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Abstract. We calculate the Krull–Gabriel dimension of the functor category of the
(stable) category of maximal Cohen–Macaulay modules over hypersurfaces of type (A∞).

1. Introduction

The notion of a Krull–Gabriel dimension has been considered under a functorial ap-
proach viewpoint of representation theory of finite dimensional algebras. It was introduced
by Gabriel[4] and has been studied by many authors including Geigle[5], Schröer[12] and
others.

Definition 1 (Krull Gabriel dimension). Let A be a abelian category. Define A−1 = 0.
For each n ≧ 1, let An be the category of all objects which are finite length in A/An−1.
We define KGdim A = min{n | A = An} if such a minimum exists, and KGdim A = ∞
else.

Let R be a commutative Cohen–Macaulay local ring and C(R) the category of maxi-
mal Cohen–Macaulay R-modules. In this note we study the Krull–Gabriel dimension of
mod(C(R)); the full subcategory of mod(C(R)) consisting of all functors with F (R) = 0.

Theorem 2. Let R be a complete Cohen–Macaulay local ring. Then R is of finite repre-
sentation type if and only if KGdim mod(C(R)) = 0.

Let k be an algebraically closed uncountable field of characteristic not two. Next we
investigate the case when R is a hypersurface of type (A∞), that is, R is isomorphic to
the ring k[[x0, x1, x2, . . . , xn]]/(f), where f = x2

1 + x2
2 + · · · + x2

n. It is known that R is of
countable representation type [3].

Theorem 3. Let k be an algebraically closed uncountable field of characteristic not two.
Let R be a hypersurface of type (A∞). Then KGdim mod(C(R)) = 2.

The study of the Krull–Gabriel dimension of maximal Cohen–Macaulay modules over
a one-dimensional hypersurface of type (A∞) is given by Puninski[11]. His study investi-
gates the Krull–Gabriel dimension of the definable category of maximal Cohen–Macaulay
modules in Mod(R), so that it is different from ours.

The detailed version of this note will be submitted for publication elsewhere.
The author was partly supported by JSPS KAKENHI Grant Number 18K13399 and 21K03213.



2. Preliminaries

Let A be an abelian category and S a Serre subcategory of A. We say that a full
subcategory S ofA is a Serre subcategory if S is closed under taking subobjects, quoteients
and extension. Note that a category of finite-length objects is a Serre subcategory. The
quotient category A/S is defined as follows: The object of A/S are the objects of A and
HomA/S(X,Y ) := lim

−→
HomA(X

′, Y/Y ′) with X ′ ⊂ X, Y ′ ⊂ Y and X/X ′, Y ′ ∈ S. Then

A/S is an abelian category.
To show a simpleness of an object in a quotient category, the following lemma is useful.

Lemma 4. [6, Lemma 1.1] Let A be an abelian category and S a Serre subcategory. The
object X of A becomes simple in A/S if X is not an object of S and if for each subobject
V of X either V or X/V belongs to S.

Let R be a commutative Noetherian ring with a finite Krull dimension. We denote by
mod(R) a category of finitely generated R-modules with R-homomorphisms.

Proposition 5. Let R be a commutative Noetherian ring with a finite Krull dimension.
Then KGdim mod(R) = dimR.

Proof. One can show that R/p is a simple object in mod(R)/mod(R)i−1 for a prime
ideal p with i = dimR/p. Let M be a finitely generated R-module. Now we have a
filtration of M : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that Mk/Mk−1

∼= R/pk with
prime ideals pk. This implies that KGdim M ≤ min{dimR/pk|k = 1, · · ·n}. Hence
KGdim mod(R) ≤ inf{dimR/p|p ∈ SpecR} ≤ dimR. On the other hand, take a minimal
associated prime ideal p of R, then dimR/p = dimR, so that dimR ≤ KGdim mod(R).
Therefore we obtain KGdim mod(R) = dimR. □
Now we focus on a category of maximal Cohen-Macaulay (abbr.MCM) modules. In

the rest of the note we always assume that (R,m) is a complete CM local ring. We
denote by C(R) the full subcategory of mod(R) consisting of all MCM R-modules and
by C0(R) the full subcategory of C(R) consisting of all modules that are locally free on
the punctured spectrum of R. We denote by C(R) the stable category of C(R). The
objects of C(R) are the same as those of C(R), and the morphisms of C(R) are elements
of HomR(M,N) = HomR(M,N)/P (M,N) for M,N ∈ C(R), where P (M,N) denote the
set of morphisms from M to N factoring through free R-modules. Since R is complete,
C(R), thus C(R), is a Krull-Schmidt category. For a finitely generated R-module M , we
denote by syz1R(M) the reduced first syzygy of M .
Let us recall the full subcategory of the functor category of C(R) which is called the

