ON TWO-SIDED HARADA RINGS

YOSHITOMO BABA

ABSTRACT. In [11] M. Harada studied a left artinian ring R such that every non-small left R-module contains a non-zero injective submodule. (We can see the results also in his lecture note [12, §10.2].) In [16] K. Oshiro called the ring a left H-ring and later in [17] he called it a left Harada ring. Since then many significant results are invented. We can see many results on left Harada rings in [9] and many equivalent conditions in [7, Theorem B]. But results on two-sided Harada rings are few until [1], [2], [4] and [3]. In this paper, we give the structure of two-sided Harada rings

In §1 we give basic definitions including H-epimorphisms, left co-H-sequences and w-co-H-sequences which are induced to characterized two-sided Harada rings. In §2, we study H-epimorphisms and left co-H-sequences In §3, we given important two one-to-one correspondences between the set of all left w-co-H-sequences and the set of all right w-co-H-sequences. In §4, we consider a new concept QF-well-indexed set. In §5, we construct a two-sided Harada ring from a given QF ring uning QF-well-indexed set. In §6, we consider a ring R(f) which is induced from a two-sided Harada ring R. In §7, we show that if R is a two-sided Harada ring R but not QF, then R is isomorphis to a two-sided Harada ring constructed in §5 using a QF ring R(f).

1. Definitions

Let R be a basic artinian ring. A ring R is called a *left Harada ring* or a *left H-ring* if, for any primitive idempotent e of R, there exists a primitive idempotent f_e of R with $E(T(_RRe)) \cong {_RRf_e}/{S_{n_e}}(_RRf_e)$ for some $n_e \in \mathbb{N}$.

By, for instance, [7, Theorem B (5),(6),(14) and the proof of $(6) \Rightarrow (5)$], the following are equivalent:

- (a) R is a left Harada ring.
- (b) There exist a basic set $\{e_{i,j}\}_{i=1,j=1}^{m}$ of orthogonal primitive idempotents of R and a set $\{f_i\}_{i=1}^m$ of primitive idempotents of R such that $E(T(_RRe_{i,j})) \cong {_RRf_i}/{S_{j-1}}(_RRf_i)$ for each $i=1,2,\ldots,m$ and $j=1,2,\ldots,n(i)$.
- (c) There exists a basic set $\{e_{i,j}\}_{i=1,j=1}^{m \ n(i)}$ of orthogonal primitive idempotents of R such that $e_{i,1}R_R$ is injective and $e_{i,j}R_R \cong e_{i,1}J_R^{j-1}$ for each $i=1,2,\ldots,m$ and $j=1,2,\ldots,n(i)$.

We may consider the sets

$$\{e_{i,j}\}_{i=1,j=1}^{m \ n(i)}$$

in (b), (c) coincide and call it a well-indexed set of left Harada ring or a left well-indexed set.

The detailed version of this paper will be submitted for publication elsewhere.

Further, for primitive idempotents e, f of R, we call

is an i-pair if both $S(eR_R) \cong T(fR_R)$ and $S(_RRf) \cong T(_RRe)$ hold. And, since $\{e_{i,1}R\}_{i=1}^m$ is a basic set of indecomposable projective injective right R-modules, for each $i=1,2,\ldots,m$, there exists $e_{\sigma(i),\rho(i)} \in \{e_{i,j}\}_{i=1,j=1}^{m \ n(i)}$ such that $(e_{i,1}R, Re_{\sigma(i),\rho(i)})$ is an i-pair by [10, Theorem 3.1], where σ , $\rho: \{1,2,\ldots,m\} \to \mathbb{N}$ are mappings.

Unless otherwise stated, throughout this paper, we let R be an indecomposable basic two-sided Harada ring, let $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$ be its well-indexed set of left Harada ring, let σ , ρ be mappings above, and, for each $i=1,2,\ldots,m$ and each $j=2,3,\ldots,n(i)$, let

$$\theta_{i,j}: e_{i,j}R_R \to e_{i,j-1}J_R$$

be an R-isomorphism.

Let R be an artinian ring, let $\{e_i\}_{i=1}^n$ be a complete set of orthogonal primitive idempotents of R and let $\{f_i\}_{i=1}^k \subseteq \{e_i\}_{i=1}^n$. A sequence f_1R , f_2R , ..., f_kR is called a right co-H-sequence of R if the following (CHS1), (CHS2), (CHS3) hold.

- (CHS1) For each $i=1,2,\ldots,k-1$, there exists an R-isomorphism $\xi_i:f_iR_R\to f_{i+1}J_R$.
- (CHS2) The last term $f_k R_R$ is injective.
- (CHS3) f_1R, f_2R, \ldots, f_kR is the longest sequence among the sequences which satisfy both (CHS1) and (CHS2), i.e., there does not exist an R-isomorphism: $fR_R \to f_1J_R$, where $f \in \{e_i\}_{i=1}^n$.

Similarly, we define a left co-H-sequence Rf_1, Rf_2, \ldots, Rf_k of R.

Obviously, for each i = 1, 2, ..., m

$$e_{i,n(i)}R_R, e_{i,n(i)-1}R_R, \ldots, e_{i,1}R_R$$

is a right co-H-sequence of R. And, for an artinian ring R', it is a left Harada ring if and only if there exists a basic set $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$ of orthogonal primitive idempotents of R' such that $e_{i,n(i)}R'$, $e_{i,n(i)-1}R'$, ..., $e_{i,1}R'$ is a right co-H-sequence of R' for all $i=1,2,\ldots,m$. From the definition of a left Harada ring, the following lemma holds:

Lemma 1. For a left Harada ring R' and primitive idempotents f_1, f_2, \ldots, f_k of R', the following are equivalent.

- (a) $f_1R', f_2R', \ldots, f_kR'$ is a right co-H-sequence.
- (b) $f_1R', f_2R', \ldots, f_kR'$ satisfies (CHS1) and the following (CHS3'):
 - (CHS3') $f_1R', f_2R', \ldots, f_kR'$ is the longest sequence among sequences which satisfy (CHS1).

Let $\{e_i\}_{i=1}^n$ be a complete set of orthogonal primitive idempotents of R and let $\{f_i\}_{i=1}^{j+1} \subseteq \{e_i\}_{i=1}^n$, where $f_1, f_2, \ldots, f_{j+1}$ are mutually distinct. Then we call $\varphi: f_1 R_R \to f_2 J_R$ (resp.

 $_RRf_1 \rightarrow _RJf_2$) a right (resp. left) H-epimorphism if φ is a non-zero R-epimorphism with $J \cdot \operatorname{Ker} \varphi = 0$ (resp. $\operatorname{Ker} \varphi \cdot J = 0$). And we call $\varphi : f_1R_R \rightarrow f_{j+1}J_R^j$ (resp. $_RRf_1 \rightarrow _RJ^jf_{j+1}$) a right (resp. left) weak H-epimorphism (or simply a right (resp. left) w-H-epimorphism) if there exist right (resp. left) H-epimorphisms $\varphi_i : f_iR_R \rightarrow f_{i+1}J_R$ ($i = 1, 2, \ldots, j$) with $\varphi = \varphi_j\varphi_{j-1}\cdots\varphi_1$ (resp. $\varphi_i : _RRf_i \rightarrow _RJf_{i+1}$ ($i = 1, 2, \ldots, j$) with $\varphi = \varphi_1\varphi_2\cdots\varphi_j$).

We call a sequence f_1R , f_2R , ..., f_kR a right weak co-H-sequence (or simply a right w-co-H-sequence) if the following (WCHS1), (WCHS2) hold.

- (WCHS1) For any $i=1,2,\ldots,k-1$, there exists a right H-epimorphism $\xi_i: f_i R_R \to f_{i+1} J_R$.
- (WCHS2) There exists neither a right H-epimorphism $\xi: fR_R \to f_1J_R$ nor a right H-epimorphism $\xi': f_kR_R \to f'J_R$ for any $f, f' \in \{e_i\}_{i=1}^n \{f_i\}_{i=1}^k$, i.e., f_1R, f_2R, \ldots, f_kR is the longest sequence in the set of all sequences which consist of distinct terms and satisfy the condition (WCHS1).

Further a right w-co-H-sequence f_1R , f_2R , ..., f_kR is called a right cyclic weak co-H-sequence if there exists a right H-epimorphism $\xi_k: f_kR_R \to f_1J_R$.

Similarly, we define a left (cyclic) weak co-H-sequence Rf_1, Rf_2, \ldots, Rf_k .

We call an artinian ring R a QF ring if R is injective as a left (or right) R-module.

Let Q be an indecomposable basic QF ring. Then we call $\{f'_{i,s}\}_{i=1,s=1}^{m'}$ a left QF-well-indexed set of Q if $\{f'_{i,s}\}_{i=1,s=1}^{m'}$ is a complete set of orthogonal primitive idempotents of Q which satisfies the following two conditions:

(QFWI1) $Qf'_{i,1}, Qf'_{i,2}, \ldots, Qf'_{i,\delta'_{i}}$ is a left w-co-H-sequence for any $i = 1, 2, \ldots, m'$.

(QFWI2) If $\delta_i' \geq 2$, then $(f_{i,s}'Q, Qf_{i,s}')$ is an i-pair for any $s = 1, 2, \dots, \delta_i'$.

We call an artinian ring R is a Nakayama ring if both $_RRe$ and eR_R are uniserial for any primitive idempotent e of R.

For $a \in R$, we write the left (resp. right) multiplication map by a

$$(a)_L$$
 (resp. $(a)_R$).

And, for primitive idempotents e, f and g, we use the following terminologies.

• If both $S(e_{Re}eRf)$ and $S(eRf_{fRf})$ are simple, we call (eR,Rf) is a colocal pair following [13] and [15]. And then $S(e_{Re}eRf) = S(eRf_{fRf})$ holds. We abbreviate it to

$$S(eRf)$$
.

• We put

$$R(e) \stackrel{put}{:=} eRe$$
.

2. H-EPIMORPHISMS AND LEFT CO-H-SEQUENCES OF TWO-SIDED HARADA RINGS

We characterize left (right) H-epimorphisms.

Theorem 2.

