USP 4 (1999), no. 2, 93–125.
- [6] L. Demonet, O. Iyama and G. Jasso, *τ*-tilting finite algebras, bricks and g-vectors, Int. Math, Res. Not. IMRN 3 (2019), 852–892.
- [7] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221–243.
- [8] K. Miyamoto and Q. Wang On τ-tilting finiteness of tensor products between simply connected algebras, Preprint (2021), arXiv:2106.06423.
- [9] Q. Wang, On τ -tilting finite simply connected algebras, Preprint (2019), arXiv: 1910.01937.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE GRADUATE SCHOOL OF SCIENCE AND ENGINEERING IBARAKI UNIVERSITY HITACHI, IBARAKI 316-8511, JAPAN. Email address: kengo.miyamoto.uz63@vc.ibaraki.ac.jp

DEPARTMENT OF PURE AND APPLIED MATHEMATICS GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY OSAKA UNIVERSITY SUITA, OSAKA 565-0971, JAPAN. *Email address:* q.wang@ist.osaka-u.ac.jp