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Abstract. For a 3-dimensional quantum polynomial algebra A = A(E, σ), Artin-Tate-
Van den Bergh showed that A is finite over its center if and only if |σ| < ∞. Moreover,
Artin showed that if A is finite over its center and E ̸= P2, then A has a fat point
module, which plays an important role in noncommutative algebraic geometry, however,
the converse is not true in general. In this paper, we show that, if E ̸= P2, then A has
a fat point module if and only if the quantum projective plane ProjncA is finite over its
center if and only if |ν∗σ3| < ∞ where ν is the Nakayama automorphism of A. As a
byproduct, we show that |ν∗σ3| = 1 or ∞ if and only if the isomorphism classes of simple
2-regular modules over ∇A are parameterized by E ⊂ P2.

1. Geometric quantum polynomial algebras

Throughout this paper, let k be an algebraically closed field of characteristic 0. All
graded algebras are finitely generated in degree 1 over k, that is, A ∼= k⟨x1, . . . , xn⟩/I,
where I is a two-sided homogeneous ideal of k⟨x1, . . . , xn⟩, deg xi = 1 (∀i = 1, . . . , n).
We denote by grmodA the category of finitely generated graded right A-modules. The
(n− 1)-dimensional projective space over k is denoted by Pn−1

k (= Pn−1).

Definition 1 ([3]). A right noetherian graded algebra A is called a d-dimensional quantum
polynomial algebra if

(i) gldimA = d,

(ii) ExtiA(k,A)
∼=

{
k if i = d,

0 if i ̸= d,
(Gorenstein condition)

(iii) HA(t) :=
∑∞

i=0(dimk Ai)t
i = (1− t)−d (Hilbert series of A).

For example, a polynomial algebra k[x1, . . . , xd] is a commutative d-dimensional quan-
tum polynomial algebra. Also, a skew polynomial algebra k⟨x1, . . . , xd⟩/(xjxi −αi,jxixj),
(1 ≤ i < j ≤ d, αi,j ∈ k\{0}) is a d-dimensional quantum polynomial algebra. In [3], A is
a 3-dimensional quantum polynomial algebra if and only if A is a 3-dimensional quadratic
AS-regular algebra, which is of the form A ∼= k⟨x, y, z⟩/(f1, f2, f3), fi ∈ k⟨x, y, z⟩2 (i =
1, 2, 3).

Next, we recall a notion of geometric algebra for a quadratic algebra. Let E be a
projective scheme in Pn−1, and σ ∈ Autk E. Here, we consider a quadratic algebra
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A = k⟨x1, . . . , xn⟩/I where I is a homogeneous ideal of k⟨x1, . . . , xn⟩ generated by I2. We
set V(I2) := {(p, q) ∈ Pn−1 × Pn−1 | f(p, q) = 0, ∀f ∈ I2}.
Definition 2 ([14]). (1) We say that A satisfies (G1) if there exists a geometric pair

(E, σ) such that

V(I2) = {(p, σ(p)) ∈ Pn−1 × Pn−1 | p ∈ E}.
In this case, we write P(A) = (E, σ), and call E the point scheme of A.

(2) We say that A satisfies (G2) if there exists a geometric pair (E, σ) such that

I2 = {f ∈ k⟨x1, . . . , xn⟩2 | f(p, σ(p)) = 0 for any p ∈ E}.
In this case, we write A = A(E, σ).

(3) A quadratic algebra A is called geometric if A satisfies both (G1) and (G2) with
A = A(P(A)).

Suppose that E is a triangle in P2, and σ ∈ Autk E stabilizes each component. Then,
A := A(E, σ) = k⟨x, y, z⟩/(yz − αzy, zx − βxz, xy − γyx) is a 3-dimensional geometric
quantum polynomial algebra, where α, β, γ ∈ k such that αβγ ̸= 0, 1.

Theorem 3 ([5]). Every 3-dimensional quantum polynomial algebra is geometric where
the point scheme is either P2 or a cubic divisor in P2.

Note that the classification of 3-dimensional quantum polynomial algebras A = A(E, σ)
reduces to the classification of geometric pairs (E, σ). A type of a 3-dimensional quantum
polynomial algebra A = A(E, σ) is defined in terms of the point scheme E ⊂ P2 (for
example, see [9, Subsection 2.3]):

Type P: E is P2.
Type S: E is a triangle.
Type S’: E is a union of a line and a conic meeting at two points.
Type T: E is a union of three lines meeting at one point.
Type T’: E is a union of a line and a conic meeting at one point.
Type NC: E is a nodal cubic curve.
Type CC: E is a cuspidal cubic curve.
Type TL: E is a triple line.
Type WL: E is a union of a double line and a line.
Type EC: E is an elliptic curve.

