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Abstract. We study distances on zigzag persistence modules from the viewpoint of de-
rived categories and Auslander–Reiten quivers. It is known that the derived category of
persistence modules is derived equivalent to that of arbitrary zigzag persistence modules.
Through this derived equivalence, we define and compute distances on the derived cat-
egory of arbitrary zigzag persistence modules and prove an algebraic stability theorem.
We also compare our distance with the other distances.

1. Introduction

This article is based on the paper arXiv:2006.06924 [15], which is an interaction
between representation theory of algebras and topological data analysis, particularly the
robustness for noises of data.

Topological data analysis has recently become popular for studying the shape of data
in various research areas (see [16] for example; also see https://www.jst.go.jp/pr/

announce/20160614/index.html). Persistent homology [11] is one of the leading tools
in topological data analysis. It provides a multi-scale analysis of the topological features
of a given data set with the so-called persistence diagram as its output. Unlike ordinary
homology, it is significant that a stability theorem holds for persistent homology [10].

The algebraic structure of persistent homology is expressed by the notion of persistence
modules, which are representations of an equioriented An-type quiver [7]. With this notion,
the stability theorem is generalized in a completely algebraic manner. It is called an
algebraic stability theorem (AST; see [8], [1]). Namely, the AST guarantees that the
persistence diagram is robust to changes in the given persistence module.

Moreover, a zigzag persistence module [7], a representation of an An-type quiver with
arbitrary orientation, can be applied to address various situations which are not covered
by the theory of ordinary persistence module (e.g. time-series data). Our motivation is to
derive an AST for zigzag persistence modules. Botnan and Lesnick proved such a theorem
by embedding the category of (purely) zigzag persistence modules into that of 2D block
decomposable persistence modules [6]. Note that the zigzag persistence modules in [6] are
purely zigzag ones, representations of a purely zigzag An-type quiver, in our convention.
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Here, we adopt a different approach: we study distances on zigzag persistence modules
from the viewpoint of derived categories and Auslander–Reiten quivers.

For two persistence modules M,N , we can define the interleaving distance dI between
M and N . We denote by B(M) the persistence diagram of M , which consists of the inde-
composable representations (we call them intervals) in the indecomposable decomposition
of M . Then, the interleaving distance induces the bottleneck distance dB between B(M)
and B(N). Comparing these distances, the following holds.

Theorem 1 (AST [8],[1], see Theorem 8). dB(B(M),B(N)) ≤ dI(M,N).

The distances dI , dB can be extended to the derived setting dDI , d
D
B . Thus, we obtain

the following theorem for cochain complexes X•, Y • of the derived category of persistence
modules.

Theorem 2 (Derived AST [15], see Theorem 22). dDB(BD(X•),BD(Y •) ≤ dDI (X
•, Y •).

The derived category of persistence modules is derived equivalent to that of zigzag per-
sistence modules, depending on a classical tilting module. Through this derived equiv-
alence, we define and compute distances on the derived category of zigzag persistence
modules and prove an algebraic stability theorem.

Proposition 3 ([15], see Proposition 27). For the derived category of zigzag persistence
modules, an AST holds.

As a consequence, an AST holds for zigzag persistence modules since the category of
zigzag persistence modules is embedded in the derived category as a full subcategory.

Finally, we also compare our distance with the distance for purely zigzag persistence
modules introduced by Botnan–Lesnick [6] and the sheaf-theoretic convolution distance
due to Kashiwara–Schapira [18].

2. Preliminaries

Throughout this article, k denotes an algebraically closed field, and all vector spaces,
algebras, and linear maps are assumed to be finite-dimensional k-vector spaces, finite-
dimensional k-algebras, and k-linear maps, respectively. Furthermore, all categories and
functors are assumed to be additive. In addition, a distance on a set X means an extended
pseudometric. Specifically, it is a function d : X ×X → R≥0 ∪ {∞} such that, for every
x, y, z ∈ X,

(1) d(x, x) = 0,
(2) d(x, y) = d(y, x), and
(3) d(x, z) ≤ d(x, y) + d(y, z) if d(x, y), d(y, z) <∞.

A quiver Q is a directed graph. Formally, a quiver Q is a quadruple Q = (Q0, Q1, s, t)
of sets Q0 of vertices and Q1 of arrows, and maps s, t : Q1 → Q0. A quiver Q is finite if
Q0 and Q1 are finite.

Here, we introduce the An-type quiver An(a) with orientation a, whose underlying
graph is the Dynkin diagram of type A : 1 — 2 — · · · — n for n ∈ N. Then An(a) is
the quiver

(2.1) 1↔ 2↔ · · · ↔ n,



where ↔ means → or ← assigned by the orientation a. In this article, the following
An-type quivers with certain orientations are frequently used. The An-type quiver with
equi-orientation

(2.2) 1→ 2→ · · · → n

is called the equioriented An-type quiver, which is denoted by An(= An(e)). The An-
type quiver with alternating orientation is called a purely zigzag An-type quiver, which is
denoted by An(z). Moreover, if the vertex 1 of a purely zigzag An-type quiver Q is a sink
vertex, Q is denoted by An(z1). Otherwise, it is denoted by An(z2). Namely, An(z1) is
the following quiver:

(2.3) 1← 2→ 3← · · · → n if n is odd, 1← 2→ 3← · · · ← n if n is even,

and An(z2) is the following quiver:

(2.4) 1→ 2← 3→ · · · ← n if n is odd, 1→ 2← 3→ · · · → n if n is even.