Auslander category. The Auslander category mod(C(R)) is the category whose objects
are finitely presented contravariant additive functors from C(R) to a category of abelian
groups and whose morphisms are natural transformations between functors. We denote
by mod(C(R)) the full subcategory mod(C(R)) consisting of functors F with F (R) = 0.
Note that every object F ∈ mod(C(R)) is obtained from a short exact sequence in C(R).
Namely we have the short exact sequence 0 → N → M → L → 0 such that

0 → HomR( , N) → HomR( ,M) → HomR( , L) → F → 0

is exact in mod(C(R)).



Let 0 → Z → Y → X → 0 be an AR sequence in C(R). (For a theory of Auslander-
Reiten (abbr. AR) sequences, we refer to [13].) Then the functor SX defined by an exact
sequence

0 → HomR( , Z) → HomR( , Y ) → HomR( , X) → SX → 0

is a simple object in mod(C(R)) and all the simple objects in mod(C(R)) are obtained in
this way ([13, Lemma 4.12]).

Let us show the first result of the note, which is an analogical result due to Auslander[2].
We say that R is of finite representation type if there are only a finite number of isomor-
phism classes of indecomposable MCM R-modules. For a functor F ∈ Mod(C(R)), we
denote by Supp(F ) a set of isomorphism classes of indecomposable MCM modules M
with F (M) 6= 0.

Theorem 6. Let R be a complete CM local ring. Then R is of finite representation type
if and only if KGdim mod(C(R)) = 0.

Proof. Suppose thatR is of finite representation type. According to [13, Chapter 13], every
functor F ∈ mod(C(R)) has finite length. Hence KGdim mod(C(R)) = 0. Conversely
suppose that KGdim mod(C(R)) = 0. By [8, Lemma 2.1], there exists X ∈ C(R) such
that HomR(M,X) 6= 0 for all non free MCM R-modulesM . That is, Supp(HomR(−, X))∪
{R} = Ind(C(R)). Since HomR(−, X) ∈ mod(C(R)), ℓ(HomR(−, X)) < ∞ in mod(C(R)).
This implies that |Supp(HomR(−, X))| < ∞. Hence R is of finite representation type. □
Remark 7. We note that KGdim mod(C(R)) is not always 0 if R is of finite representation
type. Actually let R = k[[x]]. Then C(R) = add{R}. Thus R is of finite representation
type. Since mod(C(R)) = mod(R), we have the equality KGdim mod(R) = dimR = 1 by
Proposition 5.

3. Krull Gabriel dimension of mod(k[[x, y]]/(x2))

Let k be an algebraically closed uncountable field of characteristic not 2 and R a
one-dimensional hypersurface of type (A∞), that is, R = k[[x, y]]/(x2). This section is
devoted to calculate the Krull-Gabriel dimension of mod(C(R)). It is known that R is
of countable representation type, namely there exist infinitely but only countably many
isomorphism classes of indecomposable MCM R-modules. The non free indecomposable
MCM R-modules are as follows:

In = Coker
(
x yn

0 x

)
: R⊕2 → R⊕2 I = Coker(x) : R → R.

See [3, Proposition 4.1]. First we state the main result in this section.

Theorem 8. Let k be an algebraically closed uncountable field of characteristic not 2 and
R = k[[x, y]]/(x2). Then, KGdim mod(C(R)) = 2.

To prove the theorem, we shall do some preparations.

Lemma 9. Let R, I, In be as above. The following statements hold.

(1) dimk HomR(Im, In) =

{
2n m ≥ n,
2m m ≤ n.

