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Abstract. Let Nm(R) = {(aij) ∈ Mm(R) | a11 = a22 = · · · = amm and aij =
0 for any i > j} for a commutative ring R. We calculate the Hochschild cohomology ring
HH∗(Nm(R),Nm(R)) as R-algebras. We also calculate HH∗(Nm(R),Mm(R)/Nm(R)) as
R-modules.

Key Words: Hochschild cohomology, Koszul algebra, Spectral sequence.

2010 Mathematics Subject Classification: Primary 16E40; Secondary 16S37, 18G40.

1. Introduction

Let R be a commutative ring. For m ≥ 3, set

Nm(R) = {(aij) ∈ Mm(R) | a11 = a22 = · · · = amm and aij = 0 for any i > j}.
Setting x1 = E1,2, x2 = E2,3, . . . , xm−1 = Em−1,m, we have an isomorphism as R-algebras:

Nm(R) ∼= R⟨x1, x2, . . . , xm−1⟩/⟨xixj | j ̸= i+ 1⟩,
where Ei,j ∈ Mm(R) denotes the matrix with entry 1 in the (i, j)-component and 0 the
other components. Since Nm(R) is a quadratic monomial algebra over R, it is Koszul. The
Koszul dual Nm(R)! of Nm(R) is isomorphic toR⟨y1, y2, . . . , ym−1⟩/⟨yiyi+1 | 1 ≤ i ≤ m−2⟩.
Put

φ(d) = rankRNm(R)!d,

where |yi| = 1 and Nm(R)!d is the homogeneous part of Nm(R)! of degree d. The Poincaré

series f !(t) =
∑
d≥0

φ(d)td can be calculated by

f !(t) =
1

1 +
m−1∑
k=1

(−1)k(m− k)tk

.

In this paper, we calculate the Hochschild cohomology HH∗(Nm(R),Mm(R)/Nm(R)) as
R-modules. We also calculate HH∗(Nm(R),Nm(R)) as R-algebras. In the previous talk
“An application of Hochschild cohomology to the moduli of subalgebras of the full matrix
ring II”, we reported that we calculated the Hochschild cohomology HH∗(A,M3(k)/A) for
any 26 types of k-subalgebras A of M3(k) over an algebraically closed filed k. Then N3(k)
is one of the most difficult k-subalgebras A of M3(k) to calculate HH∗(A,M3(k)/A) (for
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details, see [4]). This time, we would like to calculate the case Nm(R) for m ≥ 3. As a
result of our calculation, we will obtain how to calculate Hochschild cohomology for some
type of algebras A.

The main theorems of this paper are the following:

Theorem 1. Let m ≥ 3. The Hochschild cohomology HHn(Nm(R),Mm(R)/Nm(R)) is a
free R-module for n ≥ 0. The rank of HHn(Nm(R),Mm(R)/Nm(R)) for n ≥ 0 is given by

rankRHH
n(Nm(R),Mm(R)/Nm(R)) =

{
m− 1 (n = 0)

(m− 2)φ(n) (n > 0).

Theorem 2. Let m ≥ 3. The Hochschild cohomology HHn(Nm(R),Nm(R)) is a free
R-module for n ≥ 0. The rank of HHn(Nm(R),Nm(R)) is given by

rankRHH
n(Nm(R),Nm(R))

=



2 (n = 0)
2m− 4 (n = 1)
φ(n) + (m− 4)φ(n− 1)

+(−1)mφ(n−m+ 1) +
m−1∑
k=2

(−1)k(k + 1)φ(n− k)
(n ≥ 2).

Theorem 3. Let m ≥ 3. There is an augmentation map ϵ : HH∗(Nm(R),Nm(R)) → R

as an R-algebra homomorphism such that the Kernel HH∗(Nm(R),Nm(R)) of ϵ satisfies

HH∗(Nm(R),Nm(R)) · HH∗(Nm(R),Nm(R)) = 0.

In particular, HH∗(Nm(R),Nm(R)) is an infinitely generated algebra over R.

2. Preliminaries

In this section, we make a brief survey of Hochschild cohomology (cf. [1] and [6]). We
also explain four steps for proving the main theorems.

Definition 4 (Hochschild cohomology). Let A be an associative algebra over a com-
mutative ring R. Let M be an A-bimodule. Assume that A is projective over R. Let
Ae := A ⊗R Aop be the enveloping algebra of A. We regard M as a left Ae-module. We
define the i-th Hochschild cohomology group H i(A,M) as ExtiAe(A,M).

