ALGEBRAS ASSOCIATED TO NONCOMMUTATIVE CONICS IN QUANTUM PROJECTIVE PLANES

HAIGANG HU

ABSTRACT. The classification of noncommutative quadric hypersurfaces in quantum \mathbb{P}^{n-1} 's is a big project in noncommutative algebraic geometry and it is far away from complete. In this note, we mainly give some result about noncommutative conics in quantum \mathbb{P}^2 's.

1. INTRODUCTION

In this note, k is an algebraically closed filed of characteristic 0, all algebras and vector spaces are over k.

In (commutative) algebraic geometry, it is important to study the homogeneous coordinate ring $k[x_1, \dots, x_n]/(f)$ of a quadric hypersurface in the projective space \mathbb{P}^{n-1} where $0 \neq f \in k[x_1, \dots, x_n]_2$. In noncommutative algebraic geomtry, we say the quotient algebra S/(f) the noncommutative quadric hypersurface (noncommutative conic if d = 3) where S is a d-dimensional quantum polynomial algebra defined below and $0 \neq f \in S_2$ a regular central element.

Definition 1. A noetherian connected graded algebra S generated in degree 1 is called a *d*-dimensional quantum polynomial algebra if

(1) gldim
$$S = d$$
,

(2)
$$\operatorname{Ext}_{S}^{i}(k, S(-j)) \cong \begin{cases} k & \text{if } i = j = d, \\ 0 & \text{otherwise,} \end{cases}$$

(3) $H_{S}(t) := \sum_{i=0}^{\infty} (\dim_{k} S_{i})t^{i} = 1/(1-t)^{d}.$

The classification of noncommutative quadric hypersurfaces is a big project in noncommutative algebraic geometry and it is far away from complete. The good thing is there are many notable developments in the study of noncommutative quadric hypersurfaces: Smith and Van den Bergh introduce a finite dimensional algebra C(A) associated to A := S/(f) which determines the Cohen-Macaulay representation of A (cf. [12]); Mori and Ueyama introduce the noncommutative matrix factorization of f over S and they also proved the noncommutative Knörrer's periodicity theorem (cf. [11]). He and Ye introduce the Clifford deformation associated to the pair (S, f) which is a nonhomogeneous PBW deformation and they showed that A is a noncommutative isolated singularity if and only if C(A) is semisimple (cf. [5]), etc.

However, there is still no complete classification of noncommutative conics even though it should be the easiest case. Using theoretical tools above, and the fact that defining relations of all 3-dimensional quantum polynomial algebras are given by Itaba and Matsuno

The detailed version of this paper will be submitted for publication elsewhere.

(cf. [8]), it is time for us to begin to work on the classification of noncommutative conics and it would be a good step forward to classify noncommutative quadric hypersurfaces. Thus in this note, we focus on the noncommutative conics, and give some results.

2. Preliminaries

Let S be a n-dimensional quantum polynomial algebra, we call the noncommutative projective scheme $\operatorname{Proj}_{nc} S$ associated to S which induced by Artin and Zhang (cf. [2]) the quantum \mathbb{P}^{n-1} . We start by repeating the following definition.

Definition 2. A quotient algebra A = S/(f) is called a *noncommutative quadric hypersurface* (resp. *noncommutative conic*) in a quantum projective space $\operatorname{Proj}_{nc} S$ if S is an *n*-dimensional (resp. n = 3) quantum polynomial algebra and $0 \neq f \in S_2$ a regular central element.

Let A = S/(f) be a noncommutative quadric hypersruface, $A^!$ and $S^!$ be the quadratic duals of A and S respectively. Then there is a unique $f^! \in A_2^!$ such that $A^!/(f^!) = S^!$. Define

$$C(A) := A^! [f^{!^{-1}}]_0.$$

Theorem 3. [12] (1) $\dim_k C(A) = 2^{n-1}$.

(2) $\underline{CM}^{\mathbb{Z}} A \cong D^b (\text{mod } C(A))$, where $\underline{CM}^{\mathbb{Z}} A$ the stable category of the category of maximal Cohen-Macaulay graded right A-modules, and $D^b (\text{mod } C(A))$ the bounded derived category of the category of finitely generated right C(A)-modules.

Let A = S/(f) be a noncommutative quadric hypersurface. Let grmod A be the category of finitely generated right A-modules, and tor A the full subcategory of grmod A consisting of finite dimensional graded right A-modules. Denote by qgr $A := \operatorname{grmod} A/\operatorname{tor} A$ the quotient category.

Definition 4. [13] A is called a *noncommutative isolated singularity* if the global dimension gldim qgr $A < \infty$.