(2) dimk HomR(I, In) = dimk HomR(In, I) = n for 1 ≤ n < ∞.
(3) dimk HomR(I, I) = ∞. □



One has an exact sequence

0 → I1

(
x
y

1

)
−−−→ I ⊕R

(y −x)−−−−→ I → 0.

We consider the functor induced by the sequence;

(3.1) 0 → HomR(−, I1) → HomR(−, I)⊕ HomR(−, R) → HomR(−, I) → H1 → 0.

We shall show the functor H1 is a simple functor in mod(C(R))/mod(C(R))0.

Proposition 10. The functor H1 is simple in mod(C(R))/mod(C(R))0.

Proof. By [14, Proposition 3.3], the exact sequence (3.1) induces the long exact sequence:

(3.2)

−−−→ H1 −−−→ 0

−−−→ HomR(−, I1)
x
y−−−→ HomR(−, I)

y−−−→ HomR(−, I)

−−−→ HomR(−, I1[−1]) −−−→ HomR(−, I[−1]) −−−→ HomR(−, I[−1]).

For each indecomposable X ∈ C0(R), since dimk HomR(X, I1) and dimk HomR(X, I) is fi-
nite, we have dimk H1(X) = 1

2
dimk HomR(X, I1) = 1. Notice here again that M ∼= M [−1]

for every MCM R-module M . Since HomR(I, I)
∼= k[[y]], one has H1(I) ∼= k[[y]]/yk[[y]].

Consequently, we have dimk H1(X) = 1 for all indecomposable X ∈ C(R).
Let 0 → V → H1 → C → 0 be an admissible exact sequence in mod(C(R)). Since

V ∈ mod(C(R)), we have the exact sequence: 0 → HomR(−, Z) → HomR(−, Y ) →
HomR(−, X) → V → 0. Then, for all M ∈ C0(R),

dimk V (M) =
1

2
{dimk HomR(M,X) + dimk HomR(M,Z)− dimk HomR(M,Y )} .

X = I⊕a0⊕I⊕a1
l1

⊕· · ·⊕I
⊕al′
ll′

, Y = I⊕b0⊕I⊕b1
m1

⊕· · ·⊕I
⊕bm′
mm′ and Z = I⊕c0⊕I⊕c1

n1
⊕· · ·⊕I

⊕cn′
nn′ .

We put m = max{l1, ..., ll′ ,m1, ...,mm′ , n1, ..., nn′}. For m ≦ n < ∞,

dimk V (In) =
1

2

(
l′∑
i

m · ai +
n′∑
i

m · ci −
m′∑
i

m · bi

)
.

This equation yields that dimk V (In) are 0 or 1 for m ≦ n < ∞ since V is a subfunctor
of H1. Assume that dimk V (In) = 0 for m ≦ n. Then V (In) = 0 except for a finite
number of In. Namely Supp(V ) is a finite set, and we shall show I 6∈ Supp(V ). If it
does, V is in mod(C(R))0. Assume that I ∈ Supp(V ). For I ′ ∈ Supp(V )

∩
C0(R), there

is an epimorphism from V → SI′ . (See the proof of [13, (4.12)].) Put the kernel of the
epimorphism as V ′. Then V ′ ∈ mod(C(R)) and Supp(V ′) = Supp(V )\{I ′}. Repeating
the procedure, we obtain the functor Ṽ ∈ mod(C(R)) such that Supp(Ṽ ) = {I} and
dimk Ṽ (I) = 1. It yields that Ṽ is a simple functor with Ṽ (I) 6= 0, so that the AR
sequence ending in I exists ([13, (4.13)]). Namely I ∈ C0(R) ([13, (3.4)]). This is a
contradiction. Hence I 6∈ Supp(V ).

Assume that dimk V (In) = 1 for m ≦ n. Then dimk C(In) = 0 for m ≦ n. Ap-
ply the same argument for C and we also conclude that C is contained in mod(C(R))0.
Consequently we get the assertion. □



Remark 11. Since H1 is a subfunctor of HomR(−, I1), we have an exact sequence in
mod(C(R)):

0 → H1 → HomR(−, I1) → H ′
1 → 0.