A representation M of a quiver Q is a family of vector spaces Mx at each vertex x ∈ Q0

and linear maps Mα on each arrow α ∈ Q1.
For a representationM ofQ, the dimension ofM is defined by dimM :=

∑
x∈Q0

dimMx.
All representations M are assumed to be pointwise finite-dimensional, namely dimMx <
∞ for each x ∈ Q0. When Q is finite, this is just finite-dimensional, that is, dimM <∞.
The abelian category of representations of Q is denoted by repkQ. Note that repkQ

is a Krull-Schmidt category when Q is finite. More generally, when Q is the infinite
zigzag quiver (see Section 5.1), any M ∈ repk Q has unique indecomposable (infinite)
decomposition up to permutations and isomorphisms by Krull-Schmidt-Remak-Azumaya
Theorem since every indecomposable representation of Q is an interval one (see [5]).
A poset can be identified with a quiver with relations. Then, for a poset, we use the

same notation as quivers.
For an abelian category A, Db(A) denotes the bounded derived category of A and Γ(A)

(resp. Γ(Db(A)) ) denotes the Auslander–Reiten (AR) quiver of A (resp. Db(A)).

2.1. Persistence modules. We call each M ∈ repk An, each N ∈ repkAn(z), and each
L ∈ repkAn(a) a persistence module, a purely zigzag persistence module, and a zigzag per-
sistence module, respectively. In this subsection, we will define the internal morphisms of
an ordinary persistence module and an endofunctor of the category of ordinary persistence
modules in order to define the interleaving distance.

For any An-type quiver An(a), αx,y denotes the arrow between x and y with 1 ≤ x <
y ≤ n. Then the equioriented An-type quiver An is

(2.5) An : 1
α1,2−−−→ 2

α2,3−−−→ · · · αn−1,n−−−−→ n

and a persistence module M has the form

(2.6) M1

Mα1,2−−−−→M2

Mα2,3−−−−→ · · ·
Mαn−1,n−−−−−→Mn.

Moreover, when n is odd, the purely zigzag An-type quiver An(z1) is

(2.7) 1
α1,2←−−− 2

α2,3−−−→ · · · αn−1,n−−−−→ n



and a purely zigzag persistence module M ∈ repk An(z1) has the form

(2.8) M1

Mα1,2←−−−−M2

Mα2,3−−−−→ · · ·
Mαn−1,n−−−−−→Mn.

In other cases, we can similarly express the zigzag An-type quivers and the zigzag persis-
tence modules.

Definition 4. Let M,N be persistence modules and δ an integer.
(1) For 1 ≤ s ≤ t ≤ n, the linear map ϕM(s, t) : Ms →Mt is defined by

(2.9) ϕM(s, t) =

{
1lMs , s = t

Mαt−1,t ◦ · · · ◦Mαs,s+1 , otherwise
.

By definition, we have ϕM(s, t) = ϕM(t− 1, t) ◦ · · · ◦ ϕM(s, s+ 1).
(2) The δ-shift M(δ) of M is defined by

(2.10) (M(δ))x =

{
Mx+δ, 1 ≤ x+ δ ≤ n
0, otherwise

and

(2.11) (M(δ))αx,x+1 =

{
Mαx+δ,x+1+δ

, 1 ≤ x+ δ ≤ x+ 1 + δ ≤ n
0, otherwise

for each vertex x of An. For a morphism f : M → N in repkAn, the δ-shift f(δ) of f is
defined by

(2.12) (f(δ))x =

{
fx+δ, 1 ≤ x+ δ ≤ n
0, otherwise

for each vertex x of An. This defines the δ-shift functor (δ) : repkAn → repk An. It should
be noted that the δ-shift functor can only be defined in the equioriented setting.
(3) Assume that δ is non-negative. The transition morphism ϕδ

M : M →M(δ) in repk An

is defined by (ϕδ
M)x = ϕM(x, x+δ) for each vertex x of An. For any morphism f : M → N ,

we have the following commutative diagram:

(2.13) M
ϕδ
M //

f

��

M(δ)

f(δ)
��

N
ϕδ
N

// N(δ).

This defines a natural transformation ϕδ : 1l → (δ) from the identity functor 1l to the
δ-shift functor (δ).
(4) A persistence module M is δ-trivial if the transition morphism ϕδ

M : M → M(δ) is
zero.

In our setting, the functor (δ) is not an equivalence but an exact functor. Indeed, let
M,N,L be persistence modules. A sequence

(2.14) 0→M → N → L→ 0

is exact if and only if the sequence

(2.15) 0→Mx → Nx → Lx → 0



is exact for each vertex x of An. This means that the sequence

(2.16) 0→M(δ)→ N(δ)→ L(δ)→ 0

is exact.

2.2. Persistence diagrams and AR quivers. We recall that the category repkAn(a)
of zigzag persistence modules is a Krull-Schmidt category, i.e., a representation of An(a)
is isomorphic to a direct sum of indecomposable representations. In this subsection, we
discuss all indecomposable representations of An(a).

Definition 5. For 1 ≤ b ≤ d ≤ n, the interval representation I[b, d] ∈ repkAn(a) is
defined by

(2.17) (I[b, d])x :=

{
k, b ≤ x ≤ d
0, otherwise

and

(2.18) (I[b, d])αx,y :=

{
1lk, b ≤ x < y ≤ d
0, otherwise

.

Any interval representation is indecomposable. The converse also holds as follows.

Theorem 6 ([12]). Any indecomposable representation of An(a) is isomorphic to an in-
terval representation I[b, d] for some 1 ≤ b ≤ d ≤ n.