2. Quantum projective spaces finite over their centers

In this section, we recall a quantum projective space from Artin-Zhang [7]. For a right
noetherian graded algebra A, torsA is the full subcategory of grmodA consisting of finite
dimensional modules over k.

Definition 4 ([7]). (1) The noncommutative projective scheme associated to A is defined
by ProjncA = (tailsA, πA) where tailsA := grmodA/torsA is the quotient category,
π : grmodA → tailsA is the quotient functor, and A ∈ grmodA is a regular module.

(2) Moreover, if A is a d-dimensional quantum polynomial algebra, then ProjncA is called
a quantum Pd−1. In particular, for the case that d = 3, ProjncA is called a quantum
projective plane.



We remark that, if A is commutative, then Projnc A
∼= ProjA. It is known that if A is

a 2-dimensional quantum polynomial algebra, then ProjncA
∼= P1.

Now, we mention the relationships between a 3-dimensional quantum polynomial alge-
bra and a quantum projective plane.

Theorem 5 ([2]). Let A and A′ be 3-dimensional quantum polynomial algebras. Then

grmodA ∼= grmodA′ if and only if ProjncA
∼= ProjncA

′.

Lemma 6 ([10]). For every 3-dimensional quantum polynomial algebra A, there exists a
3-dimensional Calabi-Yau quantum polynomial algebra A′ such that grmodA ∼= grmodA′

so that Projnc A
∼= Projnc A

′.

Here, a quantum polynomial algebra A′ is called Calabi-Yau if the Nakayama auto-
morphism of A′ is the identity. The above results play an essential role to prove our
main results. Note that, Lemma 6 claims that every quantum projective plane has a 3-
dimensional Calabi-Yau quantum polynomial algebra as a homogeneous coordinate ring.

For a 3-dimensional quantum polynomial algebra A = A(E, σ), we have the following
geometric characterization when A is finite over its center.

Theorem 7 ([6]). If A = A(E, σ) is a 3-dimensional quantum polynomial algebra, then
|σ| < ∞ if and only if A is finite over its center.

To prove Theorem 7, fat points of a quantum projective plane Projnc A play an essential
role. By Artin [1], if A is finite over its center and E ̸= P2, then Projnc A has a fat point,
however, the converse is not true.

Definition 8. Let A be a graded algebra. A point of ProjncA is an isomorphism class of a
simple objects of the form πM ∈ tailsA where M ∈ grmodA is a graded right A-module
such that lim

i→∞
dimk Mi < ∞. A point πM is called fat if lim

i→∞
dimk Mi > 1. In this case

M is called a fat point module over A.

To characterize “geometric” quantum projective spaces finite over their centers, the
following notion was introduced:

Definition 9 ([15]). For a geometric pair (E, σ) where E ⊂ Pn−1 and σ ∈ AutkE, we
define

Autk(Pn−1, E) := {ϕ|E ∈ AutkE | ϕ ∈ AutkPn−1},
and ∥σ∥ := inf{i ∈ N+ | σi ∈ Autk(Pn−1, E)}, which is called the norm of σ.

For a geometric pair (E, σ), clearly ∥σ∥ ≤ |σ| holds. The following facts will be used
to prove our main results.

Lemma 10 ([1], [15]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra.

(1) ∥σ∥ = 1 ⇐⇒ E = P2.
(2) 1 < ∥σ∥ < ∞ ⇐⇒ ProjncA has a fat point.

Definition 11 ([15], ([11])). Let A be a d-dimensional quantum polynomial algebra.
We say that ProjncA is finite over its center if there exists a d-dimensional quantum
polynomial algebra A′ finite over its center such that

grmodA ∼= grmodA′ (ProjncA
∼= ProjncA

′).



Theorem 12 ([15]). Suppose that A = A(E, σ) is a 3-dimensional quantum polynomial
algebra where E is a triangle in P2 (that is, A is of Type S ). Then ∥σ∥ < ∞ if and only
if ProjncA is finite over its center.

The aim of this paper is to extend Theorem 12 to all types.

3. Main results

In this section, we give our main results of this paper. First, we describe the result for
a 3-dimensional Calabi-Yau quantum polynomial algebra.

