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Abstract. For a Noetherian R-algebra Λ, we classify torsion classes, torsionfree classes
and Serre subcategories of modΛ. For a prime ideal p of R, let kpΛ “ pRp{pRpq bR Λ.
Torsionfree classes are classified by using torsionfree classes of kpΛ. Serre subcategories
are classified by using simple kpΛ-modules. To classify torsion classes, we construct an
embedding from torsΛ to

ś

p tors kpΛ, where torsΛ is the set of torsion classes of modΛ
and p runs all prime ideals of R. We introduce the notion of compatible elements in
ś

p tors kpΛ and show that each element in the image of the embedding is compatible.
We give a sufficient condition such that any compatible element belongs to the image of
the embedding. This proceeding is based on the paper [6].

1. Preliminary

For finite dimensional algebras, a connection between torsion classes and classical tilting
modules was well understood in the last century, see [2] for instance. Recently, there are
many studies of torsion classes, for instance [1, 5]. For a commutative Noetherian ring R,
classification problems of subcategories of modR has been studied by many mathemati-
cians. The classification of Serre subcategories by Gabriel [3] is one of the most important
results. There exist many results of classification problems of subcategories based on the
Gabriel’s result, for instance [7, 13].

Throughout this proceeding let R be a commutative Noetherian ring and Λ an R-
algebra which is finitely generated as an R-module. We call such an algebra Λ a Noetherian
algebra and write pR,Λq. In the paper [6], as a natural generalization of finite dimensional
algebras and commutative Noetherian rings, we consider Noetherian R-algebras. The aim
is to classify torsion classes, torsionfree classes and Serre subcategories of the category
modΛ of finitely generated (left) Λ-modules.

We recall the definition of such subcategories of the module category.

Definition 1. Let pR,Λq be a Noetherian algebra and C a subcategory of modΛ. We
say that C is a torsion class (respectively, torsionfree class, Serre subcategory) of modΛ
if C is closed under factor modules (respectively, submodules, both of factor modules and
submodules) and extensions. We denote by torsΛ (respectively, torf Λ, serreΛ) the set of
all torsion classes (respectively, torsionfree classes, Serre subcategories) of modΛ.

Note that each torsion class in modΛ gives rise to a torsion pair, since each module in
modΛ is noetherian. On the other hand, a torsionfree class does not necessarily give rise
to a torsion pair in modΛ.
We denote by SpecR the set of all prime ideals of R. Let p P SpecR and Λp “ Rp bR Λ.

Then pRp,Λpq is a Noetherian algebra. For a Λ-module M we denote by Mp “ Rp bR M
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a Λp-module. For a subcategory C of modΛ, we denote by Cp a subcategory of modΛp

defined as follows:
Cp :“ tMp P modΛp | M P Cu.

It is easy to see that if C is closed under extensions (respectively, factor modules,
submodules) in modΛ, then so is Cp in modΛp. Therefore taking localization at p preserves
the property of being torsion classes (respectively, torsionfree classes, Serre subcategories).
Thus:

Lemma 2. If C is a torsion class (respectively, torsionfree class, Serre subcategory) of
modΛ, then Cp is a torsion class (respectively, torsionfree class, Serre subcategory) of
modΛp.

For p P SpecR let kp “ Rp{pRp and kpΛ “ kp bR Λ. Then kpΛ is a finite dimensional
kp-algebra. We regard mod kpΛ as a full subcategory of modΛp by a canonical surjection
from Λp to kpΛ. Then mod kpΛ is closed under factor modules and submodules in modΛp.
Thus an assignment C ÞÑ C X mod kpΛ induces maps

torsΛp ÝÑ tors kpΛ, torf Λp ÝÑ torf kpΛ, serreΛp ÝÑ serre kpΛ.(1.1)

Let TRpΛq, FRpΛq and SRpΛq be the Cartesian products of tors kpΛ, torf kpΛ and serre kpΛ
respectively, where p runs all prime ideals of R:

TRpΛq :“
ź

pPSpecR

tors kpΛ, FRpΛq :“
ź

pPSpecR

torf kpΛ, SRpΛq :“
ź

pPSpecR

serre kpΛ.