Thus, for a representation M of An(a), we obtain the unique interval decomposition

(2.19) M ∼=
⊕

1≤b≤d≤n

I[b, d]m(b,d),

leading to the definition of the persistence diagram B(M) of M by

(2.20) {(b, d,m) | 1 ≤ b ≤ d ≤ n, 1 ≤ m ≤ m(b, d) such that m(b, d) ̸= 0}.
For simplicity, write an element (b, d,m) of B(M) as ⟨b, d⟩, which is called an interval.
From the perspective of AR theory, the persistence diagram of a representation M of

An(a) can be defined as a map Γ0 → Z sending an interval I[b, d] to its multiplicity m(b, d)
in the decomposition of M , where Γ0 is the set of all interval representations. Note that
Γ0 is the set of vertices of the AR quiver of An(a), and in this sense, AR quivers are
hidden behind persistence diagrams.

Example 7. The AR quiver Γ(repA3) of A3 is

(2.21) Γ(repA3) =

I[1, 3]

I[2, 3] I[1, 2]

I[3, 3] I[2, 2] I[1, 1]

,

while the AR quiver Γ(repA3(z2)) of A3(z2) : 1→ 2← 3 is

(2.22) Γ(repA3(z2)) =

I[1, 2] I[3, 3]

I[2, 2] I[1, 3]

I[2, 3] I[1, 1]

.



3. Algebraic stability theorem for persistence modules

In this section, we will prove the following Algebraic stability theorem (AST) for per-
sistence modules by using the Induced Matching theorem (IMT) following the paper [1].

Theorem 8 (AST [8],[1]). Let M,N be persistence modules in repk An. Then

(3.1) dB(B(M),B(N)) ≤ dI(M,N).

where dI and dB are the interleaving and the bottleneck distances, respectively.

To prove this, we extend representations M in repkAn to those in repk Aℓ for ℓ ≥ n as

(3.2) 0→ · · · → 0→M1 → · · · →Mn → 0→ · · · → 0 ∈ repk Aℓ.

Moreover, for a given representation M ∈ repkAn and non-negative integer δ, the map
rδM : B(M(δ)) → B(M) is defined by rδM⟨b, d⟩ := ⟨b + δ, d + δ⟩. In general, the map rδM
is not bijective. However, we can take an integer ℓ ≥ n large enough such that rδM is
bijective for a given representation M .

3.1. Distances. First, let us recall the interleaving distance between persistence modules.

Definition 9. Let δ be a non-negative integer. Two persistence modules M and N are
said to be δ-interleaved if there exist morphisms f : M → N(δ) and g : N → M(δ) such
that the following diagrams commute:

(3.3) M
ϕ2δ
M //

f !!

M(2δ), N
ϕ2δ
N //

g !!

N(2δ).

N(δ)
g(δ)

::

M(δ)
f(δ)

::

In this case, we call the pair of f : M → N(δ) and g : N → M(δ) a δ-interleaving pair.
Moreover, we call a morphism f : M → N(δ) a δ-interleaving morphism if there is a
morphism g : N →M(δ) such that the pair (f, g) is a δ-interleaving pair.
For persistence modules M,N , the interleaving distance is defined as

(3.4) dI(M,N) := inf{δ ∈ Z≥0 |M and N are δ-interleaved}.

We remark that in our setting, dI(M,N) = 0 if and only if M and N are isomorphic.
Thus, the interleaving distance measures how far these modules are from being isomorphic.

We next recall the bottleneck distance between persistence diagrams: a matching from
a set S to a set T (written as σ : S ↛ T ) is a bijection σ : S ′ → T ′ for some subset S ′ of S
and some subset T ′ of T . For such a matching σ, we write S ′ as Coim σ and T ′ as Im σ.
For totally ordered sets, a matching can be defined canonically as follows: let S = {Si |

i = 1, · · · , s} and T = {Ti | i = 1, · · · , t} be finite totally ordered sets such that for
a ≤ b, Sa ≤ Sb and Ta ≤ Tb. Then a canonical matching σ : S ↛ T is a matching σ given
by σ(Si) = Ti for i = 1, · · · ,min{s, t}. In this case, either Imσ = S or Coimσ = T is
satisfied.



Definition 10. Let δ be a non-negative integer. For a persistence diagram B, let Bδ be
the subset of B consisting of intervals ⟨b, d⟩ such that d − b ≥ δ. A δ-matching between
persistence diagrams B and B′ is defined by a matching σ : B ↛ B′ such that

(3.5) B2δ ⊆ Coimσ, B′
2δ ⊆ Imσ

and for all σ⟨b, d⟩ = ⟨b′, d′⟩,

(3.6) b′ − δ ≤ b ≤ d ≤ d′ + δ, b− δ ≤ b′ ≤ d′ ≤ d+ δ.

Two persistence diagrams B and B′ are said to be δ-matched if there is a δ-matching
between B and B′. The bottleneck distance between B and B′ is defined as

(3.7) dB(B,B′) := inf{δ ∈ Z≥0 | B and B′ are δ-matched}.

Note that equation (3.6) implies that the interval representations associated with ⟨b, d⟩,
⟨b′, d′⟩ are δ-interleaved.

We will extend this concept to the derived setting later (see Definition 18 and Defini-
tion 21 ).

3.2. Proof of AST by IMT. Here, we will explain the proof of an AST for repkAn

following [1]. Their strategy utilizes an IMT.
Let M be a persistence module. For 1 ≤ b ≤ n, B(M)⟨b,-⟩ denotes the subset of B(M)

consisting of the intervals ⟨b, c⟩ for some b ≤ c ≤ n, and B(M)⟨-,d⟩ denotes the subset
of B(M) consisting of the intervals ⟨c, d⟩ for some 1 ≤ c ≤ d. Note that B(M)⟨b,-⟩ and
B(M)⟨-,d⟩ are regarded as totally ordered sets with the total order induced by the reverse
inclusion relation on intervals. Indeed, if c < c′, then ⟨b, c′⟩ < ⟨b, c⟩ in B(M)⟨b,-⟩ and
⟨c, d⟩ < ⟨c′, d⟩ in B(M)⟨-,d⟩.