By virtue of Lemma 9 and a calculation in the proof of Proposition 10, dimk H
′
1(In) = 1

for all n and dimk H
′
1(I) = 0. By using the same argument of Proposition 10, one can also

show thatH ′
1 is a simple functor in mod(C(R))/mod(C(R))0. Therefore, ℓ(HomR(−, I1)) =

2 in mod(C(R))/mod(C(R))0.

Remark 12. In the Grothendieck group of mod(C(R)), an AR sequence gives the equality
[HomR(−, In+1)] + [HomR(−, In−1)] = 2[HomR(−, In)] − 2[SIn ]. Combing the equation
with Remark 11, one can show that ℓ(HomR(−, In)) = 2n in mod(C(R))/mod(C(R))0 for
n ≥ 1. By [1, Proposition 2.1 (1)], there is an exact sequence 0 → I → In → I → 0 for
n ≥ 1. Then 2ℓ(HomR(−, I)) ≥ ℓ(HomR(−, In)) in mod(C(R))/mod(C(R))0. This yields
that HomR(−, I) 6∈ mod(C(R))1.

Proposition 13. The functor HomR(−, I) is simple in mod(C(R))/mod(C(R))1.

Proof. Let 0 → V → HomR(−, I) → C → 0 be an admissible sequence in mod(C(R)).
Since V ∈ mod(C(R)), there is an exact sequence 0 → HomR(−, Z) → HomR(−, Y ) →
HomR(−, X) → V → 0 for some X,Y, Z ∈ C(R). If X ∈ C(R)0, V ∈ mod(C(R))1
because V is an image of HomR(−, X) ([13, (4.16)]). Thus the claim holds. Assume
that X contains I as a direct summand. After the several observations, we may as-
sume that C has the presentation: HomR(−, I⊕l) → HomR(−, I) → C → 0. By in-
vestigating the presentation minutely, one can also show that C has the resolution:
HomR(−, In) → HomR(−, I) → HomR(−, I) → C → 0. This implies that C is a
subfunctor of HomR(−, In[1]) ∼= HomR(−, In). Consequently, HomR(−, I) is simple in
mod(C(R))/mod(C(R))1. □

Proof of Theorem 8. For each F ∈ mod(C(R)), we have a epimorphism HomR(−, X) →
F → 0. In particular, the epimorphism

HomR(−, X) → F → 0

exists, where X ∈ C(R). From the former propositions, HomR(−, X) is in mod(C(R))2
and so is F . It induces that KGdim mod(C(R)) = 2. □

4. Knörrer’s periodicity

In this section we investigate how a Krull-Gabriel dimension changes with Knörrer’s
periodicity. We recall some observations given in [10, 9].

Let C and D be additive categories with a functor A : C → D. Then A induces the
functor A : mod(C) → mod(D) by A(HomC(−, C)) = HomD(−,A(C)). That is, for
F ∈ modC with 0 → HomC(−, Z) → HomC(−, Y ) → HomC(−, X) → F → 0, A(F ) is
defined by 0 → HomD(−,A(Z)) → HomD(−,A(Y )) → HomD(−,A(X)) → A(F ) → 0.

Lemma 14. Let C and D be additive categories with functors A : C → D and B :
D → C. Suppose that (B,A) is an adjoint pair of functors. Then the induced functor
A : mod(C) → mod(D) is an exact functor.



Proof. By the adjointness of (B,A), one can show that A(F )(−) ∼= F (B(−)) for F ∈
mod(C). The assertion follows from the isomorphism. □

Let R be a hypersurface, that is, R = S/(f) where S = k[[x0, x1, · · · , xn]] is a formal
power series ring with a maximal ideal mS = (x0, x1, · · · , xn) and f ∈ mS. For the ring
R, we denote R♯ = S[[z]]/(f + z2). Then the group G = Z/2Z acts on R♯ by σ : z → −z.
Denote the skew group ring by R♯ ∗ G. We also denote by C(R), C(R♯), C(R♯ ∗ G) the
category of MCM R-, R♯- and R♯ ∗ G-modules respectively. For M in C(R♯) and the
involution σ in G, we define an R♯-module σ∗M by M = σ∗M as a set and r◦m = σ(r)m.
For the detail, we refer to [9, Section 2].