By Lemma 2 and (1.1), we have the following maps

Φ : torsΛ ÝÑ TRpΛq, T ÞÑ tTp X mod kpΛup,

Φ1 : torf Λ ÝÑ FRpΛq, F ÞÑ tFp X mod kpΛup.

By restricting Φ to serreΛ, we have a map from serreΛ to SRpΛq. These maps enable us to
study torsion classes, torsionfree classes and Serre subcategories of modΛ by comparing
with those of mod kpΛ.

2. Classification of torsionfree classes and Serre subcategories

We regard torsΛ, torf Λ, serreΛ, TRpΛq, FRpΛq and SRpΛq as posets by inclusion.
For a subcategory C of modΛ, let CK be a subcategory of modΛ consisting of modules

M such that HomΛpC,Mq “ 0 for any C P C. Dually we define KC. Since kpΛ is a finite
dimensional algebra, p´qK induces an order reversing bijection from tors kpΛ to torf kpΛ
with an inverse map Kp´q. Then p´qK induces an order reversing bijection from TRpΛq

to FRpΛq. We have the following commutative diagram.

torsΛ
Φ

ÝÝÝÑ TRpΛq

p´qK

§

§

đ

p´qK

§

§

đ

≀

torf Λ
Φ1

ÝÝÝÑ FRpΛq

Our main theorem is the following one.

Theorem 3. For a Noetherian algebra pR,Λq, the following statements hold.



(a) The map Φ1 is an isomorphism of posets.
(b) The map Φ is an embedding of posets.

Therefore classification problem of torsionfree classes of modΛ can be reduced to the
problem for finite dimensional algebras. As we explain in Corollary 5 bellow if Λ “ R
then Theorem 3 recovers famous classification results of torsion classes, torsionfree classes
and Serre subcategories by Stanley-Wang, Takahashi and Gabriel, respectively [3, 12, 13].

We give an inverse map of Φ1. We denote by AssM the set of associated prime ideals
of an R-module M . For a torsionfree class Y of mod kpΛ let

qY :“ tX P modΛ | AssX Ď tpu, Xp P FΛppYqu.

where FΛppYq is the smallest torsionfree class of modΛp containing Y . Then the inverse
map Ψ1 of Φ1 is given as follows

Ψ1 : FRpΛq ÝÑ torf Λ, tYpup ÞÑ Filt
´

|Yp

ˇ

ˇ

ˇ
p P SpecR

¯

.

We apply Theorem 3 to obtain a classification of Serre subcategories of modΛ. We
denote by sim kpΛ the set of isomorphism classes of simple kpΛ-modules and let

Sim :“
ğ

pPSpecR

sim kpΛ.

We regard Sim as posets as follows: for S P sim kpΛ and T P sim kqΛ, we write S ď T if
and only if p Ě q and S is a subfactor of T as a Λq-module. We say that a subset W of
Sim is a down-set if T P W and S ď T implies S P W for S P Sim.

It is well-known that an assignment C ÞÑ C X sim kpΛ induces an isomorphism of posets
from serre kpΛ to the power set Ppsim kpΛq. This induces an isomorphism of posets SRpΛq »

PpSimq. Since the map Φ restricts to Serre subcategories, we have the following morphisms
of posets

serreΛ ÝÑ ImΦ Ă SRpΛq » PpSimq.

We regard Φ as a map from serreΛ to PpSimq. Then the following theorem characterizes
ImΦ.

Theorem 4. For a Noetherian algebra pR,Λq, the map Φ induces an isomorphism of
posets

serrepΛq » tW Ď Sim | W is a down-setu

Note that this result simplifies Kanda’s classification [7, 8] of serreΛ in terms of atom
spectrum.