Definition 11. Let f : M → N be a morphism in repk An. Then the induced matching
B(f) : B(M)→ B(N) is defined as follows:

(1) When f is injective, B(f) is defined via the family of canonical matchings from
B(M)⟨-,d⟩ to B(N)⟨-,d⟩.

(2) When f is surjective, B(f) is defined via the family of canonical matchings from
B(M)⟨b,-⟩ to B(N)⟨b,-⟩.

(3) Any morphism f can be decomposed into the surjective morphism π : M → Im f
and the injective morphism µ : Im f → N . Then B(f) := B(µ) ◦ B(π) by (1) and
(2).

This matching is what yields the IMT (see [1, Theorem 4.2]).

Theorem 12 (IMT). Let f : M → N be a morphism in repk An. Assume that Ker f and
Coker f are 2δ-trivial. Moreover, taking an integer ℓ ≥ n large enough such that rδM is
bijective, one regards M,N as representations of Aℓ. Then B(f) ◦ rδM is a δ-matching
B(M(δ)) ↛ B(N).

Let f : M → N(δ) be a δ-interleaving morphism. It is easily seen that Ker f and
Coker f are 2δ-trivial. Thus, Theorem 12 induces Theorem 8 as follows.



Proof of Theorem 8. Let f : M → N(δ) be a δ-interleaving morphism in repk An and
ℓ ≥ n an integer large enough such that rδM and rδN are bijective. Then M and N are
regarded as representations of Aℓ. Since Ker f and Coker f are 2δ-trivial,

(3.8) rδN ◦ B(f) = rδN ◦ (B(f) ◦ rδM) ◦ (rδM)−1 : B(M)
∼−→ B(M(δ)) ↛ B(N(δ))

∼−→ B(N)

is a δ-matching by Theorem 12, as desired. □

3.3. Isometry theorem. Theorem 8 gives the inequality dB ≤ dI , which is a part of the
following isometry theorem (see [1, Theorem 3.1 and Section B.1]).

Theorem 13 (Isometry theorem). Let M,N be persistence modules. Then

(3.9) dB(B(M),B(N)) = dI(M,N).

4. Algebraic stability theorem for derived categories of persistence
modules and zigzag ones

It is known that if abelian categories A and A′ are derived equivalent, their AR quivers
Γ(A) and Γ(A′) are isomorphic. The AR quivers can be regarded as the persistence
diagrams in a sense. Thus, we adopt the strategy to get an AST for zigzag persistence
modules as follows: let A′ be an abelian category. To get an AST for A′, let A be
an abelian category, derived equivalent to A′, for which an AST holds. Then, we will
extend the AST to that for the derived category Db(A). Through the derived equivalence
Db(A)→ Db(A′), we obtain an AST for Db(A′) and A′ as a subcategory of Db(A′).

In this section, we consider that the abelian category A′ is the category of zigzag
persistence modules and the abelian category A is the category of persistence modules.

4.1. Derived distances. In this subsection, we propose distances on the derived category
of persistence modules by extending the original interleaving and bottleneck distances.

Recall that the δ-shift functor (δ) : repk An → repkAn induces a functor

(4.1) (δ) : Db(repk An)→ Db(repk An)

via X•(δ) = (X i(δ), diX(δ))i∈Z since the functor (δ) is exact.
For Db(repkAn(a)), we have the following strong characterization of a cochain complex

by its cohomologies.

Lemma 14. For any cochain complex X• ∈ Db(repk An(a)),

(4.2) X• ∼=
⊕
i∈Z

H i(X•)[−i]

in Db(repk An(a)). More generally, in the case of Db(repkAn),

(4.3) X•(δ) ∼=
⊕
i∈Z

H i(X•)(δ)[−i].

The fact that the global dimension of repk An(a) is at most 1 is essential to the proof
of the foregoing lemma. As a consequence of Lemma 14, we can characterize all indecom-
posable objects of Db(repkAn(a)).



Corollary 15. A cochain complex X• ∈ Db(repkAn(a)) is indecomposable if and only if
X• is isomorphic to a stalk complex

(4.4) I[b, d][−i] : · · · → 0→ I[b, d]→ 0→ · · ·

concentrated at the i-th term in Db(repkAn(a)) for some 1 ≤ b ≤ d ≤ n and some i ∈ Z.
Thus, any cochain complex X• is isomorphic to

(4.5)
⊕

b≤d,i
(I[b, d][−i])m(b,d,i),

where the non-negative integer m(b, d, i) is the multiplicity of I[b, d][−i].

Since Db(repk An(a)) is a Krull-Schmidt category (see [9]), the interval decomposition
in the corollary above is unique. By using this result, we propose the notion of a ‘derived’
persistence diagram. Note that Berkouk–Ginot [2] considered a similar concept of a graded
persistence diagram.

Definition 16. Let X•, Y • be cochain complexes in Db(repk An(a)). Then the derived
persistence diagram BD(X•) is defined as

(4.6) BD(X•) :=
⊔

i with Hi(X• )̸=0

B(H i(X•))

where B(H i(X•)) is the ordinary persistence diagram of H i(X•).

Similar to the case of repkAn(a), the derived persistence diagram of X• can be defined
as a map Γ0 → Z sending I[b, d][−i] to the multiplicity m(b, d, i), where Γ0 is the set
of vertices of the AR quiver of Db(repk An(a)). Thus, AR quivers are hidden behind
persistence diagrams also in this setting. Moreover, the AR quiver of Db(repk An(a))
consists of all shifted copies of the AR quiver Γ(An(a)) of An(a).