- (I) Suppose that $\zeta: {}_{R}Re_{i,j} \to {}_{R}Je_{k,l}$ is a left H-epimorphism. And, if ${}_{R}Re_{i,j}$ is injective, we let $(e_{p,1}R, Re_{i,j})$ be an i-pair. Then the following hold.
 - (1) (i) Suppose that $e_{k,l}R_R$ is injective, i.e., l=1. Then j=n(i), i.e., $\zeta: {}_RRe_{i,n(i)} \to {}_RJe_{k,1}$.
 - (ii) Suppose that $e_{k,l}R_R$ is not injective, i.e., $l \neq 1$. Then (k,l) = (i,j+1) (j < n(i)), i.e., $\zeta: {}_RRe_{i,j} \rightarrow {}_RJe_{i,j+1}$.
 - - (ii) If $_RRe_{i,j}$ is injective, then, for each q = 1, 2, ..., n(p), $S(e_{p,q}R_R) = S(e_{p,q}R_R) e_{i,j} = S(e_{p,q}Re_{i,j})$.
- (II) Suppose that $\xi: e_{i,j}R_R \to e_{k,l}J_R$ is a right H-epimorphism. And, if $e_{i,j}R_R$ is injective, we put $I_i \stackrel{put}{:=} \{ (p,q) \mid S(_RRe_{p,q}) \cong T(_RRe_{i,1}) \}$ and let n' be the number of elements in I_i . Then the following hold.
 - (1) (i) Suppose that $e_{i,j}R_R$ is injective, i.e., j=1. Then l=n(k), i.e., $\xi:e_{i,1}R_R\to e_{k,n(k)}J_R$.
 - (ii) Suppose that $e_{i,j}R_R$ is not injective, i.e., $j \geq 2$. Then $(k,l) = (i,j-1) \ (l < n(k))$, i.e., $\xi : e_{i,j}R_R \to e_{i,j-1}J_R$.
 - (2) (i) Ker $\xi = e_{i,j} S({}_R R) =$ $\begin{cases}
 \oplus_{(p,q)\in I_i} e_{i,1} S({}_R R e_{p,q}) = S_{n'}(e_{i,1} R_R) \neq 0 \\
 \text{and it is uniserial as a right R-module}
 \end{cases}$ (if j = 1)
 - (ii) If $e_{i,j}R_R$ is injective, i.e., j=1, then, for each $(p,q)\in I_i$, $S({}_RRe_{p,q})=e_{i,1}\,S({}_RRe_{p,q})=S(e_{i,1}Re_{p,q})$.

By the definition of a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m\ n(i)}$ of left Harada ring,

$$e_{i,n(i)}R, e_{i,n(i)-1}R, \dots, e_{i,1}R \quad (i = 1, 2, \dots, m)$$

are right co-H-sequences of R. And, from Theorem 2, we obtain the following characterization left co-H-sequences of R using the same set $\{e_{i,j}\}_{i=1,j=1}^{m}$.

Corollary 3. Every left co-H-sequence of R is of the form

$$Re_{i_1,s}, Re_{i_1,s+1}, \ldots, Re_{i_1,n(i_1)}, Re_{i_2,1}, Re_{i_2,2}, \ldots, Re_{i_2,n(i_2)}, Re_{i_3,1}, \ldots, Re_{i_u,t},$$

where $1 \le i_1, i_2, \dots, i_u \le m, 1 \le s \le n(i_1)$ and $1 \le t \le n(i_u)$.

Example 4. Let R be a basic indecomposable Nakayama ring with a complete set $\{g_i\}_{i=1}^7$ of orthogonal primitive idempotents which satisfies

(i)
$$T(g_iJ_R) \cong T(g_{i+1}R_R)$$
 for any $i = 1, 2, ..., 6$, and

(ii)
$$c(g_1R_R) = 10$$
, $c(g_2R_R) = 9$,
 $c(g_3R_R) = 10$, $c(g_4R_R) = 9$,
 $c(g_5R_R) = 11$, $c(g_6R_R) = 10$, $c(g_7R_R) = 9$,

where c(M) means the composition length of an R-module M.

We put

$$e_{1,1} \stackrel{put}{:=} g_1$$
, $e_{1,2} \stackrel{put}{:=} g_2$, $e_{2,1} \stackrel{put}{:=} g_3$, $e_{2,2} \stackrel{put}{:=} g_4$, $e_{3,1} \stackrel{put}{:=} g_5$, $e_{3,2} \stackrel{put}{:=} g_6$, $e_{3,3} \stackrel{put}{:=} g_7$.
And $\{e_{1,1}, e_{1,2}, e_{2,1}, e_{2,2}, e_{3,1}, e_{3,2}, e_{3,3}\}$ is a left well-indexed set of R and $(e_{1,1}R, Re_{2,1})$, $(e_{2,1}R, Re_{3,1})$, $(e_{3,1}R, Re_{1,1})$

are i-pairs and

$$Re_{1,2}, Re_{2,1}$$

 $Re_{2,2}, Re_{3,1}$
 $Re_{3,2}, Re_{3,3}, Re_{1,1}$

are left co-H-sequences.

3. Two one-to-one correspondeces between \mathbf{S}_L and \mathbf{S}_R .

In the following lemma, we give the form of left (right) weak co-H-sequences.

Lemma 5.

- (I) (i) Every left non-cyclic w-co-H-sequence is of the form $Rf'_{1,1}, Rf'_{1,2}, \cdots, Rf'_{1,n_1}, Rf'_{2,1}, Rf'_{2,2}, \cdots, Rf'_{2,n_2}, Rf'_{3,1}, Rf'_{3,2}, \cdots \cdots \cdots Rf'_{k-1,n_{k-1}}, Rf'_{k,1}, Rf'_{k,2}, \cdots, Rf'_{k,n_k},$ where we let $Rf'_{i,1}, Rf'_{i,2}, \cdots, Rf'_{i,n_i}$ be a left co-H-sequence for each $i = 1, 2, \ldots, k$.
 - (ii) And we may consider that every left cyclic w-co-H-sequence is also of the same form by renumbering the indexes if necessary.
- (II) (i) We may assume that every right non-cyclic w-co-H-sequence is of the form $e_{i_k,n(i_k)}R, e_{i_k,n(i_k)-1}R, \cdots, e_{i_k,1}R, e_{i_{k-1},n(i_{k-1})}R, e_{i_{k-1},n(i_{k-1})-1}R, \cdots$ $e_{i_{k-1},1}R, e_{i_{k-2},n(i_{k-2})}R, \cdots, e_{i_{2},1}R, e_{i_{1},n(i_{1})}R, e_{i_{1},n(i_{1})-1}R, \cdots, e_{i_{1},1}R,$ where $\{i_1, i_2, \ldots, i_k\} \subseteq \{1, 2, \ldots, m\}.$
 - (ii) And we may consider that every right cyclic w-co-H-sequence is also of the same form by renumbering the indexes if necessary.

By Lemma 5 (II), we may assume that there exist integers $\alpha_1, \alpha_2, \ldots, \alpha_{m'}$ and $\beta_1, \beta_2, \ldots, \beta_{m'}$ which satisfy the following (i), (ii).

- (i) $\alpha_1 = 1, \ 1 \le \beta_1 < \beta_2 < \dots < \beta_{m'} = m \text{ and } \alpha_i = \beta_{i-1} + 1 \text{ for any } i = 2, 3, \dots, m'$.
- (ii) For each i = 1, 2, ..., m',

$$(R-i) \begin{array}{c} e_{\beta_{i},n(\beta_{i})}R, \ e_{\beta_{i},n(\beta_{i})-1}R, \dots, \ e_{\beta_{i},1}R, \ e_{\beta_{i}-1,n(\beta_{i}-1)}R, \ e_{\beta_{i}-1,n(\beta_{i}-1)-1}R, \dots \\ \cdots, \ e_{\beta_{i}-1,1}R, \ e_{\beta_{i}-2,n(\beta_{i}-2)}R, \ e_{\beta_{i}-2,n(\beta_{i}-2)-1}R, \dots, \ e_{\alpha_{i}+1,1}R, \\ e_{\alpha_{i},n(\alpha_{i})}R, \ e_{\alpha_{i},n(\alpha_{i})-1}R, \dots, \ e_{\alpha_{i},1}R \end{array}$$

is a right w-co-H-sequence.

And, for each i = 1, 2, ..., m', we also consider another sequence

$$(L-i) \quad \begin{array}{ll} Re_{\alpha_{i},1}, \ Re_{\alpha_{i},2}, \ \dots \ , \ Re_{\alpha_{i},n(\alpha_{i})}, \ Re_{\alpha_{i}+1,1}, \ Re_{\alpha_{i}+1,2}, \ \dots, \ Re_{\alpha_{i}+1,n(\alpha_{i}+1)}, \\ Re_{\alpha_{i}+2,1}, \ Re_{\alpha_{i}+2,2}, \ \dots \ , \ Re_{\beta_{i}-1,n(\beta_{i}-1)}, \ Re_{\beta_{i},1}, \ Re_{\beta_{i},2}, \ \dots \ , \ Re_{\beta_{i},n(\beta_{i})} \end{array}$$

of left R-modules. Further, we put

$$\mathbf{S}_R \stackrel{put}{:=} \{ (R-i) \}_{i=1}^{m'} \text{ and } \mathbf{S}_L \stackrel{put}{:=} \{ (L-i) \}_{i=1}^{m'}.$$

Of course, \mathbf{S}_R is the set of all right w-co-H-sequences.

Throughout this paper, we use the notations α_i , β_i , (R-i), (L-i), \mathbf{S}_L and \mathbf{S}_R .

In this section, we give two one-to-one correspondences between \mathbf{S}_L and \mathbf{S}_R . The first one is as follows.

Theorem 6.

by

- (1) \mathbf{S}_L is the set of all left w-co-H-sequences.
- (2) We can define a bijection

$$\Phi: \mathbf{S}_L o \mathbf{S}_R \ \Phi((L-i)) = (R-i)$$

for any i = 1, 2, ..., m'.

- (3) Φ satisfy the following two properties.
 - (i) Φ preserve the length of a sequence.
 - (ii) Φ preserve the property that it is cyclic (or not cyclic).

Now we give a key lemma in this paper.

Lemma 7.

(I) Let

$$Rf_1, Rf_2, \ldots, Rf_n$$

be a left co-H-sequence and let $\zeta: {}_RRf_0 \to {}_RJf_1$ be a left H-epimorphism and let $(e_{k,1}R, Rf_0)$ and $(e_{l,1}R, Rf_{n_l})$ be i-pairs, i.e., $f_0 = e_{\sigma(k),\rho(k)}$ and $f_{n_l} = e_{\sigma(l),\rho(l)}$. Suppose that $f_0 \neq f_{n_l}$, i.e., $k \neq l$. Then there exists a right H-epimorphism $\xi: e_{l,1}R_R \to e_{k,n(k)}J_R$.

(II) Let $\xi: e_{l,1}R_R \to e_{k,n(k)}J_R$ be a right H-epimorphism and let

$$Rf_1, Rf_2, \dots, Rf_{n_l} = Re_{\sigma(l), \rho(l)}$$

be a left co-H-sequence. Suppose that $k \neq l$. Then there exists a left H-epimorphism $\zeta: {}_RRe_{\sigma(k),\rho(k)} \to {}_RJf_1$.

Remark. In Corollary 10, we will show that there exist ξ in (I) and ζ in (II) even if k = l.