We give another application of Theorem 3. We say that a subset W of SpecR is
specialization closed if p P W and p Ă q implies q P W for q P SpecR. If we take Λ “ R,
then Theorem 3 recovers famous classification results of torsion classes, torsionfree classes
and Serre subcategories by Stanley-Wang, Takahashi and Gabriel, respectively [3, 12, 13].
For X “ tX pup P TRpΛq (or FRpΛq), let SpX q “ tp P SpecR | X p ‰ 0u. Then we have the
following corollary.

Corollary 5. Let pR,Λq be a Noetherian algebra. Assume that Λp is Morita equivalent
to a local ring for each p P SpecR. Then the following statements hold.

(a) We have serreΛ “ torsΛ.



(b) The composite S ˝ Φ is an isomorphism of posets and pS ˝ ΦqpCq “
Ť

MPC SuppM
holds.

serreΛ
Φ
ÝÑ ImΦ

S
ÝÑ tspecialization closed subsets of SpecRu

(c) The composite S ˝ Φ1 is an isomorphism of posets and pS ˝ Φ1qpCq “
Ť

MPC AssM
holds.

torf Λ
Φ1

ÝÑ FRpΛq
S
ÝÑ PpSpecRq

3. Classification of torsion classes

The map Φ is an embedding of posets from torsΛ to TRpΛq by Theorem 3. Thus we
study the subset ImΦ of TRpΛq. For T P tors kpΛ, the following subcategory T is a torsion
class of modΛp:

T “ tX P modΛp | X{pX P T u P torsΛp.

For p Ě q of SpecR, we define a map rp,q by the composite of the following three maps

rp,q : tors kpΛ
p´q
ÝÝÑ torsΛp

p´qq
ÝÝÑ torsΛq

p´qXmod kqΛ
ÝÝÝÝÝÝÝÝÑ tors kqΛ.

Definition 6. We say that tX pup P TRpΛq is compatible if rp,qpX pqĚX q holds for any
prime ideals p Ě q.

We can show the following proposition.

Proposition 7. Any element of ImΦ is compatible.

We say that a Noetherian algebra pR,Λq is compatible if any compatible element of
TRpΛq belongs to ImΦ. In this case, we have

torsΛ »

#

tX pup P
ź

pPSpecR

tors kpΛ

ˇ

ˇ

ˇ

ˇ

ˇ

rp,qpX pq Ě X q, @p Ě q P SpecR

+

which gives a complete classification of torsΛ.
There are many Noetherian algebra which are compatible. For example we have the

following theorem.

Theorem 8. Let pR,Λq be a Noetherian algebra. If R is semi-local with Krull dimension
one, then pR,Λq is compatible.

Note that the classification of torsion classes was also studied in [9] in the case when R
is a complete local domain with Krull dimension one.

We give another example. Let k be a field and A a finite dimensional k-algebra. A
simple A-module S is said to be k-simple if EndApSq » k holds. For instance if k is
algebraically closed, or A is a factor algebra of a finite quiver modulo an admissible ideal,
then all simple A-modules are k-simple.

Theorem 9. Let A be a finite dimensional k-algebra and R a commutative Noetherian
ring containing a field k. Assume that all simple A-modules are k-simple and torsA is a
finite set. Then the following statements hold.

(a) There exists an isomorphism of posets tp : torsA Ñ torspkpbkAq such that rp,q˝tp “

tq holds for any prime ideals p Ě q.



(b) The Noetherian algebra pR,R bk Aq is compatible.
(c) We have an isomorphism of posets

torspR bk Aq » HomposetpSpecR, torsAq.

We give one basic example.

Example 10. Let Q be a Dynkin quiver, and R a commutative Noetherian ring which
contains a field k. It is known that torspkQq is isomorphic to the Cambrian lattice CQ of
Q by [5] and [11]. Since RQ » R bk kQ, we have the following isomorphism of posets by
Theorem 9.

torsRQ » HomposetpSpecR,CQq.

We end this proceeding posing the following question.

Question 11. Characterize Noetherian algebras which are compatible.

So far we do not know any Noetherian algebra which is not compatible.
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