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Abstract. Almost N -projective modules and generalized N -projective modules play
an important role in the study of lifting modules. In this paper, we consider a rela-
tionship between almost N -projective modules and generalized N -projective modules,
and give new characterizations of these projectivities. by homomorphisms between their
projective covers, respectively. Moreover, using the result, we consider a condition for a
module which is almost Ni-projective for any i ∈ I to be almost ⊕i∈INi-projective.

1. Introduction

In 1960, Bass [3] introduced the notion of semiperfect rings, and three years later, Mares
[11] defined that of semiperfect modules which is a generalization of semiperfect rings. In
1983, Oshiro [14] further generalized this module to (quasi-)semiperfect modules without
the assumption of projective modules, and proved that every quasi-semiperfect module is
a direct sum of hollow modules. (Quasi-)semiperfect modules defined by Oshiro are often
called (quasi-)discrete modules. In 1989, Harada and Tozaki [6] introduced the notion
of almost M -projective and, for direct sums of hollow modules, they study relationships
between almost M -projective modules and modules which are related lifting modules. Let
M and N be modules. M is called almost N -projective if for any submodule X of N and
any homomorphism f : M → N/X, either there exists a homomorphism g : M → N
such that πg = f or there exist a nonzero direct summand N1 of N and a homomorphism
h : N1 → M such that fh = π|N1 , where π : N → N/X is the natural epimorphism.

g M
↙ ⟳ ↓ f

N
π→ N/X → 0

or
N1

h→ M
ι ↓ ⟳ ↓ f

N
π→ N/X → 0

where ι is the canonical injection. It is known that if M is almost N -projective then M ′

is almost N ′-projective for any direct summand M ′ of M and any submodule N ′ of N .
After that, Baba [1] introduced the notion of almost M -injective as dual to almost

M -projective, and Baba and Harada [2] give necessary and sufficient conditions for a
direct sum of hollow (resp. uniform) modules with a local endomorphism ring to be a
lifting module (resp. an extending module). In 2002, Oshiro and his students [4] classified
extending modules in terms of whether they satisfy the finite internal exchange property
or not, and they introduced the notion of generalized N -injective and gave necessary and
sufficient conditions for a direct sum of extending modules with the finite internal exchange
property to be extending with the finite internal exchange property. Moreover, Mohamed
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and Müller [13] defined generalized N -projective as a dual concept of generalized N -
injective to study of a direct sum of lifting modules. A module M is called generalized
N-projective if for any submodule X of N and any homomorphism f : M → N/X, there
exist decompositions M = M1 ⊕M2, N = N1 ⊕N2, a homomorphism g1 : M1 → N1 and
an epimorphism g2 : N2 → M2 such that f |M1 = πg1 and π|N2 = fg2, where π : N → N/X
is the natural epimorphism.

M1 ⊕ M2 = M

g1 ↓ g2 ↠ ↓ f

N1 ⊕ N2 = N
π→ N/X → 0 .

These projectivities play an important role in the study of a direct sum of lifting (hol-
low) modules. Clearly, if M is generalized N -projective, then it is almost N -projective.
However even case that M and N are indecomposable modules over an artinian ring,
the converse does not hold. Thus the following question is raised: “When are almost
N -projective modules generalized N -projective?” In this paper, we give new character-
izations of these projectivities and a condition for an almost N -projective module to be
generalized N -projective.

Throughout this paper R is a ring with identity and modules are unitary right R-
modules. N ≤⊕ M means that N is a direct summand of M . A submodule S of a
module M is called small in M if M ̸= K + S for any proper submodule K of M and
we write S ≪ M in this case. An epimorphism f : A → B is called small epimorphism
if ker f ≪ A. A module M is said to be lifting if for any submodule X of M , there
exists a direct summand M1 of M such that X/M1 ≪ M/M1. An indecomposable lifting
module is called hollow. It is well known that R is a right (semi-)perfect ring if and only
if any (finitely generated) projective R-module is lifting (cf. [12, Theorem 4.41]). Hence
any (finitely generated) module over a right (semi-)perfect ring has the projective lifting
cover. By [7, Theorem 8], any finite direct sum of projective lifting modules is also lifting.
A lifting module M is said to be quasi-discrete if M satisfies the following condition: If A
and B are direct summands of M such that M = A+B, then A∩B is a direct summand
of M . Note that “quasi-projective lifting ⇒ quasi-discrete”(cf. [12, Lemma 4.6]).