Proposition 5. Let R, A, and M be as above. We can calculate H i(A,M) by taking the
cohomology groups of the bar complex (Ci(A,M), di)i∈Z which is given by

Ci(A,M) :=

{
HomR(A

⊗i,M) (i ≥ 0)
0 (i < 0)



and di : Ci(A,M) → Ci+1(A,M) (i ≥ 0) defined by

di(f)(a1 ⊗ a2 ⊗ · · · ⊗ ai+1)

:= a1f(a2 ⊗ · · · ⊗ ai+1) +
i∑

j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f(a1 ⊗ a2 ⊗ · · · ⊗ ai)ai+1

for f ∈ Ci(A,M) (i ≥ 1) and

d0(m)(a) = am−ma

for m ∈ C0(A,M) = M . Here the tensor products are over R.

Let N be another A-bimodule over R. We define a map

∪ : C∗(A,M)× C∗(A,N) −→ C∗(A,M ⊗A N)

by

(f ∪ g)(a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq) = f(a1 ⊗ · · · ⊗ ap)⊗ g(b1 ⊗ · · · ⊗ bq)

for f ∈ Cp(A,M) and g ∈ Cq(A,N). The map ∪ is R-bilinear and satisfies

dp+q(f ∪ g) = dp(f) ∪ g + (−1)pf ∪ dq(g).

Hence the map ∪ induces a map

HHp(A,M)⊗R HHq(A,N) −→ HHp+q(A,M ⊗A N)

of R-modules. In particular, HH∗(A,A) becomes a graded associative algebra over R by
the cup product ∪.

We divide the proof of the main theorems into four steps.

(Step 1) Show that HH∗(Nm(R), R) ∼= Nm(R)! as graded algebras over R.
(Step 2) For a Z-graded Nm(R)-bimodule M = Nm(R) or M = Mm(R)/Nm(R), consider a

filtration of Z-graded Nm(R)-bimodules over R:

M = F−(m−1)M ⊃ F−(m−2)M ⊃ · · · ⊃ FmM = 0.

Set Grp(M) = F pM/F p+1M . Construct a spectral sequence

Ep,q
1

∼= HHp+q(Nm(R),Grp(M)) =⇒ HHp+q(Nm(R),M),

which collapses from the E2-page.
(Step 3) Calculate Ep,q

2 .
(Step 4) Determine the product structure on Ep,q

∞ for M = Nm(R).

In the following sections, we discuss four steps.



3. Step 1

Let

J =




0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 0 · · · ∗
...

...
. . . . . .

...
0 0 0 · · · 0

 ∈ Nm(R)

 ⊂ Nm(R).

We calculate HH∗(Nm(R), R) for the Nm(R)-bimodule Nm(R)/J ∼= R over R. In this
section, we show that HH∗(Nm(R), R) ∼= Nm(R)! as graded algebras over R.
Recall that the Koszul dual Nm(R)! is isomorphic to R⟨y1, y2, . . . , ym−1⟩/⟨yiyi+1 | 1 ≤

i ≤ m− 2⟩ as an R-algebra, Setting |yi| = 1 for 1 ≤ i ≤ m− 1, Nm(R)! can be regarded
as a graded algebra over R. Let Nm(R)!d be the homogeneous part of Nm(R)! of degree
d. We denote by B(N!

d) the R-basis of Nm(R)!d consisting of monomials of degree d. Note
that B(N!

0) = {1}.
Set N = Nm(R) and N!

d = Nm(R)!d. By [5, Theorem 3], there is a projective resolution
P of Nm(R) as Nm(R)-bimodules over R which is given by Pn = N ⊗R N!

n ⊗R N =
⊕p∈B(N!

n)
N⊗R Rp⊗R N,

· · · → N⊗R N!
2 ⊗R N

d1→ N⊗R N!
1 ⊗R N

d0→ N⊗R N
µ→ N → 0,(3.1)

µ(a⊗ b) = ab, and dn−1(1⊗ pn⊗ 1) = xj′ ⊗ pRn ⊗ 1+ (−1)n1⊗ pLn ⊗xj, where pn = pLnyj =
yj′p

R
n ∈ N!

n and pLn , p
R
n ∈ N!

n−1.

Proposition 6. HH∗(Nm(R), R) ∼= Nm(R)! as graded algebras over R.

Proof. By taking HomNe(−, R) of P in (3.1), we have

0 → HomNe(N⊗R N, R)
δ0→ HomNe(N⊗R N!

1 ⊗R N, R)

δ1→ HomNe(N⊗R N!
2 ⊗R N, R) → · · · .

Since JR = RJ = 0, δi = 0 for i ≥ 0. Hence, for each i ≥ 0, HHi(Nm(R), R) ∼=
H i(HomNe(N⊗RN

!
∗⊗RN, R)) ∼= N!

i. We can also prove that HH∗(Nm(R), R) is isomorphic
to Nm(R)! as graded algebras over R. □

4. Step 2

In this section, we construct a spectral sequence

Ep,q
1

∼= HHp+q(Nm(R),Grp(M)) =⇒ HHp+q(Nm(R),M)

for the Z-graded Nm(R)-bimodules M = Nm(R) or Mm(R)/Nm(R), which collapses from
the E2-page.