Example 17. The AR quiver Γ(Db(repk A3)) is

Γ(Db(repk A3)) =

· · · I[1, 1][−1] I[1, 3] I[3, 3][1]

I[1, 2][−1] I[2, 3] I[1, 2] · · ·

· · · I[3, 3] I[2, 2] I[1, 1]

.

Moreover, the AR quiver Γ(Db(repk A3(z2))), where A3(z2) : 1→ 2← 3, is

(4.7) Γ(Db(repk A3(z2))) =

· · · I[1, 1][−1] I[1, 2] I[3, 3]

I[1, 3][−1] I[2, 2] I[1, 3] · · ·

· · · I[3, 3][−1] I[2, 3] I[1, 1]

.

Here, we define the derived interleaving distance.

Definition 18. Let X•, Y • be cochain complexes in Db(repkAn) and δ a non-negative
integer. Then X• and Y • are said to be derived δ-interleaved if there exist morphisms
f • : X• → Y •(δ) and g• : Y • → X•(δ) such that for each i ∈ Z, (H i(f •), H i(g•)) is a



δ-interleaving pair between H i(X•) and H i(Y •) in the sense of Definition 9. Namely, the
following diagrams commute for each i ∈ Z:

(4.8) H i(X•)
ϕ2δ
Hi(X•) //

Hi(f•) ##

H i(X•)(2δ), H i(Y •)
ϕ2δ
Hi(Y •) //

Hi(g•) ##

H i(Y •)(2δ)

H i(Y •)(δ)
Hi(g•)(δ)

99

H i(X•)(δ)
Hi(f•)(δ)

99
.

In this case we also call the pair of f • : X• → Y •(δ) and g• : Y • → X•(δ) a derived δ-
interleaving pair. Moreover, we call a morphism f • : X• → Y •(δ) a derived δ-interleaving
morphism if there is a morphism g• : Y • → X•(δ) such that the pair (f •, g•) is a derived
δ-interleaving pair.

For cochain complexes X•, Y • in Db(repkAn), the derived interleaving distance is de-
fined as

(4.9) dDI (X
•, Y •) := inf{δ ∈ Z≥0 | X• and Y • are derived δ-interleaved}.

Remark 19. Similarly to the original setting, dDI (X
•, Y •) = 0 for two cochain complexes

X•, Y • ∈ Db(repkAn) if and only if X• and Y • are isomorphic in Db(repkAn). Thus,
the derived interleaving distance also measures how far these complexes are from being
isomorphic.

Note that if X• and Y • are derived δ-interleaved, then H i(X•) and H i(Y •) are δ-
interleaved for all i. It follows from Lemma 14 that the converse also holds.

Corollary 20. Let X•, Y • be cochain complexes in Db(repk An). Then X• and Y • are
derived δ-interleaved if and only if H i(X•) and H i(Y •) are δ-interleaved for all i.

Finally, we propose the ‘derived’ bottleneck distance between derived persistence dia-
grams in the sense of Definition 16 in this setting.

Definition 21. LetX•, Y • be cochain complexes in Db(repk An). Two derived persistence
diagrams BD(X•) and BD(Y •) are said to be δ-matched if B(H i(X•)) and B(H i(Y •)) are
δ-matched in the sense of Definition 10 for all i ∈ Z.

For derived persistence diagrams BD(X•),BD(Y •), the derived bottleneck distance is
defined as

(4.10) dDB(BD(X•),BD(Y •)) := inf{δ ∈ Z≥0 | BD(X•) and BD(Y •) are δ-matched}.

4.2. AST for derived categories. In this subsection, we first prove an AST for derived
categories of persistence modules.

Theorem 22 (AST for derived categories). Let X•, Y • be cochain complexes in Db(repkAn).
Then

(4.11) dDB(BD(X•),BD(Y •)) ≤ dDI (X
•, Y •).

Proof. Assume that X• and Y • are derived δ-interleaved. Then for all i ∈ Z, H i(X•)
and H i(Y •) are δ-interleaved, and hence B(H i(X•)) and B(H i(Y •)) are δ-matched by
Theorem 8. Thus, by definition, the inequality

(4.12) dDB(BD(X•),BD(Y •)) ≤ dDI (X
•, Y •)



holds. □

Next, we consider a distance induced by a derived equivalence. We can assume that
there exists a derived equivalence E from Db(A) to Db(repk An) with A = Db(repkAn(a)).
For example, let T ∈ repk An be a classical tilting module and take E−1 = RHom(T, -)
(see [14, Chapter III]).

Definition 23. Two objects X and Y of Db(A) are said to be δ-interleaved with respect
to E if E(X) and E(Y ) are derived δ-interleaved in the sense of Definition 18. The

interleaving distance dE,A
I (X, Y ) with respect to E is defined as

(4.13) dE,A
I (X, Y ) := inf{δ ∈ Z≥0 | X and Y are δ-interleaved with respect to E}.

Namely, dE,A
I (X, Y ) = dDI (E(X), E(Y )) holds.

Remark 24. By Remark 19, dE,A
I (X, Y ) = 0 if and only if E(X) and E(Y ) are isomorphic

in Db(repkAn). Since E is an equivalence, this means that X and Y are isomorphic in
Db(A). Thus, the interleaving distance defined as above also measures how far these
objects are from being isomorphic. This justifies calling the distance an interleaving
distance.

Remark 25. The δ-shift functor cannot be defined in the zigzag setting, so neither can the
usual interleaving distance. One of the advantages of our approach is that we can define
the interleaving distance even in the zigzag setting through the derived equivalence.

Since E is an equivalence, in particular, a fully faithful functor, X ∈ Db(A) is in-
decomposable if and only if so is E(X) ∈ Db(repkAn). Hence, since Db(repkAn) is a
Krull-Schmidt category, so is Db(A). Consequently, the derived equivalence E induces a
bijection between BD(E(X)) (see Definition 16) and

(4.14) BD
A(X) := {Z ∈ Db(A) | Z is indecomposable and a direct summand of X}.