Now, for each i = 1, 2, ..., m', we abbreviate

 $e_{\alpha_i,1}, e_{\alpha_i,2}, \ldots, e_{\alpha_i,n(\alpha_i)}, e_{\alpha_i+1,1}, e_{\alpha_i+1,2}, \ldots, e_{\alpha_i+1,n(\alpha_i+1)}, e_{\alpha_i+2,1}, e_{\alpha_i+2,2}, \ldots, e_{\beta_i,n(\beta_i)}$ to

$$f_{i,1}, f_{i,2}, \ldots, f_{i,\gamma_i}$$
.

Then a left w-co-H-sequence (L-i) is written by

$$Rf_{i,1}, Rf_{i,2}, \ldots, Rf_{i,\gamma_i}$$

and a right w-co-H-sequence (R-i) is written by

$$f_{i,\gamma_i}R, f_{i,\gamma_i-1}R, \ldots, f_{i,1}R.$$

It is obvious that a right co-*H*-sequence (R-i) contains $\beta_i - \alpha_i + 1 = \beta_i - \beta_{i-1}$ injective right *R*-modules

$$e_{\alpha_i,1}R, e_{\alpha_i+1,1}R, \ldots, e_{\beta_i,1}R,$$

where we let $\beta_0 = 0$. Now we assume that a left co-*H*-sequence (L-i) contains δ_i injective left *R*-modules

$$Rf_{i,p_i(1)}, Rf_{i,p_i(2)}, \ldots, Rf_{i,p_i(\delta_i)},$$

where $(1 \leq p_i(1) < p_i(2) < \cdots < p_i(\delta_i) (\leq \gamma_i)$. Further we let

$$(e_{q_i(j),1}R, Rf_{i,p_i(j)})$$

be an *i*-pair for any $j = 1, 2, ..., \delta_i$.

Throughout this paper, we use these notations.

We note that $p_i(\delta_i) = \gamma_i$ does not hold necessarily. But the following Lemma 8(1) holds. And in Lemma 8(2), we consider the case that $p_i(\delta_i) \neq \gamma_i$, i.e., $p_i(\delta_i) < \gamma_i$.

Lemma 8.

- (1) Suppose that (L-i) is not cyclic. Then $p_i(\delta_i) = \gamma_i$, i.e., ${}_RRf_{i,\gamma_i}$ is injective.
- (2) Suppose that $p_i(\delta_i) < \gamma_i$. Then the following hold.
 - (i) $Rf_{i,p_i(\delta_i)+1}$, $Rf_{i,p_i(\delta_i)+2}$, ..., Rf_{i,γ_i} , $Rf_{i,1}$, $Rf_{i,2}$, ..., $Rf_{i,p_i(1)}$ is a left co-H-sequence.
 - (ii) There exists a right H-epimorphism $\xi': e_{q_i(1),1}R_R \to e_{q_i(\delta_i),n(q_i(\delta_i))}J_R$.

Now we give new sequences [L-i] and [R-i] as follows.

Lemma 9. For i = 1, 2, ..., m', we consider the following two sequences:

Then the following hold.

- (1) (i) [L-i] is a left w-co-H-sequence, i.e., $[L-i] \in \mathbf{S}_L$. (ii) [R-i] is a right w-co-H-sequence, i.e., $[R-i] \in \mathbf{S}_R$.
- (2) The following are equivalent.
 - (a) (L-i) is cyclic.
 - (b) (R-i) is cyclic.
 - (c) [L-i] is cyclic.
 - (d) [R-i] is cyclic.

The following Corollary complements the statement of Lemma 7.

Corollary 10.

(I) Suppose that

$$Rf_1, Rf_2, \ldots, Rf_{n'}$$

is a left co-H-sequence and it is cyclic as a left w-co-H-sequence. Let $(e_{k,1}R, Rf_{n'})$ be an i-pair. Then the right co-H-sequence

$$e_{k,n(k)}R, e_{k,n(k)-1}R, \ldots, e_{k,1}R$$

is cyclic as a right w-co-H-sequence.

(II) Suppose that the right co-H-sequence

$$e_{i,n(i)}R, e_{i,n(i)-1}R, \ldots, e_{i,1}R$$

is cyclic as a right w-co-H-sequence. Then a left co-H-sequence with the last term $Re_{\sigma(i),\rho(i)}$ is also cyclic as a left w-co-H-sequence.

Now we give the second one-to-one correspondence between \mathbf{S}_L and \mathbf{S}_R .

Theorem 11. A bijection

$$\Psi: \mathbf{S}_L \to \mathbf{S}_R$$

is defined by

$$\Psi(\,(L{-}i\,)\,) = [R{-}i\,]$$

and the following hold.

- (i) Ψ preserve the number of injective modules in a w-co-H-sequence.
- (ii) Ψ preserve the property that it is cyclic (or not cyclic).

We define a bijection

$$\psi: \{1, 2, \dots, m'\} \to \{1, 2, \dots, m'\}$$

by

$$(R-\psi(i)) = [R-i], \text{ i.e., } \Psi((L-i)) = (R-\psi(i)).$$

Then we note that

$$(f_{\psi(i),1}R, Rf_{i,p_i(1)})$$

is an *i*-pair for any i = 1, 2, ..., m' by the definition.

And, for $i = 1, 2, \ldots, m'$, we put

$$f_i \stackrel{put}{:=} \sum_{j=1}^{\gamma_i} f_{i,j}$$
 and $R_i \stackrel{put}{:=} f_i R f_i$.

Throughout this paper, we let ψ mean this bijection and use the notations f_i and R_i .

In the following theorem, we consider the case that (L-i) is cyclic.

Theorem 12. Suppose that (L-i) is cyclic. Then the following hold.

- (1) R_i is a Nakayama ring.
- (2) $(1-f_i)Rf_i = f_iR(1-f_i) = 0$. (3) $\{f_{i,j}\}_{j=1}^{\gamma_i} = \{e_{q_i(k),l}\}_{k=1,l=1}^{\delta_i}$, i.e., $\psi(i) = i$, i.e., $\Psi((L-i)) = \Phi((L-i))$.

In the following lemma, we characterize δ_i .

Lemma 13. $\delta_i = \beta_{\psi(i)} - \alpha_{\psi(i)} + 1$.

In the following theorem, $\{q_i(j)\}_{i=1,j=1}^{m \delta_i}$ is, i.e., *i*-pairs in R are, characterized in (1) and we give a condition to be cyclic for a w-co-H-sequence in (2).

Theorem 14.

- (1) (i) $q_i(\beta_{\psi(i)} q_i(1) + 1) = \beta_{\psi(i)}$. (ii) $q_i(\beta_{\psi(i)} q_i(1) + 2) = \alpha_{\psi(i)}$. (iii) $q_i(j+1) = q_i(j)+1$ holds for any $j \in \{1, 2, ..., \delta_i-1\}-\{\beta_{\psi(i)}-q_i(1)+1\}$.
- (2) Suppose that $q_i(1) > \alpha_{\psi(i)}$. Then $(R-\psi(i))$ is cyclic (i.e., (L-i) is cyclic), $\psi(i) = i$ and R_i is a Nakayama ring.

Remark 15. Let R be an indecomposable ring. We suppose that R is not a Nakayama ring. Then R_i is also not a Nakayama ring for all i = 1, 2, ..., m by Theorem 12(2). So

$$q_i(1) = \alpha_{\psi(i)}$$

holds for any i = 1, 2, ..., m from Theorem 14(2). And further

$$q_i(j) = \alpha_{\psi(i)} + j - 1$$

holds for any $i=1,2,\ldots,m'$ and any $j=1,2,\ldots,\delta_i=\beta_{\psi(i)}-\alpha_{\psi(i)}+1$ by Theorem 14(1)(iii).

Example 16. Let \tilde{R} be a QF ring with a complete set $\{\tilde{e}_1, \tilde{e}_2\}$ of orthogonal primitive idempotents. And we put $Q_i \stackrel{put}{:=} \tilde{e}_i \tilde{R} \tilde{e}_i$ $(i = 1, 2), A \stackrel{put}{:=} \tilde{e}_1 \tilde{R} \tilde{e}_2$ and $B \stackrel{put}{:=} \tilde{e}_2 \tilde{R} \tilde{e}_1$.

(1) Suppose that $(\tilde{e}_1\tilde{R}, \tilde{R}\tilde{e}_2)$ and $(\tilde{e}_2\tilde{R}, \tilde{R}\tilde{e}_1)$ are *i*-pairs. (Then we note that $A \neq 0$ and $B \neq 0$.) We consider

$$R \stackrel{put}{:=} \begin{pmatrix} Q_1 & Q_1 & Q_1 & A & \overline{A} \\ J(Q_1) & Q_1 & Q_1 & A & \overline{A} \\ J(Q_1) & J(Q_1) & Q_1 & A & A \\ B & B & B & Q_2 & Q_2 \\ B & B & B & J(Q_2) & Q_2 \end{pmatrix},$$

where $J(Q_i)$ means the Jacobson radical of Q_i for i = 1, 2, we put $\overline{A} \stackrel{put}{:=} A/S(A)$ and, for each $j = 1, 2, \ldots, 5$, let e_j be the j-th matrix unit. Then R is a two-sided Harada ring as follows.

For instance, we put

$$e_{1,1} = e_1, \ e_{1,2} = e_2, \ e_{2,1} = e_3, \ e_{3,1} = e_4, \ e_{3,2} = e_5.$$

Then $\{e_{1,1}, e_{1,2}, e_{2,1}, e_{3,1}, e_{3,2}\}$ is a left well-indexed set and

$$\alpha_1 = 1$$
, $\beta_1 = 2$, $\alpha_2 = 3$, $\beta_2 = 3$,

i.e.,

$$\begin{array}{ll} (R-1\) & e_{2,1}R\ ,\ e_{1,2}R\ ,\ e_{1,1}R\ , \\ (R-2\) & e_{3,2}R\ ,\ e_{3,1}R \end{array}$$

are right w-co-H-sequences. So

$$(L-1)$$
 $Re_{1,1}$, $Re_{1,2}$, $Re_{2,1}$,

$$(L-2)$$
 $Re_{3,1}$, $Re_{3,2}$

are left w-co-H-sequences. We put

$$f_{1,1} \stackrel{put}{:=} e_{1,1}, \ f_{1,2} \stackrel{put}{:=} e_{1,2}, \ f_{1,3} \stackrel{put}{:=} e_{2,1}, \ f_{2,1} \stackrel{put}{:=} e_{3,1}, \ f_{2,2} \stackrel{put}{:=} e_{3,2} \,.$$

Then

$$\delta_1 = 1$$
, $\delta_2 = 2$, $p_1(1) = 3$, $p_2(1) = 1$, $p_2(2) = 2$ and $q_1(1) = 3$, $q_2(1) = 1$, $q_2(2) = 2$,

i.e.,

$$(e_{3,1}R, Rf_{1,3}), (e_{1,1}R, Rf_{2,1}), (e_{2,1}R, Rf_{2,2})$$

are i-pairs. So

$$\Psi(\,(L-1\,)\,)\,=\,[R-1\,]\,=\,(R-2\,)\ \ {\rm and}\ \ \Psi(\,(L-2\,)\,)\,=\,[R-2\,]\,=\,(R-1\,)\,.$$

Therefore

$$\psi(1) = 2$$
, $\psi(2) = 1$ and $\alpha_{\psi(1)} = 3$, $\beta_{\psi(1)} = 3$, $\alpha_{\psi(2)} = 1$, $\beta_{\psi(2)} = 2$.