Theorem 15. [9, Proposition 2.1, Remark 2.2, Proposition 2.4, Lemma 2.5] Let R, R♯∗G,
R♯ be as above. We have the functors:

C(R)
Ω−→ C(R♯ ∗G)

ad

⇄
F

C(R♯),

where the functor Ω(−) is defined by syz1
R♯(−), F is a forget-functor and ad(−) = −⊗R♯

R♯ ∗G is its adjoint. Then, for X ∈ C(R) and Y ∈ C(R♯), the following statements hold.

(1) The functor Ω gives the categorical equivalence.
(2) Ω−1 ◦ ad ◦ F ◦ Ω is equivalent to the functor X 7→ X ⊕ syz1R(X).
(3) F ◦ Ω ◦ Ω−1 ◦ ad is equivalent to the functor Y 7→ Y ⊕ σ ∗ Y . □

Lemma 16. [10, Theorem 3.2] Let Ω, F and ad be as above. Set A = F ◦ Ω and
B = Ω−1 ◦ ad. Then (A,B) and (B,A) are adjoint pairs.

Proposition 17. Let R = S/(f) be a hypersurface and A, B as in Lemma 16. Suppose
that A(F ) ∈ mod(C(R♯))n−1 for each F ∈ mod(C(R))n−1. Then A(F ) is contained in

mod(C(R♯))n for a simple functor S ∈ mod(C(R))/mod(C(R))n−1.

Proof. Let S be a simple functor in mod(C(R))/mod(C(R))n−1. Assume that A(S) is
not simple. Then we have an exact sequence of functors 0 → V → A(S) → S ′ →
0 such that S ′ is simple in mod(C(R♯))/mod(C(R♯))n−1. Apply B to the sequence,
one has 0 → B(V ) → B ◦ A(S) → B(S ′) → 0. Since B ◦ A(S) ∼= S ⊕ S[−1] (no-
tice that the functor S[−1] is also a simple functor), one can show that B(V ) and
B(S ′) are simple in mod(C(R))/mod(C(R))n−1. Now we shall show V is also simple

in mod(C(R♯))/mod(C(R♯))n−1. Let 0 → V ′ → V → C → 0 be an admissible sequence in

mod(C(R♯)). Then we obtain the exact sequence in mod(C(R)): 0 → B(V ′) → B(V ) →
B(C) → 0. Since B(V ) is simple B(V ′) or B(C) is in mod(C(R))n−1. Assume that B(V ′)
is in mod(C(R))n−1. Notice that A◦B(V ′) ∼= V ′ ⊕ σ ∗ V ′, so that V ′ is a direct summand
of A ◦ B(V ′). By the assumption, A ◦ B(V ′) is finite length, and so is V ′. Therefore V ′

is a simple functor in mod(C(R♯))/mod(C(R♯))n−1. The same arguments are valid for the
case that B(C) is in mod(C(R))n−1. □

Proposition 18. Suppose that A(S) is in mod(C(R♯))n for each simple functor S in
mod(C(R))/mod(C(R))n−1. Then A(F ) is in mod(C(R♯))n for each F in mod(C(R))n.

Proof. Apply A to the filtration of F . □



Remark 19. As mentioned in [9, Corollary 2.10], a simple functor S in mod(C(R)) goes to
a length-finite functor in mod(C(R♯)). Namely A(S) ∈ mod(C(R♯))0. Conversely a simple
functor S ′ in mod(C(R♯)) also goes to a functor in mod(C(R))0.

Finally we achieve the main theorem of this note.

Corollary 20. Let k be an algebraically closed uncountable field of characteristic not two.
Let R be a hypersurface of type (A∞) . Then KGdim mod(C(R)) = 2.

Proof. Let R = k[[x, y]]/(x2). Summing up Proposition 17, 18 and Remark 19, one can
see that A gives a functor mod(C(R))n → mod(C(R♯))n. For each F ∈ mod(C(R♯)),
B(F ) is in mod(C(R))2. Thus A ◦ B(F ) = F ⊕ σ∗F in mod(C(R♯))2, so that F is in
mod(C(R♯))2. This observation yields that the assertion holds for the hypersurfaces of all
dimensions. □
Remark 21. In [7], we also calculate the Krull–Gabriel dimension of the functor category
of the category of MCM modules over hypersurfaces of type (D∞).
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