If A is commutative, then the above definition is equivalent to say that Proj A is smooth.

Theorem 5. [5] A is a noncommutative isolated singularity if and only if C(A) is semisimple.

If we want to classify all noncommutative quadric hypersurface A = S/(f), there are two steps:

- (1) Classify quantum polynomial algebras S.
- (2) Find all nonzero regular central elements in S_2 for each S.

For noncommutative conics A = S/(f). The first step above is completed. We will also give some facts about 3-dimensional quantum polynomial algebras.

Theorem 6. [1] Every 3-dimensional quantum polynomial algebra S is a domain.

Then we would like to introduce the definition of superpotentials. Let $V = \text{Span}\{x, y, z\}$ be a vector space. Let $\omega \in V^{\otimes 3}$. Define a linear map $\varphi : V^{\otimes 3} \to V^{\otimes 3}, v_1 \otimes v_2 \otimes v_3 \mapsto v_2 \otimes v_3 \otimes v_1$. The map φ can be regarded as a permutation $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ in the symmetric group Sym(3) of degree 3.

Definition 7. Let $\omega \in V^{\otimes 3}$, then ω is called a

- 1. twisted superpotential if there exists $\sigma \in GL(V)$ such that $(\sigma \otimes id \otimes id)\varphi(\omega) = \omega$;
- 2. superpotential if $\varphi(\omega) = \omega$ (i.e. ω is invariant under permutation φ);
- 3. symmetric superpotential if it is invariant under all permutations in the symmetric group Sym(3).

Example 8. (1) xyz + yzx + zxy - (xzy + zyx + yxz) is a superpotential.

- (2) xyz + yzx + zxy + xzy + zyx + yxz is a symmetric superpotential.
- (3) $xyz + yzx + zxy + xzy + zyx + yxz + x^3 + y^3 + z^3$ is a symmetric superpotential.

For $\omega \in V^{\otimes 3}$, there are unique $\omega_1, \omega_2, \omega_3 \in V^{\otimes 2}$ such that we can write

$$\omega = x \otimes \omega_1 + y \otimes \omega_2 + z \otimes \omega_3.$$

Then $\mathcal{D}(\omega) := T(V)/(\omega_1, \omega_2, \omega_3)$ is a quadratic algebra.

Example 9. Let $\omega = xyz + yzx + zxy - (xzy + zyx + yxz)$, then

$$\mathcal{D}(\omega) = k\langle x, y, z \rangle / (yz - zy, zx - xz, xy - yx) = k[x, y, z].$$

Theorem 10. [3, 4, 10] Every 3-dimensional quantum polynomial algebra S is isomorphic to an algebra $\mathcal{D}(\omega)$ for some unique twisted superpotential $\omega \in V^{\otimes 3}$.

Definition 11. A twisted superpotential $\omega \in V^{\otimes 3}$ is called *regular* if $\mathcal{D}(\omega)$ is a 3-dimensional quantum polynomial algebra.

Example 12. (1) $\omega = xyz + yzx + zxy - (xzy + zyx + yxz)$ is a regular superpotential. (2) $\omega = xyz + yzx + zxy + xzy + zyx + yxz$ is a symmetric regular superpotential.

(3) Non-example: Let $\omega = xyz + yzx + zxy + xzy + zyx + yxz + x^3 + y^3 + z^3$. Though ω is a symmetric superpotential, $\mathcal{D}(\omega)$ is not a 3-dimensional quantum polynomial algebra.

3. Main results

In this note, we are mainly interested about a noncommutative conic A such that its quadratic dual $A^!$ is commutative.

Theorem 13. [6] Let A = S/(f) be a noncommutative conic. Then $A^!$ is commutative if and only if $S = \mathcal{D}(\omega)$, where ω is a symmetric regular superpotential. Moreover, there are only 4 types of symmetric regular superpotentials:

(1) xyz + yzx + zxy + xzy + zyx + yxz,

$$(2) \quad xyz + yzx + zxy + xzy + zyx + yxz + x^3,$$

- (3) $xyz + yzx + zxy + xzy + zyx + yxz + x^3 + y^3$,
- (4) $xyz + yzx + zxy + xzy + zyx + yxz + \lambda(x^3 + y^3 + z^3)$ where $\lambda \in k$ such that $\lambda^3 \neq 0, 1, -8$.