Further we note that (R-i) and (L-i) (i=1,2) are not cyclic by Theorem 12 since $A \neq 0$ and $B \neq 0$.

(2) Suppose that $(\tilde{e}_1\tilde{R}, \tilde{R}\tilde{e}_1)$ and $(\tilde{e}_2\tilde{R}, \tilde{R}\tilde{e}_2)$ are *i*-pairs. We consider

$$R \stackrel{put}{:=} \begin{pmatrix} Q_1 & Q_1 & \overline{Q}_1 & A & A \\ J(Q_1) & Q_1 & \overline{Q}_1 & A & A \\ J(Q_1) & J(Q_1) & Q_1 & A & A \\ B & B & B & Q_2 & Q_2 \\ B & B & B & J(Q_2) & Q_2 \end{pmatrix},$$

where we put $\overline{Q}_1 \stackrel{put}{:=} Q_1/S(Q_1)$ and, for each j = 1, 2, ..., 5, let e_j be the j-th matrix unit. Then R is a two-sided Harada ring as follows.

For instance, we put $e_{1,1}$, $e_{1,2}$, $e_{2,1}$, $e_{3,1}$, $e_{3,2}$ as in (1). Then $\{e_{1,1}, e_{1,2}, e_{2,1}, e_{3,1}, e_{3,2}, e_{3,2},$ $\{e_{3,2}\}$ is a left well-indexed set and $\alpha_i,\ \beta_i,\ (R-i),\ (L-i),\ f_{i,j}\ (i=1,2,\ j=1,2,3)$ are the same as in (1). And

$$\delta_1 = 2$$
, $\delta_2 = 1$, $p_1(1) = 2$, $p_1(2) = 3$, $p_2(1) = 2$ and $q_1(1) = 1$, $q_1(2) = 2$, $q_2(1) = 3$, i.e.,

$$(e_{1,1}R, Rf_{1,2}), (e_{2,1}R, Rf_{1,3}), (e_{3,1}R, Rf_{2,2})$$

are *i*-pairs. So

$$\Psi((L-1)) = [R-1] = (R-1)$$
 and $\Psi((L-2)) = [R-2] = (R-2)$.

Therefore

$$\psi(1) = 1$$
, $\psi(2) = 2$ and $\alpha_{\psi(1)} = 1$, $\beta_{\psi(1)} = 2$, $\alpha_{\psi(2)} = 3$, $\beta_{\psi(2)} = 3$.

4. Left QF-well-indexed Set of QF Rings

Left QF-well-indexed sets have the following equivalent conditions.

Lemma 17. Let Q be an indecomposable basic QF ring and let $\{f'_{i,s}\}_{i=1,s=1}^{m'}$ be a complete set of orthogonal primitive idempotents of Q which satisfies (QFWI2). The following are equivalent.

- (a) $\{f'_{i,s}\}_{i=1,s=1}^{m'} \text{ satisfies (QFWI1)}, i.e., \{f'_{i,s}\}_{i=1,s=1}^{m'} \text{ is a left QF-well-indexed set}\}$
- (b) (i) If $\delta'_{i} \geq 2$, then ${}_{Q}Qf'_{i,s}/S({}_{Q}Qf'_{i,s}) \cong {}_{Q}J(Q)f'_{i,s+1}$ for any $s=1,2,\ldots,\delta'_{i}-1$. (ii) For any $i=1,2,\ldots,m'$ and $f\in \{f'_{j,t}\}_{j=1,t=1}^{m'}-\{f'_{i,s}\}_{s=1}^{\delta'_{i}}$ with (fQ,Qf) an i-pair, both ${}_{Q}Qf/S({}_{Q}Qf)\not\cong {}_{Q}J(Q)f'_{i,1}$ and ${}_{Q}Qf'_{i,\delta'_{i}}/S({}_{Q}Qf'_{i,\delta'_{i}})\not\cong {}_{Q}J(Q)f$
- (a') $f'_{i,\delta'_i}Q, f'_{i,\delta'_{i-1}}Q, \ldots, f'_{i,1}Q$ is a right w-co-H-sequence for any $i=1,2,\ldots,m'$.
- $(b') \quad (i) \quad \text{If } \delta_i' \geq 2, \text{ then } f_{i,s+1}'Q_Q/S(f_{i,s+1}'Q_Q) \ \cong \ f_{i,s}'J(Q)_Q \text{ for any } s=1,2,\dots,\delta_i'-1 \ .$
 - (ii) For any i = 1, 2, ..., m' and $f \in \{f'_{j,t}\}_{j=1,t=1}^{m'} \{f'_{i,s}\}_{s=1}^{\delta'_i}$ with (fQ, Qf) an i-pair, both $fQ_Q/S(fQ_Q) \not\cong f'_{i,\delta'_i}J(Q)_Q$ and $f'_{i,1}Q/S(f'_{i,1}Q_Q) \not\cong fJ(Q)_Q$ hold.

Further left QF-well-indexed sets have the following properties.

Lemma 18. Let Q be an indecomposable basic QF ring with a left QF-well-indexed set $\{f'_{i,s}\}_{i=1,s=1}^{m'}$. Then, since QF rings are two-sided Harada rings, bijection $\psi: \{1,2,\ldots,m'\} \rightarrow \{1,2,\ldots,m'\}$ given in [2, §3] is defined. With respect to ψ , the following hold:

(1) For any i = 1, 2, ..., m' and any $s = 1, 2, ..., \delta'_i$, $(f'_{\psi(i),s}Q, Qf'_{i,s})$ is an *i*-pair. So $S(f'_{i,j}, Qf'_{i,s})$ is defined.

- (2) In particular, if $\delta_i \geq 2$, then $\psi(i) = i$.
- (3) If $\delta'_{i} = 1$, then $\delta'_{\psi(i)} = 1$.

Let Q be an indecomposable basic QF ring with a left QF-well-indexed set $\{f'_{i,s}\}_{i=1,s=1}^{m'}$. For each $i \in \{1, 2, \dots, m'\}$, we put

$$r_i'(1) = 1, \quad x_{i,1} = 1$$

and we take positive integers

$$\delta_i$$
, γ_i

to satisfy

$$\delta_i' \leq \delta_i \leq \gamma_i$$
.

Morevoer, we take

$$r_i(u), p_i(u) \in \{1, 2, \dots, \gamma_i\} \quad (u = 1, 2, \dots, \delta_i)$$

to satisfy the following (1),(2),(3):

- (1) The following (†-1) holds.
 - (i) $1 \le p_i(1) < p_i(2) < \dots < p_i(\delta_i) = \gamma_i$ (ii) $1 = r_i(1) < r_i(2) < \dots < r_i(\delta_i) \le \gamma_i$ (So $r_i(x_{i,1}) = r'_i(1) = 1$.)
- (2) If $\delta'_i = 1$ and $i = \psi(i)$, then the following (†-2) holds.

$$(\dagger -2)$$
 $r_i(u) \leq p_i(u-1)$ for all $u = 2, 3, ..., \gamma_i$.

(3) If $\delta_i \geq 2$ (we note that, then $i = \psi(i)$ from Lemma 18(2)), then the following $(\dagger -3)$ holds, where we let

$$\begin{cases}
 r'_{i}(s) \in \{1, 2, \dots, \gamma_{i}\} & (s = 2, 3, \dots, \delta'_{i}) \\
 p'_{i}(t) \in \{1, 2, \dots, \gamma_{i}\} & (t = 1, 2, \dots, \delta'_{i} - 1) \\
 x_{i,s} \in \{2, 3, \dots, \delta_{i}\} & (s = 1, 2, \dots, \delta'_{i}) \\
 y_{i,t} \in \{1, 2, \dots, \delta_{i} - 1\} & (t = 1, 2, \dots, \delta'_{i} - 1).
\end{cases}$$

$$(\dagger -3) (i) \quad 1 = x_{i,1} \le y_{i,1} < x_{i,2} \le y_{i,2} < \dots < x_{i,\delta_i'-1} \le y_{i,\delta_i'-1} < x_{i,\delta_i'}$$

(ii)
$$r_i(x_{i,s}) = r'_i(s)$$
 $(s = 2, 3, ..., \delta'_i)$

(iii)
$$p_i(y_{i,t}) = p'_i(t)$$
 $(t = 1, 2, ..., \delta'_i - 1)$

$$(iv)$$
 $p_i(x_{i,s}-1) < r_i(x_{i,s}) \le p_i(x_{i,s}) \quad (s=2,3,\ldots,\delta_i')$

$$\begin{array}{ll} (iv) & p_i(x_{i,s} - 1) < r_i(x_{i,s}) \le p_i(x_{i,s}) & (s = 2, 3, \dots, \delta'_i) \\ (v) & r_i(y_{i,t}) \le p_i(y_{i,t}) < r_i(y_{i,t} + 1) & (t = 1, 2, \dots, \delta'_i - 1) \end{array}$$

$$(vi) \quad r_i(u+1) \le p_i(u)$$

$$\left(\begin{array}{cc} x_{i,t} \le u < y_{i,t}, \\ \text{where } t = 1, 2, \dots, \delta_i' - 1 \end{array} \right)$$

$$\left(\begin{array}{cc} y_{i,t} < u < x_{i,t+1}, \\ \text{where } t = 1, 2, \dots, \delta_i' - 1 \end{array} \right)$$

$$\left(\begin{array}{cc} y_{i,t} < u < x_{i,t+1}, \\ \text{where } t = 1, 2, \dots, \delta_i' - 1 \end{array} \right)$$

$$(vii) \quad p_i(u) < r_i(u)$$

$$\begin{pmatrix} y_{i,t} < u < x_{i,t+1}, \\ \text{where } t = 1, 2, \dots, \delta'_i - 1 \end{pmatrix}$$

Then the following holds.

Lemma 19. Let Q be an indecomposable basic QF ring with a left QF-well-indexed set $\{f'_{i,s}\}_{i=1,s=1}^{m'}$. Suppose that $\delta'_i \geq 2$. Then

$$1 = r'_i(1) \le p'_i(1) < r'_i(2) \le p'_i(2) < \dots < r'_i(\delta'_i - 1) \le p'_i(\delta'_i - 1) < r'_i(\delta'_i) \le \gamma_i.$$

5. Two sided Harada rings constructed from QF rings

For each $i = 1, 2, \dots, m'$ and $s = 1, 2, \dots, \gamma_i$, we put

$$\tau_i'(s) \stackrel{put}{:=} \max \left\{ u \in \{1, 2, \dots, \delta_i\} \mid r_i(u) \le s \right\}.$$

That is, $\tau'_i(s) \in \{1, 2, \dots, \delta_i\}$ such that

$$r_i(\tau_i'(s)) \le s < r_i(\tau_i'(s) + 1),$$

where we let $r_i(\delta_i + 1) = \gamma_i + 1$.