We can choose an R-basis {Ei,j | 1 ≤ i, j ≤ m} of Mm(R). Set

Mr =
⊕
j−i=r

R{Ei,j}.



Then Mm(R) = ⊕r∈ZMr is a Z-graded associative algebra over R. Note that Nm(R) is a
Z-graded subalgebra of Mm(R). We also see that Mm(R)/Nm(R) is a Z-graded Nm(R)-
bimodule.

Let M = Nm(R) or M = Mm(R)/Nm(R). Recall J = ⊕r>0Mr in Step 1. For Nm(R)-
bimodule M over R, set

F pM =
∑

a+b=p+(m−1)

JaMJb.

Then we have a filtration of Nm(R)-bimodules

M = F−(m−1)M ⊃ F−(m−2)M ⊃ · · · ⊃ Fm−1M ⊃ FmM = 0

over R.
Let {C∗(Nm(R),M)} be the bar complex with coefficients in M . From the filtration

{F pM}, we obtain a filtration {C∗(Nm(R), F pM)} on C∗(Nm(R),M). By a standard
discussion, we obtain a spectral sequence (for details, see [3, Theorem 2.6]).

Theorem 7. There is a spectral sequence of R-modules

Ep,q
1 (Nm(R),M) =⇒ HHp+q(Nm(R),M),

where
Ep,q

1 (Nm(R),M) ∼= HHp+q(Nm(R), F pM/F p+1M).

For a Z-graded Nm(R)-bimodule M = Nm(R) or Mm(R)/Nm(R) over R, we can define
a Z-grading on Cp(Nm(R),M) by the isomorphism

Cp(Nm(R),M) ∼= HomR(Nm(R)⊗p,M)
∼= (Nm(R)∗)⊗p ⊗R M,

where Nm(R)∗ = HomR(Nm(R), R). We denote by Cp,s(Nm(R),M) the degree s part of
Cp(Nm(R),M). For example,

E1,3 ∈ C0,−2(Nm(R),M), E∗
1,2 ⊗ E∗

1,4 ⊗ E1,2 ∈ C2,3(Nm(R),M),

where {I∗m} ∪ {E∗
i,j | i < j} is the dual basis of Nm(R)∗ with respect to the R-basis

{Im} ∪ {Ei,j | i < j} of Nm(R).
The differential d : Cp(Nm(R),M) → Cp+1(Nm(R),M) preserves the Z-grading. Hence,

{C∗,s(Nm(R),M)} becomes a subcomplex of {C∗(Nm(R),M)}. We set HHn,s(Nm(R),M) =
Hn(C∗,s(Nm(R),M)).

The filtration F pM is compatible with the Z-grading. Put (F pM)s = F pM∩M s. By the
Z-grading, we have the degree s component of the spectral sequence {Ep,q

r (Nm(R),M), dr}r≥1:

Ep,q,s
1 (Nm(R),M) =⇒ HHp+q,s(Nm(R),M),

where Ep,q,s
1 (Nm(R),M) ∼= HHp+q,s(Nm(R), F pM/F p+1M), dsr : Ep,q,s

r (Nm(R),M) →
Ep+r,q−r+1,s

r (Nm(R),M), Ep,q
r (Nm(R),M) = ⊕s∈ZE

p,q,s
r (Nm(R),M), and dr = ⊕s∈Zd

s
r.

Proposition 8. When M = Nm(R) or Mm(R)/Nm(R),

Ep,q,s
1 (Nm(R),M) = 0

if s ̸= q.



We omit the proof of Proposition 8. For details, see [2].

By Proposition 8, we have the following corollary.

Corollary 9. When M = Nm(R) or Mm(R)/Nm(R), the spectral sequence

Ep,q
1 (Nm(R),M) =⇒ HH∗(Nm(R),M)

collapses from E2-page and there is no extension problem.

5. Step 3

By Step 2, we only need to calculate Ep,q
2 (Nm(R),M) for determining the R-module

structure of HH∗(Nm(R),M) when M = Nm(R) or Mm(R)/Nm(R).

Since F pM/F p+1M is isomorphic to the direct sum of R as Nm(R)-bimodules over R,

Ep,q
1 (Nm(R),M) ∼= HHp+q(Nm(R), F pM/F p+1M)

∼= HHp+q(Nm(R), R)⊗R (F pM/F p+1M)
∼= Nm(R)!p+q ⊗R (F pM/F p+1M)

by Step 1.
The differential d1 : Ep,q

1 (Nm(R),M) → Ep+1,q
1 (Nm(R),M) can be identified with the

connecting homomorphism

HHp+q(Nm(R), F pM/F p+1M) → HHp+q+1(Nm(R), F p+1M/F p+2M)

induced by

0 → F p+1M/F p+2M → F pM/F p+2M → F pM/F p+1M → 0.