Note that as mentioned in the beginning of the Preliminaries, to classify noncommutative conics, we also need to calculate central elements of 3-dimensional quantum polynomial algebras. We write $\omega_1, \omega_2, \omega_3, \omega_4$ for above superpotentials respectively. Algebras $\mathcal{D}(\omega_1), \mathcal{D}(\omega_2), \mathcal{D}(\omega_3)$ have PBW bases, so their central elements are easy to calculate. However, algebras

$$\mathcal{D}(\omega_4) \cong S^{1,1,\lambda} := k \langle x, y, z \rangle / (yz + zy + \lambda x^2, xz + zx + \lambda y^2, xy + yz + \lambda x^2)$$

where $\lambda \in k$ and $\lambda^3 \neq 0, 1, -8$ are 3-dimensional Sklyanin algebras which do not have PBW bases (cf. [9]). It is not easy to calculate their center directly. Fortunately, we showed the following result.

Lemma 14. [6] $Z(\mathcal{D}(\omega_i))_2 = kx^2 + ky^2 + kz^2$, where i = 1, 2, 3, 4.

Thus for our case, a noncommutative conic A can be written as $\mathcal{D}(\omega_i)/(\alpha x^2 + \beta y^2 + \gamma z^2)$ where i = 1, 2, 3, 4 and $\alpha, \beta, \gamma \in k$. Since by Theorem 3, there is a 4-dimensional algebra C(A) determines the Cohen-Macaulaly representation of A, we would like to give the classification of all C(A).

Theorem 15. [6] For noncommutative conics A = S/(f) associated to symmetric regular superpotentials, the set of isomorphism classes of algebras C(A) is equal to the set of isomorphism classes of 4-dimensional commutative Frobenius algebras. They are

 $k^4, k[u]/(u^2) \times k^2, k[u]/(u^3) \times k, (k[u]/(u^2))^{\times 2}, k[u]/(u^4), k[u, v]/(u^2, v^2).$

Corollary 16. For two noncommutative conics A, A' in our case. $\underline{CM}^{\mathbb{Z}} A \cong \underline{CM}^{\mathbb{Z}} A'$ if and only if $C(A) \cong C(A')$.

Then we consider Sklyanin algebras $S^{1,1,\lambda}$. Unlike the other 3 cases, there are infinitely isomorphism classes of $S^{1,1,\lambda}$. So the classification of C(A) where $A = S^{1,1,\lambda}/(f)$ is the most hard case.

For $0 \neq f \in Z(S^{1,1,\lambda})_2$, denote by $K_f := \{g \in (S^{1,1,\lambda})_1 \text{ up to sigh such that } g^2 = f\}.$

Theorem 17. [7] Let $A = S^{1,1,\lambda}/(f)$, $A' = S^{1,1,\lambda'}/(f')$ be two noncommutative conics in Sklyanin quantum \mathbb{P}^2 's. Then $C(A) \cong C(A')$ if and only if $\#(K_f) = \#(K_{f'})$. Moreover, exactly one of the following holds:

- (1) $\#(K_f) = 2$ and $C(A) \cong k[u]/(u^3) \times k$.
- (2) $\#(K_f) = 3$ and $C(A) \cong k[u]/(u^2) \times k^2$.
- (3) $\#(K_f) = 4$ and $C(A) \cong k^4$.

References

- M. Artin, J. Tate, M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), 335–388.
- [2] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), 228–287.
- [3] R. Bocklandt, T. Schedler, M. Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), 1501–1522.
- [4] M. Dubois-Violette, Multilinear forms and graded algebras, J. Algebra **317** (2007), 198–225.
- [5] J.-W. He and Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arXiv:1905.04699 (2019).
- [6] H. Hu, Classification of noncommutative conics associated to symmetric regular superpotentials, arXiv:2005.03918 (2020).
- [7] H. Hu, M. Matsuno, I. Mori, Noncommutative conics in Calabi-Yau quantum projective planes, arXiv:2104.00221 (2021).
- [8] Itaba, Matsuno, Defining relations of 3 dimensional quadratic AS regular algebras, Math. J. Okayama Univ. 63 (2021), 61–86.
- [9] N. Iyudu, S. Shkarin, Three dimensional Sklyanin algebras and Gröbner bases, J. Algebra 470 (2017), 379–419.
- [10] I. Mori, S. P. Smith, The classification of 3-Calabi-Yau algebras with 3 generators and 3 quadratic relations, Math. Z.287 (2017), no. 1-2, 215–241.

- [11] I. Mori and K. Ueyama, Noncommutative Knörrer's periodicity and noncommutative quadric hypersurfaces, arXiv:1905.12266.
- [12] S.P. Smith and M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817–856.
- [13] K. Ueyama, Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities, J. Algebra 383 (2013), 85–103.

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY SHIZUOKA UNIVERSITY OHYA 836, SHIZUOKA 422-8529 JAPAN *Email address*: h.hu.19@shizuoka.ac.jp