Now we construct two-sided Harada rings. Let Q be an indecomposable basic QF ring with a left QF-well-indexed set $\{f'_{i,s}\}_{i=1,s=1}^{m'}$ and we use the terminologies that now we define. For each $i,j=1,2,\ldots,m',\ k=1,2,\ldots,\delta'_i$ and $l=1,2,\ldots,\delta'_j$, we put

$$Q_{i,k;j,l} \stackrel{put}{:=} f'_{i,k} Q f'_{j,l}$$
.

And we put

$$Q_{i,k} \stackrel{put}{:=} Q_{i,k;i,k}, \quad J_{i,k} \stackrel{put}{:=} J(Q_{i,k}), \quad S_{\psi(j),l;j,l} \stackrel{put}{:=} S(f'_{\psi(j),l}Qf'_{j,l}).$$

(We note that $S_{\psi(j),l;j,l}$ is defined by Lemma 18 (1).) Moreover, we put

$$m_{i,k} \stackrel{put}{:=} r'_i(k+1) - r'_i(k),$$

where we let $r'_i(\delta'_i + 1) = \gamma_i + 1$,

$$\mathbb{Q}_{i,k;j,l} \stackrel{put}{:=} \left\{
\begin{array}{c}
\begin{pmatrix}
Q_{i,k} & \cdots & \cdots & Q_{i,k} \\
J_{i,k} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
J_{i,k} & \cdots & J_{i,k} & Q_{i,k}
\end{pmatrix} & \text{if } (i,k) = (j,l) \\
\vdots & & & \vdots \\
Q_{i,k;j,l} & \cdots & Q_{i,k;j,l} \\
\vdots & & & \vdots \\
Q_{i,k;j,l} & \cdots & Q_{i,k;j,l}
\end{pmatrix} & \text{if } (i,k) \neq (j,l)$$

$$\mathbb{M}_{i,j} \stackrel{put}{:=} \begin{pmatrix}
\mathbb{Q}_{i,1;j,1} & \mathbb{Q}_{i,1;j,2} & \cdots & \mathbb{Q}_{i,1;j,\delta'_{j}} \\
\mathbb{Q}_{i,2;j,1} & \mathbb{Q}_{i,2;j,2} & \cdots & \mathbb{Q}_{i,2;j,\delta'_{j}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{Q}_{i,\delta'_{i};j,1} & \mathbb{Q}_{i,\delta'_{i};j,2} & \cdots & \mathbb{Q}_{i,\delta'_{i};j,\delta'_{j}}
\end{pmatrix} : (\gamma_{i}, \gamma_{j})\text{-matrix},$$

(then we note that the (p,q)-component of $\mathbb{Q}_{i,k;j,l}$ is the $(r'_i(k)+p-1, r'_j(l)+q-1)$ -component of $\mathbb{M}_{i,j}$) and

$$\tilde{R} \stackrel{put}{:=} \begin{pmatrix} \mathbb{M}_{1,1} & \mathbb{M}_{1,2} & \cdots & \mathbb{M}_{1,m'} \\ \mathbb{M}_{2,1} & \mathbb{M}_{2,2} & \cdots & \mathbb{M}_{2,m'} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{M}_{m',1} & \mathbb{M}_{m',2} & \cdots & \mathbb{M}_{m',m'} \end{pmatrix}.$$

Further, for each $p=1,2,\ldots,m_{i,k}$ and $q=1,2,\ldots,m_{j,l}$, we put

$$A_{i,k;j,l} \overset{p,q}{:=} \left\{ \begin{array}{l} S_{i,k;j,l} & \text{if } i = \psi(j), \ k = l \ \text{and} \\ p_j \left(\tau'_{\psi(j)} \left(r'_{\psi(j)}(k) + p - 1\right)\right) < r'_j(l) + q - 1 \\ 0 & \text{otherwise} \end{array} \right.$$

and

$$\mathbb{A}_{i,k;j,l} \overset{put}{:=} \begin{pmatrix} A_{i,k;j,l}^{1,1} & A_{i,k;j,l}^{1,2} & \cdots & A_{i,k;j,l}^{1,m_{j,l}} \\ A_{i,k;j,l}^{2,1} & A_{i,k;j,l}^{2,2} & \cdots & A_{i,k;j,l}^{2,m_{j,l}} \\ \vdots & \vdots & \ddots & \vdots \\ A_{i,k;j,l}^{m_{i,k},1} & A_{i,k;j,l}^{m_{i,k},2} & \cdots & A_{i,k;j,l}^{m_{i,k},m_{j,l}} \end{pmatrix}$$
 (: subset of $\mathbb{Q}_{i,k;j,l}$.)

For example, when $\delta_i' = \delta_j' = 1$ and $i = \psi(j)$, we put $S \stackrel{put}{:=} S_{i,1;j,1}$, and

When $\delta'_i \geq 2$ and $i = \psi(i)$, we put $S' \stackrel{put}{:=} S_{i,k;i,k}$, and for $k = 1, 2, \dots, \delta'_i - 1$

where we put $a \stackrel{put}{:=} p_i(x_{i,k}), b \stackrel{put}{:=} p_j(x_{i,k}+1), c \stackrel{put}{:=} p_j(y_{i,k}), d \stackrel{put}{:=} p_j(y_{i,k}+1)$ and $e \stackrel{put}{:=} p_j(x_{i,k+1} - 1)$, and

$$A_{i}, \delta_{i}' = r_{i}(x_{i}, \delta_{i}') = r_{i}(x_{i}, \delta_{i}')$$

$$= r_{i}(x_{i}, \delta_{i}' + 1)$$

$$= r_{i}(x_{i}, \delta_{i}' + 1)$$

$$= r_{i}(x_{i}, \delta_{i}' + 2)$$

$$= r_{i}(x_{i}, \delta_{i}' + 2)$$

$$= r_{i}(\delta_{i} - 1)$$

$$= r_{i}(\delta_{i})$$

$$= r$$

where we put $a' \stackrel{put}{:=} p_i(x_{i,\delta'_i})$, $b' \stackrel{put}{:=} p_i(x_{i,\delta'_i} + 1)$, $c' \stackrel{put}{:=} p_i(x_{i,\delta'_i+2})$, $d' \stackrel{put}{:=} p_i(\delta_i - 1)$ and $e' \stackrel{put}{:=} p_i(\delta_i) = \gamma_i$.

For each $i, j = 1, 2, \dots, m'$, we put

$$\mathbf{N}_{i,j} \stackrel{put}{:=} \begin{pmatrix} \mathbb{A}_{i,1;j,1} & \mathbb{A}_{i,1;j,2} & \cdots & \mathbb{A}_{i,1;j,\delta'_{j}} \\ \mathbb{A}_{i,2;j,1} & \mathbb{A}_{i,2;j,2} & \cdots & \mathbb{A}_{i,2;j,\delta'_{j}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{A}_{i,\delta'_{i};j,1} & \mathbb{A}_{i,\delta'_{i};j,2} & \cdots & \mathbb{A}_{i,\delta'_{i};j,\delta'_{j}} \end{pmatrix} \quad (: \text{ subset of } \mathbb{M}_{i,j})$$

and

$$\tilde{I} \stackrel{put}{:=} \begin{pmatrix} N_{1,1} & N_{1,2} & \cdots & N_{1,m'} \\ N_{2,1} & N_{2,2} & \cdots & N_{2,m'} \\ \vdots & \vdots & \ddots & \vdots \\ N_{m',1} & N_{m',2} & \cdots & N_{m',m'} \end{pmatrix} \quad (: \text{ subset of } \tilde{R}).$$

And \tilde{R} is an artinian ring by usual addition and multiplication of matrix and \tilde{I} is its ideal since $S_{\psi(j),l;j,l}$ is simple both as a left $Q_{\psi(j),l}$ -module and as a right $Q_{j,l}$ -module and, for any $p' \leq p$, $p_j \left(\tau'_{\psi(j)} \left(r'_{\psi(j)} (k) + p' - 1 \right) \right) \leq p_j \left(\tau'_{\psi(j)} \left(r'_{\psi(j)} (k) + p - 1 \right) \right)$ by $(\dagger -1)(i)$. Hence we consider a factor ring

$$R \stackrel{put}{:=} \tilde{R}/\tilde{I}$$
.

From the definition of \tilde{R} , an element \tilde{r} of \tilde{R} is

$$\tilde{r} = \left(\left. \tilde{a}_{i,k;j,l}^{p,q} \right. \right)_{i,j=1,\,k=1,\,l=1,\,p=1,\,q=1}^{m'},$$

where $\tilde{a}_{i,k;j,l}^{p,q}$ $(p=1,2,\ldots,m_{i,k}, q=1,2,\ldots,m_{j,l})$ is a (p,q)-component of $\mathbb{Q}_{i,k;j,l}$ $(k=1,2,\ldots,\delta'_i, l=1,2,\ldots,\delta'_j)$ which is a part of $\mathbb{M}_{i,j}$. Further we put

$$\begin{cases} s \stackrel{put}{:=} r'_i(k) + p - 1 \\ t \stackrel{put}{:=} r'_j(l) + q - 1 \end{cases} \text{ and } \tilde{a}_{i,s;j,t} \stackrel{put}{:=} \tilde{a}_{i,k;j,l}^{p,q}.$$

Then

$$\tilde{r} = \left(\tilde{a}_{i,s;j,t}\right)_{i,j=1,s=1,t=1}^{m'} \tilde{\gamma}_i \tilde{\gamma}_j.$$

So an element r of R is

$$r = \left(a_{i,k;j,l}^{p,q}\right)_{i,j=1,\,k=1,\,l=1,\,p=1,\,q=1}^{m'} = \left(a_{i,s;j,t}\right)_{i,j=1,\,s=1,\,t=1}^{m'},$$

where we put

$$a_{i,k;j,l}^{p,q} = a_{i,s;j,t} \stackrel{put}{:=} \begin{cases} \tilde{a}_{i,s;j,t} + S_{i,k;j,l} & \text{if } i = \psi(j), \ k = l, \ p_j(\tau_i'(s)) < t \\ \tilde{a}_{i,s;j,t} & \text{otherwise.} \end{cases}$$

Furthermore we put

$$A_{i,s;j,t} \stackrel{put}{:=} A_{i \stackrel{p,q}{k \cdot i \cdot l}}.$$

On the other hand, for any $i, j = 1, 2, \dots, m', s = 1, 2, \dots, \gamma_i$ and $t = 1, 2, \dots, \gamma_j$, we take

$$\begin{cases} k_s \in \{1, 2, \dots, \delta'_i\}, & p_s \in \{1, 2, \dots, m_{i, k_s}\} \\ l_t \in \{1, 2, \dots, \delta'_j\}, & q_t \in \{1, 2, \dots, m_{j, l_t}\} \end{cases}$$

to satisfy

$$\begin{cases} s = r'_i(k_s) + p_s - 1 \\ t = r'_j(l_t) + q_t - 1. \end{cases}$$

And, for each i = 1, 2, ..., m' and $s = 1, 2, ..., \gamma_i$, we define an element

$$\tilde{f}_{i,s} = \left(\tilde{a}_{i',s';j',t'}\right)_{i',j'=1,\,s'=1,\,t'=1}^{m'}$$

of \tilde{R} by

$$\tilde{a}_{i',s';j',t'} = \left\{ \begin{array}{ll} 1_{Q_{i,k_s}} & \text{if } i'=j'=i \text{ and } s'=t'=s \\ 0_{Q_{i',k_{s'};j',l_{t'}}} & \text{otherwise,} \end{array} \right.$$

and an element $f_{s,t}$ of R by

$$f_{s,t} \stackrel{put}{:=} \tilde{f}_{s,t} + \tilde{I}$$
.