2. A relationship between almost N-projective modules and generalized
N-projective modules

In this section, we consider a relationship between almost N -projective modules and
generalized N -projective modules over any ring. Now we recall the graph. Let M = A⊕B

and let f : A → B be a homomorphism. Then ⟨A f→ B⟩ = {a + f(a) | a ∈ A}
is a submodule of M which is called the graph with respect to A

f→ B. Note that

M = ⟨A f→ B⟩ ⊕ B. A family {Xi}i∈I of submodules of a module M is called a local
summand of M if

∑
i∈I Xi is direct and

∑
i∈F Xi is a direct summand of M for any

finite subset F of I. A module M is said to satisfy LSS if any local summand of M is
a direct summand. It is well known that any module with LSS has an indecomposable
decomposition ([14, Theorem 3.5] (cf. [12, Theorem 2.17])), and a module M satisfies
LSS if and only if the union of any chain of direct summands of M is a summand ([12,
Lemma 2.16]). Any lifting module over a right perfect ring satisfies LSS ([10, Theorem



3.3] or Proposition 1). The authors know no examples of a lifting module which does not
satisfy LSS.

The following is a generalization of [10, Theorem 3.3].

Proposition 1. Let M and N be lifting modules and let f : M → N be an epimorphism.
If M satisfies LSS, then so is N .

The direct sum decomposition M = ⊕IMi is said to be exchangeable if, for every direct
summand X of M , there exists a submodule Ni of Mi (i ∈ I) such that M = X⊕ (⊕INi).
A module M is said to have the (finite) internal exchange property (or, briefly, (F)IEP)
if every (finite) direct sum decomposition M = ⊕IMi is exchangeable. This notion is
introduced by Oshiro et al. [4]. It is known that any quasi-discrete module satisfies FIEP,
and any lifting module with FIEP satisfies LSS ([14, Corollary 3.11], [9, Theorem 3.1]).

The following is a main result of this section.

Theorem 2. Let M and N be lifting modules with LSS. Then M is almost N-projective
if and only if M is generalized N -projective.

By Theorem 2 and [8, Theorem 3.7], we see the following:

Corollary 3. Let M1 and M2 be lifting modules with FIEP. Then Then M1 ⊕ M2 is a
lifting module with FIEP if and only if Mi is almost Mj-projective (i ̸= j).

3. A characterization of almost N-projective modules and its
applications

In this section, we give a characterization of almost N -projective modules by homo-
morphisms between their projective covers.

Theorem 4. Let M and N be modules with the projective lifting covers (P, νM) and
(Q, νN), respectively (e.g. M and N are modules over a right perfect ring). Then the
following two conditions are equivalent:

(a) M is almost N-projective.
(b) For any α ∈ HomR(P,Q), either α(ker νM) ⊆ ker νN , or there exist P ′ ≤⊕ P

and Q′ ≤⊕ Q such that α|P ′ : P ′ → Q′ is an isomorphism, (α|P ′)−1(ker νN |Q′) ⊆
ker νM |P ′ and 0 ̸= νN(Q

′) ≤⊕ N .

As an application of Theorem 4, we can obtain the following result which is a general-
ization of Harada’s Theorem [5] in a sense.

Theorem 5. Let M be a lifting module with the projective lifting cover, let Ni be a module
with the projective lifting cover (i ∈ I). We consider the following conditions:

(1) M is almost Ni-projective and Ni is almost Nj-projective for any i, j ∈ I (i ̸= j).
(2) M is almost ⊕INi-projective.

Then (1) ⇒ (2) holds. In particular, if each Ni is hollow, the decomposition ⊕i∈INi is
exchangeable and M is not Ni-projective for any i ∈ I, then the converse holds.