Then the following distance between BD
A(X) and BD

A(Y ) is naturally derived by passing
through the derived equivalence E.

Definition 26. For two objects X, Y of Db(A), BD
A(X) and BD

A(Y ) are said to be δ-
matched with respect to E if BD(E(X)) and BD(E(Y )) are δ-matched in the sense of

Definition 21. The bottleneck distance dE,A
B (BD

A(X),BD
A(Y )) with respect to E is defined

as

(4.15) dE,A
B (BD

A(X),BD
A(Y )) := inf

{
δ ∈ Z≥0

∣∣∣∣ BD
A(X) and BD

A(Y ) are
δ-matched with respect to E

}
.

Namely, dE,A
B (BD

A(X),BD
A(Y )) = dDB(BD(E(X)),BD(E(Y ))) holds.

In our convention, an AST states that the interleaving distance between objects X and
Y gives an upper bound for the bottleneck distance between their persistence diagrams.
Thus, as a consequence of Theorem 22, Definition 23, and Definition 26, we have the
following AST for the derived category Db(A).

Proposition 27 ([15]). Let X, Y objects in Db(A). Then
(4.16) dE,A

B (BD
A(X),BD

A(Y )) ≤ dE,A
I (X, Y ).



Recall that A can be regarded as a full subcategory of Db(A). As a consequence of
Proposition 27, an AST holds for zigzag persistence modules. Thus, we obtain an AST
for a wider class compared to that of Botnan and Lesnick [6].

4.3. Isometry theorem for derived categories. By Theorem 13 and Theorem 22, we
obtain an isometry theorem for the derived category of persistence modules.

Theorem 28 (Isometry theorem for derived categories). Let X•, Y • be cochain complexes
in Db(repk An). Then

(4.17) dDB(BD(X•),BD(Y •)) = dDI (X
•, Y •).

As a consequence of Theorem 28, we can extend Proposition 27 to isometry theorems
by Definition 23 and Definition 26.

Corollary 29. Let X, Y objects in A or Db(A). Then
(4.18) dE,A

B (BD
A (X), BD

A (Y )) = dE,A
I (X, Y ).

The special case of Corollary 29 is exactly an isometry theorem for purely zigzag per-
sistence modules.

5. Comparison among distances

5.1. Block distance. Botnan–Lesnick [6] proved an AST for purely zigzag persistence
modules. In that paper, they introduced the interleaving and bottleneck distances on
purely zigzag persistence modules. Bjerkevik [4] proved that those distances actually
coincide. Here, we refer to the interleaving distance as the block distance, denoted by
dBL, following the paper [19].

First, we explain the block distance defined by Botnan–Lesnick [6]. For this aim, we
will introduce the infinite purely zigzag quiver ZZ.
Let Z be the poset of integers with usual order and Zop its opposite poset. As in [6],

let ZZ be the subposet of the poset Zop × Z given by

(5.1) ZZ := {(i, j) | i ∈ Z, j ∈ {i, i− 1}}.
Note that this can be expressed by the infinite purely zigzag quiver

(5.2) Q =

(i+ 1, i+ 1)

(i, i) (i+ 1, i)oo

OO

(i− 1, i− 1) (i, i− 1)oo

OO
,

so that ZZ and Q are identified and a (pointwise finite-dimensional) representation of ZZ
is just that of the quiver Q. We use repk ZZ to denote the category of representations of
ZZ.



Moreover, in [6], the intervals ⟨b, d⟩ZZ (b ≤ d) of ZZ are classified into the following 4
types:

(5.3)


closed interval [b, d]ZZ := {(i, j) ∈ ZZ | (b, b) ≤ (i, j) ≤ (d, d)},
right-open interval [b, d)ZZ := {(i, j) ∈ ZZ | (b, b) ≤ (i, j) < (d, d)},
left-open interval (b, d]ZZ := {(i, j) ∈ ZZ | (b, b) < (i, j) ≤ (d, d)},
open interval (b, d)ZZ := {(i, j) ∈ ZZ | (b, b) < (i, j) < (d, d)}.

We use I⟨b,d⟩ZZ to denote the interval representation of ZZ associated with the interval
⟨b, d⟩ZZ. Note that the interval representation I⟨b,d⟩ZZ of ZZ is uniquely determined by the
interval ⟨b, d⟩ZZ. Indeed, I⟨b,d⟩ZZ is the representation given by

(5.4) I⟨b,d⟩ZZ(i,j) =

{
k, (i, j) ∈ ⟨b, d⟩ZZ
0, otherwise

and is called a closed (resp. right-open, left-open, and open) interval representation if
⟨b, d⟩ZZ is closed (resp. right-open, left-open, and open). Note that interval representations
are indecomposable and every pointwise finite representation of ZZ can be decomposed
into interval representations (see [5]).

The distance dBL is defined via the interleaving distance on 2D persistence modules.
For that purpose, Botnan–Lesnick [6] defined an embedding functor J : repk ZZ→ repkU,
where U := {(a, b) ∈ R2 | b ≥ a} and repk U is the category of representations of U. The
functor J was originally denoted by E in loc. cit. Note that U is a subposet of Rop × R
and that a poset can be expressed by a quiver Q′ with relations in general. Hence, a
representation of U is a representation of the quiver Q′ satisfying the condition induced
from the relations. For ε ≥ 0, we set ε⃗ := (−ε, ε) ∈ R2

≥0 and define a shift functor
[ε⃗] : repk U→ repk U on objects by M [ε⃗]u := Mu+ε⃗ together with natural morphisms. For
M ∈ repkU and ε ≥ 0, there is a canonical morphism ϕε⃗

M : M →M [ε⃗].