Then

$$A_{i,s;j,t} = \begin{cases} S_{i,k_s;j,l_t} & \text{if } i = \psi(j), \ k_s = l_t \text{ and } p_j(\tau'_i(s)) < t \\ 0 & \text{otherwise.} \end{cases}$$

Hence, from the definition of R, $f_{i,s}Rf_{j,t}$ is as follows:

- (1) We assume that i = j.
 - (i) Suppose that $\delta'_i \geq 2$. (Then $i = \psi(i)$ by Lemma 18 (2).) In the case $k_s = l_t$,

$$f_{i,s}Rf_{i,t} = \begin{cases} Q_{i,k_s} & \text{if } s \leq t \text{ and } p_i(\tau'_i(s)) \geq t \\ Q_{i,k_s}/S_{i,k_s} & \text{if } s \leq t \text{ and } p_i(\tau'_i(s)) < t \\ J_{i,k_s} & \text{if } s > t \text{ and } p_i(\tau'_i(s)) \geq t \\ J_{i,k_s}/S_{i,k_s} & \text{if } s > t \text{ and } p_i(\tau'_i(s)) < t. \end{cases}$$

In the case $k_s \neq l_t$, $f_{i,s}Rf_{i,t} = Q_{i,k_s;i,l_t}$.

(ii) Suppose that $\delta_i' = 1$. (Then $k_s = l_t = 1$ for any $s, t = 1, 2, \dots, \gamma_i$.)

In the case $i = \psi(i)$, $f_{i,s}Rf_{i,t}$ coincides with one in the case (i) $k_s = l_t$.

In the case $i \neq \psi(i)$,

$$f_{i,s}Rf_{i,t} = \begin{cases} Q_{i,1} & \text{if } s \le t \\ J_{i,1} & \text{if } s > t. \end{cases}$$

- (2) Next we assume that $i \neq j$.
 - (i) Suppose that $\delta'_j \geq 2$. Then $f_{i,s}Rf_{j,t} = Q_{i,k_s;j,l_t}$.
 - (ii) Suppose that $\delta'_i = 1$.

In the case $i = \psi(j)$,

$$f_{i,s}Rf_{j,t} = \begin{cases} Q_{i,k_s;j,l_t} & \text{if } p_j(\tau_i'(s)) \ge t \\ Q_{i,k_s;j,l_t}/S_{i,k_s;j,l_t} & \text{if } p_j(\tau_i'(s)) < t. \end{cases}$$

In the case $i \neq \psi(j)$, (We note that, if $\delta'_i \geq 2$, then $i \neq \psi(j)$ by Lemma 18(2).)

$$f_{i,s}Rf_{j,t} = Q_{i,k_s;j,l_t}.$$

Throughout this paper, we use these terminologies.

For each i, j = 1, 2, ..., m', we consider the following sequences, where we let $p_j(0) = 0$ and $r_i(\delta_i + 1) = \gamma_i + 1$.

$$(L-j-u)$$
 $Rf_{j,p_j(u-1)+1}$, $Rf_{j,p_j(u-1)+2}$, ..., $Rf_{j,p_j(u)}$ $(u=1,2,...,\delta_j)$

$$(L-j)$$
 $Rf_{j,1}, Rf_{j,2}, \ldots, Rf_{j,\gamma_j}$

$$(R-i-u)$$
 $f_{i,r_i(u+1)-1}R$, $f_{i,r_i(u+1)-2}R$, ..., $f_{i,r_i(u)}R$ $(u=1,2,\ldots,\delta_i)$

$$(R-i)$$
 $f_{i,\gamma_i}R, f_{i,\gamma_i-1}R, \ldots, f_{i,1}R$

Theorem 20. Then R is a two-sided Harada ring which satisfy the following:

- (1) $(f_{\psi(j), r_{\psi(j)}(u)}R, Rf_{j, p_j(u)})$ is an i-pair for any $u = 1, 2, ..., \delta_j$.
- (2) (i) (L-j) is a left w-co-H-sequence for any $j = 1, 2, \ldots, m'$.
 - (ii) (R-i) is a right w-co-H-sequence for any i = 1, 2, ..., m'.
- (3) (i) (L-j-u) is a left co-H-sequence for any $j=1,2,\ldots,m'$ and $u=1,2,\ldots,\delta_j$.
 - (ii) (R-i-u) is a right co-H-sequence for any i = 1, 2, ..., m' and $u = 1, 2, ..., \delta_i$.

Example 21. Let Q be an indecomposable basic QF ring such that

- (i) its QF-well indexed set is $\{f'_{1,1}, f'_{1,2}, f'_{1,3}, f'_{2,1}, f'_{3,1}, f'_{4,1}\}$, and
- (ii) $(f'_{1,1}Q, Qf'_{1,1}), (f'_{3,1}Q, Qf'_{2,1}), (f'_{2,1}Q, Qf'_{3,1}), (f'_{4,1}Q, Qf'_{4,1})$ are i-pairs.

The bijection $\psi: \{1,2,3,4\} \rightarrow \{1,2,3,4\}$ is defined by

$$\psi(1) = 1$$
, $\psi(2) = 3$, $\psi(3) = 2$, $\psi(4) = 4$

from (ii) above, and

$$\delta_1' = 3, \quad \delta_2' = \delta_3' = \delta_4' = 1.$$

And for i = 1, 2, 3, 4, we let, for instance, δ_i , γ_i $p_i(u)$ and $r_i(u)$ $(u = 1, 2, ..., \delta_i)$ as follows.

- $\bullet \quad \delta_1 = 5, \quad \delta_2 = \delta_3 = \delta_4 = 2.$
- $\gamma_1 = 9$, $\gamma_2 = \gamma_3 = 2$, $\gamma_4 = 3$.
- $p_1(1) = 2$, $p_1(2) = 3$, $p_1(3) = 5$, $p_1(4) = 6$, $p_1(5) = 9$
- $r_1(1) = 1$, $r_1(2) = 2$, $r_1(3) = 5$, $r_1(4) = 8$, $r_1(5) = 9$
- $r_2(1) = 1$, $r_2(2) = 2$, $p_2(1) = 1$, $p_2(2) = 2$
- $r_3(1) = 1$, $r_3(2) = 2$, $p_3(1) = 1$, $p_3(2) = 2$
- $r_4(1) = 1$, $r_4(2) = 2$, $p_4(1) = 2$, $p_4(2) = 3$

Then $\delta'_{i} \leq \delta_{i} \leq \gamma_{i}$, (†-1) and (†-2) hold. Further, for s = 1, 2, 3 (= δ'_{1}) and t = 1, 2 (= $\delta'_{1} - 1$), we let $r'_{1}(s)$, $p'_{1}(t)$, $x_{1,s}$, $y_{1,t}$ as follows:

- $r'_1(1) = 1$, $r'_1(2) = 5$, $r'_1(3) = 9$
- $p'_1(1) = 3$, $p'_1(2) = 5$
- $x_{1,1} = 1$, $x_{1,2} = 3$, $x_{1,3} = 5$

Then $(\dagger$ -3) also holds. So, by Theorem 20, we can construct a two-sided Harada ring R with i-pairs

$$(f_{1,1}R, Rf_{1,2}), (f_{1,2}R, Rf_{1,3}), (f_{1,5}R, Rf_{1,5}), (f_{1,8}R, Rf_{1,6}), (f_{1,9}R, Rf_{1,9})$$

 $(f_{3,1}R, Rf_{2,1}), (f_{3,2}R, Rf_{2,2}),$
 $(f_{2,1}R, Rf_{3,1}), (f_{2,2}R, Rf_{3,2}),$

$$(f_{4,1}R, Rf_{4,2}), (f_{4,2}R, Rf_{4,3}).$$

And, putting $Q_{i,k} \stackrel{put}{:=} Q_{i,k;i,k}$, $J_{i,k} \stackrel{put}{:=} J(Q_{i,k})$, $Q_{i,k;j,l} \stackrel{put}{:=} f'_{i,k}Qf'_{j,l}$ and $\overline{Q_{i,k;j,l}} \stackrel{put}{:=} Q_{i,k;j,l}/S(Q_{i,k;j,l})$, R is isomorphic to

6. QF ring R(f) induced from two-sided Harada ring R and definitions of X_i, Y_i

Let $i, j \in \{1, 2, \dots, m'\}$ and we assume that $i = \psi(j)$. Then we let

$$(f_{i,r_i(u)}R, Rf_{j,p_j(u)})$$

be an *i*-pair for all $u = 1, 2, \dots, \delta_j$

Lemma 22. Let i, j = 1, 2, ..., m' with $i = \psi(j)$.

- (1) For any $u = 1, 2, ..., \delta_j$ and $v_u = 1, 2, ..., n(q_j(u))$, the following hold.
 - (I) $f_{i,r_i(u)+v_u-1} = e_{q_j(u),v_u}$. So, in particular, $f_{i,r_i(u)} = e_{q_j(u),1}$.