The connecting homomorphism can be described explicitly.

Recall φ(d) = rankRNm(R)!d. The following propositions can be proved by long discus-
sions. For details, see [2].

Proposition 10. Let m ≥ 3. For p ̸= 0, Ep,q
2 (Nm(R),Mm(R)/Nm(R)) = 0. For p = 0,

E0,q
2 (Nm(R),Mm(R)/Nm(R)) is a free R-module of rank

(m− 1)φ(q) +
m−1∑
k=1

(−1)m+kkφ(q −m+ k).



Proposition 11. For p ̸= 0, 1,m − 1, Ep,q
2 (Nm(R),Nm(R)) = 0. For p = 0, 1,m − 1,

Ep,q
2 (Nm(R),Nm(R)) is a free R-module. The rank of Ep,q

2 (Nm(R),Nm(R)) is given by

rankRE
0,q
2 =

{
1 (q = 0)

0 (q ̸= 0),

rankRE
1,q
2 =

{
m− 1 (q = 0)

(m− 2)φ(q) (q ̸= 0),

rankRE
m−1,q
2 = (−1)mφ(q) +

m−1∑
k=0

(−1)k(k + 1)φ(q +m− k − 1).

Since there is no extension problem, we can determine the R-module structure of
HH∗(Nm(R),Nm(R)) and HH∗(Nm(R),Mm(R)/Nm(R)) (Theorems 1 and 2). Hence, we
have proved our main theorem except for the product structure on HH∗(Nm(R),Nm(R)).

6. Step 4

In this section, we determine the product structure on Ep,q
∞ for M = Nm(R).

Let A be an abelian symmetric monoidal category in which the tensor product ⊗ :
A×A → A is right exact separately in each variable.

Definition 12. Let (A∗, d) be a differential graded algebra in A. Suppose that we have
a filtration

A∗ = F 0A∗ ⊃ F 1A∗ ⊃ · · · ⊃ F nA∗ ⊃ · · · ⊃ F tA∗ = 0.

A triple (A∗, d, {F rA∗}r≥0) is said to be a filtered differential graded algebra if it satisfies
the following two conditions:

(1) For any n ≥ 0, d(F nA∗) ⊂ F nA∗.
(2) For any r, s ≥ 0, F rA∗ · F sA∗ ⊂ F r+sA∗.

Let (A∗, d, {F rA∗}r≥0) be a filtered differential graded algebra. By [3, Theorem 2.14],
there is a spectral sequence

Ep,q
1 = Hp+q(F pA/F p+1A) =⇒ Hp+q(A)

of algebras in A, which converges to Hp+q(A) as an algebra.

Recall the decomposition

Cp(Nm(R),Nm(R)) = ⊕s∈ZC
p,s(Nm(R),Nm(R))

as a Z-graded R-module, which is compatible with the filtration F rC∗(Nm(R),Nm(R)) =
C∗(Nm(R), F rNm(R)). Then the triple (C∗(Nm(R),Nm(R)), d, {F rC∗(Nm(R),Nm(R))}r≥0)
is a filtered differential graded algebra in the category of Z-graded R-modules.
Thus, we obtain a multiplicative spectral sequence

Ep,q
1 (Nm(R),Nm(R)) =⇒ HHp+q(Nm(R),Nm(R))

in the abelian category of Z-graded R-modules.



In the casem = 3, we can determine the product structure onEp,q
∞ and HH∗(N3(R),N3(R))

directly. Here we assume that m ≥ 4. The following lemma is essential for determining
the product structure on HH∗(Nm(R),Nm(R)).

Lemma 13. For m ≥ 4, let a ∈ HH1+q,q(Nm(R),Nm(R)) and b ∈ HH1+q′,q′(Nm(R),Nm(R))
represented by x ∈ E1,q,q

∞ and y ∈ E1,q′,q′
∞ , respectively. Then we obtain ab = 0 in

HH2+q+q′,q+q′(Nm(R),Nm(R)).

Proof. Since E2,q+q′,q+q′

2 = 0 for m ≥ 4 by Proposition 11, E2,q+q′,q+q′
∞ = 0. Hence xy = 0,

which implies that ab is represented by an element in Em−1,q+q′−m+3,q+q′
∞ . By Proposition 8,

if m ≥ 4, then Em−1,q+q′−m+3,q+q′
∞ = Em−1,q+q′−m+3,q+q′

1 = 0. Therefore ab = 0. □
By Lemma 13, we can prove Theorem 3. For details, see [2].
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