Definition 30. (1) For M,N ∈ repk U and ε ≥ 0, M and N are said to be ε-interleaved if
there exist morphisms f : M → N [ε⃗] and g : M → N [ε⃗] such that the following diagrams
commute:

(5.5) M
ϕ2ε⃗
M //

f !!

M [2ε⃗]

N [ε⃗]
g[ε⃗]

;;
, N

ϕ2ε⃗
N //

g !!

N [2ε⃗]

M [ε⃗]
f [ε⃗]

;;
.

The interleaving distance on repkU is defined as

(5.6) dUI (M,N) := inf{ε ≥ 0 |M and N are ε-interleaved}.
(2) The block distance dBL on repk ZZ is defined as

(5.7) dBL(X, Y ) := dUI (J(X), J(Y )).

The name of block distance will be justified below in this subsection.
We recall some properties of J , for which we need blocks and block-decomposable

representations (see Section 3 in [6] or Definitions 2.5 and 2.10 in [3]).

Definition 31. A block B is a subset of R2 of the following type:



(1) A birthblock (bb for short) if there is (a, b) ∈ R2 such that B = ⟨−∞, a⟩×⟨b,+∞⟩,
where (a, b) can be (+∞,−∞). Moreover, B is said to be of type bb+ if b > a,
and bb− otherwise.

(2) A deathblock (db for short) if there is (a, b) ∈ R2 such that B = ⟨a,+∞⟩×⟨−∞, b⟩.
Moreover, B is said to be of type db+ if b > a, and db− otherwise.

(3) A horizontalblock (hb for short) if there is a ∈ R and b ∈ R ∪ {+∞} such that
B = R× ⟨a, b⟩.

(4) A verticalblock (vb for short) if there is a ∈ R ∪ {−∞} and b ∈ R such that
B = ⟨a, b⟩ × R.

Using the above definition, we define block representations and block-decomposable
representations of U.

Definition 32. (1) A block representation M of type B of U is defined by, for x ≤
y ∈ U,

(5.8) M(x) =

{
k, x ∈ U ∩B
0, otherwise

and M(x ≤ y) =

{
1lk, x, y ∈ U ∩B
0, otherwise

.

Note that any block representation is indecomposable.
(2) A representationM of U is called block-decomposable ifM can be only decomposed

into block representations.

Remark that a block representation can be 0 when the corresponding block is of type
db−.

The functor J sends an object of repk ZZ to a block-decomposable persistence module.
In fact, each type of interval module is sent as follows.

Lemma 33 (Lemma 4.1 in [6]). The functor J sends closed, open, right-open, and left-
open interval representations to block representations of type bb−,db+,hb, and vb, re-
spectively.

5.2. Convolution distance. In this subsection, we study the convolution distance intro-
duced by Kashiwara–Schapira [18]. The convolution distance is defined as a distance on
the derived category Db(Shc(kR)) of constructible sheaves on R (indeed in a more general
setting).

First, we prove the category of representations of the infinite zigzag quiver ZZop is
equivalent to some sheaf category on R. The equivalence induces a distance on the
derived category of such representations.

Let us briefly recall the notion of sheaves and fix some notation. Let X be a topological
space and Open(X) the category of open subsets of X whose Hom-set Hom(U, V ) is the
singleton if U ⊂ V and empty otherwise. A sheaf F of k-vector spaces on X is a functor
Open(X)op → Vect(k) with some gluing condition (see [17] for example). We write Sh(kX)
for the abelian category of sheaves of k-vector spaces on X. In what follows, we focus on
sheaves on R. A sheaf F ∈ Sh(kR) is said to be constructible if there exist discrete points
{xk}k∈Z with xk < xk+1 such that F |(xk,xk+1) is locally constant for any k ∈ Z and Ft is
finite-dimensional for any t ∈ R. We denote by Shc(kR) the full subcategory of Sh(kR)
consisting of constructible sheaves.



Definition 34. One defines ShZ(kR) as the full subcategory of Shc(kR) consisting of
objects F such that F |(i,i+1) is constant for any i ∈ Z.

Now we consider the relation between representations of the infinite zigzag quiver and
sheaves on R, which is essentially studied by Guillermou [13]. For X ∈ repk ZZop, we set

(5.9) FX
t :=

{
X(i,i), t = i ∈ Z
X(i,i−1), i− 1 ≤ t ≤ i (i ∈ Z)

and define S(X) ∈ ShZ(kR) by

(5.10) S(X)(U) :=

f ∈
∏
t∈U

FX
t

∣∣∣∣∣∣∣∣∣
f |U\Z is locally constant,

for any y ∈ Z ∩ U and ε > 0 small enough,

f(y − ε) = Xβy(f(y)) with βy = α(y,y−1),(y,y),

f(y + ε) = Xβ′
y
(f(y)) with β′

y = α(y+1,y),(y,y)

 .

Note that with a morphism φ : X → Y one can associate a canonical morphism S(φ) : S(X)→
S(Y ). The correspondence defines a functor S : repk ZZop → ShZ(kR). For this functor,
we have the following equivalence.

Proposition 35. The functor S : repk ZZop → ShZ(kR) is an equivalence of categories.