- (II) Suppose that $r_i(1) = 1$. And we put $r_i(\delta_j + 1) = \gamma_i + 1$. Then the following also hold.
 - (i) $q_i(u) = \alpha_i + u 1$.
 - (ii) $n(q_i(u)) = r_i(u+1) r_i(u)$.
 - (iii) The set of all right co-H-sequeces in (R-i) is

$$\{ e_{q_{j}(u), n(q_{j}(u))} R, e_{q_{j}(u), n(q_{j}(u))-1} R, \dots, e_{q_{j}(u), 1} R \}_{u=1}^{\delta_{j}}$$

$$= \{ f_{i, r_{i}(u+1)-1} R, f_{i, r_{i}(u+1)-2} R, \dots, f_{i, r_{i}(u)} R \}_{u=1}^{\delta_{j}}$$

$$= \{ f_{i, r_{i}(u)+n(\alpha_{i}+u-1)-1} R, f_{i, r_{i}(u)+n(\alpha_{i}+u-1)-2} R, f_{i, r_{i}(u)+n(\alpha_{i}+u-1)-3} R, \dots, f_{i, r_{i}(u)} R \}_{u=1}^{\delta_{j}} .$$

$$(iv) 1 = r_i(1) < r_i(2) < r_i(3) < \cdots < r_i(\delta_j)$$

(v)
$$r_i(u) = \begin{cases} 1 & \text{if } u = 1 \\ \sum_{s=1}^{u-1} n(\alpha_i + s - 1) + 1 & \text{if } u = 2, 3, \dots, \delta_j. \end{cases}$$

(2) Suppose that R is not a Nakayama ring. Then $r_i(1) = 1$.

Let i, j = 1, 2, ..., m', $s = 1, 2, ..., \gamma_i$ and $t = 1, 2, ..., \gamma_j$ and suppose that $r_i(1) = 1$. Then we put

$$\tau_{j}^{l}(t) \stackrel{put}{:=} \min\{u \in \{1, 2, \dots, \delta_{j}\} \mid t \leq p_{j}(u)\}
\tau_{i}^{r}(s) \stackrel{put}{:=} \max\{u \in \{1, 2, \dots, \delta_{\psi^{-1}(i)} \mid r_{i}(u) \leq s\}$$

We note that

$$E({}_RRf_{j,t}) \cong {}_RRf_{j,p_j(\tau_i^l(t))}$$
 and $E(f_{i,s}R_R) \cong f_{i,r_i(\tau_i^r(s))}R_R$

and

$$p_i\left(\tau_i^l(t)-1\right) < t \le p_i\left(\tau_i^l(t)\right)$$
 and $r_i\left(\tau_i^r(s)\right) \le s < r_i\left(\tau_i^r(s)+1\right)$,

where we let $p_{i}(0) = 0$ and $r_{i}(\delta_{\psi^{-1}(i)} + 1) = \gamma_{i} + 1$.

From here throughout this section, we suppose that $r_i(1) = 1$ holds for any i = 1, 2, ..., m'. (For instance, when R is not a Nakayama ring by Lemma 22 (2).)

For each $i = 1, 2, \dots, m'$, we put

$$X_{i} \stackrel{put}{:=} \left\{ \begin{array}{l} \{1\} \cup \{u \in \{2, 3, \dots, \delta_{i}\} \mid p_{i}(u-1) < r_{i}(u) \leq p_{i}(u) \} & \text{if } \psi(i) = i \\ \{1\} & \text{if } \psi(i) \neq i . \end{array} \right.$$

Further we put

$$f_i \stackrel{put}{:=} \left\{ \begin{array}{ll} \sum_{u \in X_i} f_{i,r_i(u)} & \text{if } \psi(i) = i \\ \\ f_{i,1} & \text{if } \psi(i) \neq i \,, \end{array} \right.$$

$$f \stackrel{put}{:=} \sum_{i=1}^{m'} f_i$$
.

Moreover, in the case $\psi(i) = i$, we put

$$\{r_i(u)\}_{u\in X_i} = \{r'_i(1), r'_i(2), \dots, r'_i(\delta'_i)\},\$$

where we let $1 = r'_i(1) < r'_i(2) < \cdots < r'_i(\delta'_i)$. (So $f_i = \sum_{k=1}^{\delta'_i} f_{i, r'_i(k)}$.) And, in the case $\psi(i) \neq i$, we put

$$r'_i(1) \stackrel{put}{:=} 1, \quad \delta'_i \stackrel{put}{:=} 1.$$

Theorem 23. Then, for R(f) (= fRf), the following hold.

- (1) $\{f_{i,r'_{i}(k)}\}_{i=1,k=1}^{m'}$ is a complete set of orthogonal primitive idempotents of R(f) such that, for each $i=1,2,\ldots,m'$, the following (i),(ii) hold.
 - (i) $(f_{\psi(i),1}R(f), R(f)f_{i,1})$ is an i-pair.
 - (ii) Suppose that $\delta'_i \geq 2$. Then $\psi(i) = i$ and $(f_{i,r'_i(k)}R(f), R(f)f_{i,r'_i(k)})$ is an i-pair for any $k = 1, 2, \ldots, \delta'_i$.
- (2) R(f) is an indecomposable basic QF ring.

For each $i \in \{1, 2, \dots, m'\}$, the sequences

 $R(f)f_{i,r'_i(1)}, R(f)f_{i,r'_i(2)}, \ldots, R(f)f_{i,r'_i(\delta'_i)}$ and $f_{i,r'_i(\delta'_i)}R(f), f_{i,r'_i(\delta'_i-1)}R(f), \ldots, f_{i,r'_i(1)}R(f)$ of left and right R(f)-modules are denoted by

$$(L-i)_{R(f)}$$
 and $(R-i)_{R(f)}$,

respectively.

Theorem 24. For any $i \in \{1, 2, ..., m'\}$, the following hold.

- (1) (i) $(L-i)_{R(f)}$ is a left w-co-H-sequence.
 - (ii) (L-i) is cyclic if and only if $(L-i)_{R(f)}$ is so.
- (2) (i) $(R-i)_{R(f)}$ is a right w-co-H-sequence.
 - (ii) (R-i) is cyclic if and only if $(R-i)_{R(f)}$ is so.

We put $f'_{i,k} \stackrel{put}{:=} f_{i,r'_i(k)}$ for any i = 1, 2, ..., m' and $k = 1, 2, ..., \delta'_i$. Then R(f) is an indecomposable basic QF ring with a complet set $\{f'_{i,k}\}_{i=1,k=1}^{m'}$ of orthogonal primitive idempotents by Theorem 23 (2). Next we further show the following.

Corollary 25. $\{f'_{i,k}\}_{i=1,k=1}^{m'}$ is a left QF-well-indexed set of R(f).

For each $i = 1, 2, \dots, m'$, we put

$$Y_{i} \stackrel{put}{:=} \left\{ \begin{array}{l} \left\{ u \in \{1, 2, \dots, \delta_{i} - 1\} \mid r_{i}(u) \leq p_{i}(u) < r_{i}(u + 1) \right\} & (\text{if } \psi(i) = i) \\ \phi & (\text{if } \psi(i) \neq i) \end{array} \right.$$

And, in the case $\psi(i) = i$, we let

$$\{p_i(u)\}_{u \in Y_i} = \{p'_i(1), p'_i(2), \dots, p'_i(\delta''_i)\},\$$

with $p'_i(1) < p'_i(2) < \cdots < p'_i(\delta''_i)$.

We note that, from the definition of $p_i(1), p_i(1), \ldots, p_i(\delta_i)$

$$p_i(1) < p_i(2) < \dots < p_i(\delta_i)$$

holds. Further, if $r_i(1) = 1$, then

$$1 = r_i(1) < r_i(2) < \cdots < r_i(\delta_i)$$

also holds by [2, Theorem 3.3(1)].

We let i = 1, 2, ..., m'. In the case $\psi(i) \neq i$ we put

$$x_{i,1} \stackrel{put}{:=} 1$$

And in the case $\psi(i) = i$ we put

- $X_i \stackrel{put}{:=} \{ x_{i,1}, x_{i,2}, \dots, x_{i,\delta'_i} \}$, where $x_{i,1} < x_{i,2} < \dots < x_{i,\delta'_i}$. (So $x_{i,1} = 1$.)
- $Y_i \stackrel{put}{:=} \{ y_{i,1}, y_{i,2}, \dots, y_{i,\delta_i''} \}$, where $y_{i,1} < y_{i,2} < \dots < y_{i,\delta_i''}$.

Then it is clear that the following hold from the definitions of X_i and Y_i .

- (*1) $p_i(x_{i,s}-1) < r_i(x_{i,s}) \le p_i(x_{i,s})$ for any $s = 2, 3, \dots, \delta'_i$.
- (*2) $r_i(y_{i,t}) \le p_i(y_{i,t}) < r_i(y_{i,t}+1)$ for any $t = 1, 2, ..., \delta_i''$, where we let $r_i(\delta_i + 1) = \gamma_i$.

Theorem 26. We let $i \in \{1, 2, ..., m'\}$ with $\psi(i) = i$. Then the following hold.

- (1) Either $\delta_i'' = \delta_i' 1$ or $\delta_i'' = \delta_i'$ holds
- (2) (i) Suppose that $\delta_i'' = \delta_i' 1$, then $1 = x_{i,1} \le y_{i,1} < x_{i,2} \le y_{i,2} < \dots < x_{i,\delta_i'-1} \le y_{i,\delta_i'-1} < x_{i,\delta_i'}.$
 - (ii) Suppose that $\delta_i'' = \delta_i'$, then $1 = x_{i,1} \le y_{i,1} < x_{i,2} \le y_{i,2} < \dots < x_{i,\delta_i'-1} \le y_{i,\delta_i'-1} < x_{i,\delta_i'} \le y_{i,\delta_i'}.$

Theorem 27. Suppose that (L-i) is not cyclic. Then $\delta_i'' = \delta_i' - 1$ holds.

7. Matrix representation

Throughout this section, we assume that R is not Nakayama ring. Then we note that $\delta_i'' = \delta_i' - 1$ by Theorem 12 and Proposition 27.

Lemma 28. We let i = 1, 2, ..., m'.

(1) The following $(\dagger -1)$ holds.

(†-1) (i)
$$1 \le p_i(1) < p_i(2) < \dots < p_i(\delta_i) = \gamma_i$$

(ii) $1 = r_i(1) < r_i(2) < \dots < r_i(\delta_i) \le \gamma_i$ (So $r_i(x_{i,1}) = r'_i(1) = 1$.)