Let M and N be modules with the projective lifting covers (P, νM) and (Q, νN), re-
spectively. Then we note that M is N -projective if and only if, for any α ∈ HomR(P,Q),
α(ker νM) ⊆ ker νN . Hence we can obtain “ if M is N -projective then so is any closed
submodule of M ”. By this fact and Theorem 4, we can prove the following:



Proposition 6. Let M , N1 and N2 be modules with the projective lifting covers. If M is
N1-projective and almost N2-projective, then M is almost N1 ⊕N2-projective.

The following is obtained from Proposition 1, Theorem 5 and Proposition 6.

Corollary 7. (cf. [5, Theorem]) Let R be a right perfect ring, M a lifting module, Ni a
hollow module (i ∈ I) and Lk a module (k ∈ K) such that (i) the decomposition ⊕i∈INi

is exchangeable, (ii) M is almost Ni-projective but not Ni-projective for any i ∈ I, and
(iii) M is Lk-projective for any k ∈ K. Then the following conditions are equivalent:

(a) M is almost (⊕i∈INi)⊕ (⊕k∈KLk)-projective.
(b) Ni is almost Nj-projective for any distinct i, j ∈ I.

At the end of this section, we shall give a generalization of [6, Proposition 4].

Corollary 8. (cf. [6, Proposition 4]) Let M and Ni be modules with projective lifting
covers. We assume M is almost Ni-projective for all i ∈ I. If P is uniserial, then M is
almost ⊕i∈INi-projective.

4. A characterization of generalized N-projective modules and its
applications

In this section, we first give a characterization of generalized projective modules by
homomorphisms between their projective lifting covers. In addition, as its application,
we consider a condition for a direct sum of lifting modules with the projective lifting
covers to be lifting. The following is a main result of this section:

Theorem 9. Let M and N be modules with projective lifting covers (P, νM) and (Q, νN),
respectively. Then the following conditions are equivalent:

(a) M is generalized N-projective.
(b) For any α ∈ HomR(P,Q), there exist decompositions P = P1 ⊕ P2 and Q =

Q1 ⊕ Q2 such that α(P1) ⊆ Q1, α(ker νM |P1) ⊆ ker νN |Q1, α|P2 : P2 → Q2 is
an isomorphism, (α|P2)

−1(ker νN |Q2) ⊆ ker νM |P2, M = νM(P1) ⊕ νM(P2) and
N = νN(Q1)⊕ νN(Q2).

(c) For any α ∈ HomR(P,Q), there exist a decomposition P = P1 ⊕ P2 and a direct
summand Q2 of Q such that α(ker νM |P1) ⊆ ker νN , α|P2 : P2 → Q2 is an isomor-
phism, (α|P2)

−1(ker νN |Q2) ⊆ ker νM |P2, M = νM(P1)⊕νM(P2) and νN(Q2) ≤⊕ N .

The following is a consequence of Proposition 1, Theorems 2 and 5 and [8, Corollary
3.4].

Proposition 10. Let A, B1 and B2 be lifting modules with the projective lifting covers.
Assume that Bi is generalized Bj-projective for i, j ∈ {1, 2} (i ̸= j).

(1) If A is generalized Bi-projective (i = 1, 2), then A is generalized B1⊕B2-projective.
(2) If Bi is generalized A-projective (i = 1, 2), then B1⊕B2 is generalized A-projective.

Finally, we give conditions for a direct sum of lifting modules with the projective lifting
covers to be lifting.

Corollary 11. Let M1, . . . ,Mn be lifting modules (resp. lifting modules with FIEP) which
have the projective lifting covers and put M = ⊕n

i=1Mi. Then the following conditions are
equivalent:



(a) (i) M is lifting, and
(ii) the decomposition M = ⊕n

i=1Mi is exchangeable (resp. M satisfies FIEP).
(b) Mi is generalized Mj-projective for any distinct i, j ∈ {1, . . . , n}.
(c) Mi is almost Mj-projective for any distinct i, j ∈ {1, . . . , n}.

Proof. By Propositions 1 and 10, Theorem 2, [8, Corollary 3.4 and Theorem 3.7] and
induction. □
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