Here we recall the convolution distance on Db(Shc(kR)). Let q1, q2 : R2 → R be the first
and second projections. Moreover, we set s : R2 → R, (t1, t2) 7→ t1 + t2. For F •, G• ∈
Db(Shc(kR)), their convolution F • ⋆ G• ∈ Db(Shc(kR)) is defined by

(5.11) F • ⋆ G• := Rs!(q
−1
1 F ⊗ q−1

2 G).

For ε ≥ 0, we set Kε := k[−ε,ε] ∈ Shc(kR), which has stalks k on [−ε, ε] and 0 otherwise.
We have Kε ⋆ Kε′

∼= Kε+ε′ for ε, ε′ ≥ 0. For ε ≥ 0, the canonical morphism Kε → K0

induces a morphism ϕε
F • : F • ⋆Kε → F • ⋆K0

∼= F •. For F •, G• ∈ Db(Shc(kR)) and ε ≥ 0,
F • and G• are said to be ε-isomorphic if there exist morphisms f : Kε ⋆ F • → G• and
g : Kε ⋆ G

• → F • such that following diagrams commute:

(5.12) F • ⋆ K2ε

ϕ2ε
F• //

f⋆Kε &&

F •

G• ⋆ Kε

g

:: , G• ⋆ K2ε

ϕ2ε
G• //

g⋆Kε &&

G•

F • ⋆ Kε

f

:: .

The convolution distance on Db(Shc(kR)) is defined as

(5.13) dC(F
•, G•) := inf{ε ≥ 0 | F • and G• are ε-isomorphic}.

Through the equivalence in Proposition 35, the convolution distance induces a distance
on Db(repk ZZop).



5.3. Comparison. In this subsection, we investigate the relation among the distance
dBL, the convolution distance through the equivalence in Proposition 35, and ours.

Berkouk–Ginot–Oudot [3] considered a functor Ξ: repkU→ Shc(kR)
op and Ψ: Shc(kR)

op →
repk U, where U = {(a, b) ∈ R2 | b ≥ a}. Moreover, they proved that the functors com-
mute with [ε⃗] and (-) ⋆ Kε in the derived setting, where ε⃗ = (−ε, ε). Here we restate the
result in a weaker form, i.e., in the non-derived setting. For F ∈ Shc(kR), we define

F ⋆nd Kε := H0(F ⋆ Kε) ∈ Shc(kR),(5.14)

ϕε
F,nd := H0(ϕε

F ) : F ⋆ndKε → F in Shc(kR).(5.15)

By Proposition 3.22, Lemmas 3.27 and 3.28 in [3] and Proposition 3.8 in [2], forM ∈ repk U
whose indecomposable summands are only blocks of type bb−,db+,hb, and vb, one has
Ξ(M [ε⃗]) ∼= M ⋆ndKε for any ε ≥ 0. Similarly, for F ∈ Shc(kR) one has Ψ(F )[ε⃗] ∼=
Ψ(F ⋆ndKε) for any ε ≥ 0 (cf. Proposition 4.16 in [3]). Moreover, they satisfy Ξ ◦Ψ ≃ 1l.
Now we consider the relation to the equivalence in Proposition 35. We define Θ as the

composite repk ZZ
D−→ (repk ZZop)op

Sop

−−→ ShZ(kR)
op, where D denotes the k-dual functor.

Proposition 36. One has the following commutative diagram:

(5.16) repk ZZ
J //

Θ &&

repk U

Ξ
��

ShZ(kR)
op

.

We define a non-derived version of the convolution distance as follows. For F,G ∈
Shc(kR), F and G are said to be H0-ε-isomorphic if there exist f : Kε ⋆nd F → G and
g : Kε ⋆ndG→ F such that the following diagrams commute:

(5.17) F • ⋆ndK2ε

ϕ2ε
F• //

f ⋆nd Kε ''

F •

G• ⋆ndKε

g

:: , G• ⋆ndK2ε

ϕ2ε
G• //

g ⋆nd Kε ''

G•

F • ⋆ndKε

f

:: .

We define a non-derived convolution distance by

(5.18) dC,nd(F,G) := inf{ε ≥ 0 | F and G are H0-ε-isomorphic}

for F,G ∈ Shc(kR). It can be easily checked that for F,G ∈ Shc(kR), the inequality

(5.19) dC,nd(F,G) ≤ dC(F,G).

holds. In particular, if both F and G have no indecomposable direct summand of the
form k(a,b) with open interval (a, b) in R, then the equality

(5.20) dC,nd(F,G) = dC(F,G)

holds (see Propositions 4.1 and 4.2 in [2]).
Through the functor Ξ, the interleaving distance dUI on repk U is compatible with dC,nd

on Shc(kR) as follows. This is a non-derived version of a main result of [3].



Lemma 37 (cf. Theorem 4.21 in [3]). For any M,N ∈ repkU whose indecomposable
summands are only blocks of type bb−,db+,hb, and vb, one has

(5.21) dUI (M,N) = dC,nd(Ξ(M),Ξ(N)).

The following shows that the distance dBL coincides with the convolution distance on
sheaves through the equivalence Θ.

Proposition 38. For any X, Y ∈ repk ZZ, one has

(5.22) dBL(X, Y ) = dC,nd(Θ(X),Θ(Y )).

As a consequence of Proposition 38, our induced distance is incomparable with the non-
derived and the ordinary convolution distance defined above in the purely zigzag setting.
Indeed, for X, Y ∈ Yc, we have

(5.23) dz1(X, Y ) ≤ dBL(X, Y ) = dC,nd(Θ(X),Θ(Y )) = dC(Θ(X),Θ(Y )).

On the other hand, for X, Y ∈ Yco, we have

(5.24) dz1(X, Y ) ≥ dBL(X, Y ) = dC,nd(Θ(X),Θ(Y )) = dC(Θ(X),Θ(Y )).

Note that by Corollary 29, dz1 := dE,A
I = dE,A

B , where A = repk An(z1) and E−1 =
RHom(T, -) with a fixed classical tilting module T and that Yc and Yco are the set of
interval representations in repk An(z1) corresponds to closed and right-open interval rep-
resentations of ZZ. For the details of calculation, refer to Section 7 and Section 8 in
[15].
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