- (2) If $\delta'_i = 1$ and $i = \psi(i)$, then the following condition (†-2) holds.
 - $(\dagger -2)$ $r_i(u) \leq p_i(u-1)$ for all $u = 2, 3, ..., \gamma_i$.
- (3) If $\delta'_i \geq 2$ (we note that, then $i = \psi(i)$ from Theorem 23 (1)(ii)), the following $(\dagger -3)$ and (\dagger) hold.

$$\begin{array}{lll} (\dagger \text{-}3) & (i) & 1 = x_{i,1} \leq y_{i,1} < x_{i,2} \leq y_{i,2} < \cdots < x_{i,\delta_i'-1} \leq y_{i,\delta_i'-1} < x_{i,\delta_i'} \\ (ii) & r_i(\ x_{i,s}\) = r_i'(\ s\) & (s = 2,3,\ldots,\delta_i') \\ (iii) & p_i(\ y_{i,t}\) = p_i'(\ t\) & (t = 1,2,\ldots,\delta_i'-1) \\ (iv) & p_i(\ x_{i,s}-1\) < r_i(\ x_{i,s}\) \leq p_i(\ x_{i,s}\) & (s = 2,3,\ldots,\delta_i') \\ (v) & r_i(\ y_{i,t}\) \leq p_i(\ y_{i,t}\) < r_i(\ y_{i,t}+1\) & (t = 1,2,\ldots,\delta_i'-1) \\ (vi) & r_i(\ u+1\) \leq p_i(\ u\) & \begin{pmatrix} x_{i,t} \leq u < y_{i,t}, \\ where & t = 1,2,\ldots,\delta_i'-1 \\ \end{pmatrix} \\ (vii) & p_i(\ u\) < r_i(\ u\) & \begin{pmatrix} y_{i,t} < u < x_{i,t+1}, \\ where & t = 1,2,\ldots,\delta_i'-1 \end{pmatrix} \\ & \begin{pmatrix} y_{i,t} < u < x_{i,t+1}, \\ where & t = 1,2,\ldots,\delta_i'-1 \end{pmatrix} \\ \end{array}$$

(†)
$$1 = r_i'(1) \le p_i'(1) < r_i'(2) \le p_i'(2) < r_i'(3) \le p_i'(3) < \cdots < r_i'(\delta_i' - 1) \le p_i'(\delta_i' - 1) < r_i'(\delta_i')$$

For each $i = 1, 2, \dots, m'$ and $k = 1, 2, \dots, \delta'_i$, we put

$$m_{i,k} := r'_i(k+1) - r'_i(k),$$

where we let $r'_i(\delta'_i + 1) = \gamma_i + 1$.

For an indecomposable basic two-sided Harada ring R, by Theorem 23 (2) and Corollary 25, we see that R(f) = fRf is an indecomposable QF ring with a left QF-well-indexed set $\{f'_{i,k}\}_{i=1,k=1}^{m'}$, where we put $f'_{i,k} \stackrel{put}{:=} f_{i,r'_{i}(k)}$. Further we obtain a bijection

$$\psi: \{1, 2, \dots, m'\} \to \{1, 2, \dots, m'\}$$

and, for each $i = 1, 2, \ldots, m'$,

$$p_i(u), r_i(u) \quad (u = 1, 2, ..., \delta_i)$$

 $r'_i(s), x_{i,s} \quad (s = 1, 2, ..., \delta'_i)$
 $p'_i(t), y_{i,t} \quad (t = 1, 2, ..., \delta'_i - 1)$

to satisfy the conditions just after Lemma 18 by Lemma 28. So, by §5, we have a two-sided Harada ring as follows:

For each $i, j = 1, 2, ..., m', k = 1, 2, ..., \delta'_i$ and $l = 1, 2, ..., \delta'_j$, we put

$$Q_{i,k;j,l} \stackrel{put}{:=} f'_{i,k}Q(f)f'_{j,l} \ (= f'_{i,k}Rf'_{j,l}) \ .$$

And we put

$$Q_{i,k} \stackrel{put}{:=} Q_{i,k;i,k}, \quad J_{i,k} \stackrel{put}{:=} J(Q_{i,k}), \quad S_{\psi(j),l;j,l} \stackrel{put}{:=} S(f'_{\psi(j),l}Qf'_{j,l}).$$

$$\mathbb{Q}_{i,k;j,l} \stackrel{put}{:=} \left\{
\begin{array}{c}
Q_{i,k} & \cdots & \cdots & Q_{i,k} \\
J_{i,k} & \cdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
J_{i,k} & \cdots & J_{i,k} & Q_{i,k}
\end{array} \right) \quad \text{if} \quad (i,k) = (j,l) \\
\vdots & \vdots & \vdots \\
Q_{i,k;j,l} & \cdots & Q_{i,k;j,l} \\
\vdots & \vdots & \vdots \\
Q_{i,k;j,l} & \cdots & Q_{i,k;j,l}
\end{array} \quad \text{if} \quad (i,k) \neq (j,l)$$

$$\mathbb{M}_{i,j} \stackrel{put}{:=} \begin{pmatrix} \mathbb{Q}_{i,1;j,1} & \mathbb{Q}_{i,1;j,2} & \cdots & \mathbb{Q}_{i,1;j,\delta'_{j}} \\ \mathbb{Q}_{i,2;j,1} & \mathbb{Q}_{i,2;j,2} & \cdots & \mathbb{Q}_{i,2;j,\delta'_{j}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{Q}_{i,\delta'_{i};j,1} & \mathbb{Q}_{i,\delta'_{i};j,2} & \cdots & \mathbb{Q}_{i,\delta'_{i};j,\delta'_{j}} \end{pmatrix} : (\gamma_{i}, \gamma_{j})\text{-matrix},$$

(then we note that the (p,q)-component of $\mathbb{Q}_{i,k;j,l}$ is the $(r'_i(k) + p - 1, r'_j(l) + q - 1)$ -component of $\mathbb{M}_{i,j}$) and

$$\tilde{R} \stackrel{put}{:=} \begin{pmatrix} \mathbb{M}_{1,1} & \mathbb{M}_{1,2} & \cdots & \mathbb{M}_{1,m'} \\ \mathbb{M}_{2,1} & \mathbb{M}_{2,2} & \cdots & \mathbb{M}_{2,m'} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{M}_{m',1} & \mathbb{M}_{m',2} & \cdots & \mathbb{M}_{m',m'} \end{pmatrix}.$$

Further, for each $p = 1, 2, ..., m_{i,k}$ and $q = 1, 2, ..., m_{j,l}$, we put

$$A_{i,k;j,l} \stackrel{put}{:=} \left\{ \begin{array}{ll} S_{i,k;j,l} & \text{if } i = \psi(j), \ k = l \text{ and} \\ r_j'(l) \leq p_j \left(\tau_{\psi(j)}^r \left(r_{\psi(j)}'(k) + p - 1\right)\right) < r_j'(l) + q - 1 \\ 0 & \text{otherwise} \end{array} \right.$$

and

$$\mathbb{A}_{i,k;j,l} \stackrel{put}{:=} \begin{pmatrix} A_{i,k;j,l}^{1,1} & A_{i,k;j,l}^{1,2} & \cdots & A_{i,k;j,l}^{1,m_{j,l}} \\ A_{i,k;j,l}^{2,1} & A_{i,k;j,l}^{2,2} & \cdots & A_{i,k;j,l}^{2,m_{j,l}} \\ \vdots & \vdots & \ddots & \vdots \\ A_{i,k;j,l}^{m_{i,k},1} & A_{i,k;j,l}^{m_{i,k},2} & \cdots & A_{i,k;j,l}^{m_{i,k},m_{j,l}} \end{pmatrix}$$
 (: subset of $\mathbb{Q}_{i,k;j,l}$).

For each $i, j = 1, 2, \dots, m'$, we put

$$\mathbf{N}_{i,j} \stackrel{put}{:=} \begin{pmatrix} \mathbb{A}_{i,1;j,1} & \mathbb{A}_{i,1;j,2} & \cdots & \mathbb{A}_{i,1;j,\delta'_{j}} \\ \mathbb{A}_{i,2;j,1} & \mathbb{A}_{i,2;j,2} & \cdots & \mathbb{A}_{i,2;j,\delta'_{j}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{A}_{i,\delta'_{i};j,1} & \mathbb{A}_{i,\delta'_{i};j,2} & \cdots & \mathbb{A}_{i,\delta'_{i};j,\delta'_{j}} \end{pmatrix} \quad (: \text{ subset of } \mathbb{M}_{i,j})$$

and

d
$$\tilde{I} \stackrel{put}{:=} \begin{pmatrix} N_{1,1} & N_{1,2} & \cdots & N_{1,m'} \\ N_{2,1} & N_{2,2} & \cdots & N_{2,m'} \\ \vdots & \vdots & \ddots & \vdots \\ N_{m',1} & N_{m',2} & \cdots & N_{m',m'} \end{pmatrix} \quad (: \text{ subset of } \tilde{R}).$$

Then \tilde{I} is an ideal of \tilde{R} and the factor ring

$$R' \stackrel{put}{:=} \tilde{R}/\tilde{I}$$

is a two-sided Harada ring by [3, Theorem 3.1].

Theorem 29. Then

$$R \cong R'$$
 as rings.

Funding

This work was supported by JSPS KAKENHI Grant Number JP17K05202.

References

- [1] Y.Baba, On H-epimorphism and co-H-sequences in two-sided Harada rings, Math. J. Okayama Univ.63 (2021), 183-199.
- [2] Y.Baba, On weak co-H-sequences in two-sided Harada rings, preprint
- [3] Y.Baba, On matrix representation of two-sided Harada rings, Preprint
- [4] Y.Baba, On two-sided Harada rings constructed from QF rings, "Ring Theory 2019" Proceeding of the Eighth China-Japan-Korea International Symposium on Ring Theory, World Scientific (2021), 151-167.
- [5] Y. Baba and K. Oshiro, On a theorem of Fuller, J. Algebra 154 (1993), no.1, 86-94.
- Y. Baba, Injectivity of quasi-projective modules, projectivity of quasi-injective modules, and projective covers of injective modules, J. Algebra 155 (1993), 415-434
- [7] Y. Baba and K. Iwase, On quasi-Harada rings, J. Algebra 185 (1996), 544–570.
- [8] Y. Baba, On quasi-projective modules and quasi-injective modules, Scientae Mathematicae Japoniae **63** (1), (2005), 589-196.
- [9] Y. Baba and K. Oshiro, "Classical artinian rings and related topics", World Scientific (2009).
- [10] K. R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [11] M. Harada, Non-small modules and non-cosmall modules, in "Ring Theory", Proceedings of 1978 Antwerp Conference (F. Van Oystaeyen, Ed.) Dekker, New York (1979), 669–690.
- [12] M. Harada, "Factor categories with applications to direct decomposition of modules", Lecture Note in Pure and Appl. Math., Vol. 88, Dekker, New York, (1983).
- [13] M. Morimoto and T. Sumioka, Generalizations of theorems of Fuller, Osaka J. Math. 34 (1997), 689-701.
- [14] M. Hoshino and T. Sumioka, Injective pairs in perfect rings, Osaka J. Math. 35 (1998), 501–508.
- [15] M. Hoshino and T. Sumioka, Colocal pairs in perfect rings, Osaka J. Math. 36 (1999), no.3, 587-603.
- [16] K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310–338.

- [17] K. Oshiro, On Harada rings I, Math. J. Okayama Univ. 31 (1989), 161–178.
- [18] K. Oshiro, On Harada rings II, Math. J. Okayama Univ. 31 (1989), 179–188.
- [19] K. Oshiro, On Harada rings III, Math. J. Okayama Univ. 32 (1990), 111–118.

DEPARTMENT OF MATHEMATICS EDUCATION OSAKA KYOIKU UNIVERSITY OSAKA, 582-8582 JAPAN

 $Email\ address: {\tt ybaba@cc.osaka-kyoiku.ac.jp}$