Theorem 13 ([11]). If A = A(E, σ) is a 3-dimensional Calabi-Yau quantum polynomial
algebra, then ||σ|| = |σ3|, so the following are equivalent:

(1) |σ| < ∞.
(2) ||σ|| < ∞.
(3) A is finite over its center.
(4) ProjncA is finite over its center.

For a 3-dimensional quantum polynomial algebra, we need the following definition and
lemma by Mori-Ueyama [16]:

Definition 14 ([16]). For a d-dimensional geometric quantum polynomial algebra A =
A(E, σ) with the Nakayama automorphism ν ∈ AutA, we define a graded algebra A :=
A(E, ν∗σd) satisfying (G2) in Definition 2.

Lemma 15 ([16]). If A and A′ are geometric quantum polynomial algebras, then

grmodA ∼= grmodA′ =⇒ A ∼= A′.

Using Lemma 6, Lemma 15, Theorem 13 and other results, we have the following
theorem.

Theorem 16 ([11]). If A = A(E, σ) is a 3-dimensional quantum polynomial algebra
with the Nakayama automorphism ν ∈ AutA, then ||σ|| = |ν∗σ3|, so the following are
equivalent:

(1) |ν∗σ3| < ∞.
(2) ||σ|| < ∞.
(3) ProjncA is finite over its center.

Moreover, if A is of Type T, T’, CC, TL, WL, then A is never finite over its center.

As a corollary, we have the following.

Corollary 17 ([11]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra
such that E ̸= P2, and ν ∈ AutA the Nakayama automorphism of A. Then the following
are equivalent:

(1) |ν∗σ3| < ∞.
(2) ∥σ∥ < ∞.
(3) ProjncA is finite over its center.
(4) ProjncA has a fat point.



Example 18. Let

A = A(E, σ) = k⟨x, y, z⟩/(yz − αzy, zx− βxz, xy − γyx), (α, β, γ ∈ k, αβγ ̸= 0, 1)

be a 3-dimensional quantum polynomial algebra of Type S, where E = V(x)∪V(y)∪V(z) ⊂

P2 and σ ∈ Autk E is given by

 σ(0, b, c) = (0, b, αc),
σ(a, 0, c) = (βa, 0, c),
σ(a, b, 0) = (a, γb, 0).

By calculating the Nakayama au-

tomorphism ν of A, we have ν∗ =

γ/β 0 0
0 α/γ 0
0 0 β/α

, so

 ν∗σ3(0, b, c) = (0, b, αβγc),
ν∗σ3(a, 0, c) = (αβγa, 0, c),
ν∗σ3(a, b, 0) = (a, αβγb, 0).

(1) By Theorem 7, |σ| = lcm(|α|, |β|, |γ|) < ∞ ⇐⇒A is finite over its center.
(2) By Collorary 17, ∥σ∥ = |ν∗σ3| = |αβγ| < ∞ ⇐⇒ ProjncA is finite over its center ⇐⇒

ProjncA has a fat point.

Finally, we apply our results above to representation theory of finite dimensional alge-
bras.

Definition 19 ([8]). Let R be a finite dimensional algebra of gldimR = d < ∞. We define
an autoequivalence νd ∈ AutDb(modR) by νd(M) := M ⊗L

R DR[−d] where Db(modR) is
the bounded derived category of modR and DR := Homk(R, k). We say that R is d-
representation infinite if ν−i

d (R) ∈ modR for all i ∈ N. In this case, we say that a module
M ∈ modR is d-regular if νi

d(M) ∈ modR for all i ∈ Z.

By Minamoto [12], a 1-representation infinite algebra is exactly the same as a finite
dimensional hereditary algebra of infinite representation type. For representation theory
of such an algebra, regular modules play an essential role.

For a d-dimensional quantum polynomial algebra A, the Beilinson algebra of A is defined
by

∇A :=


A0 A1 · · · Ad−1

0 A0 · · · Ad−2
...

...
. . .

...
0 0 · · · A0

 .

We remark that the Beilinson algebra is a typical example of a (d − 1)-representation
infinite algebra by Minamoto-Mori [13, Theorem 4.12]. To investigate representation
theory of such an algebra, it is important to classify simple (d− 1)-regular modules.

Corollary 20 ([11]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra
with the Nakayama automorphism ν ∈ AutA. Then the following are equivalent :

(1) |ν∗σ3| = 1 or ∞.
(2) ProjncA has no fat point.
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by

the set of closed points of E ⊂ P2.

In particular, if A is of Type P, T, T’, CC, TL, WL, then A satisfies all of the above
conditions.
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