INTERVALS OF s-TORSION PAIRS IN EXTRIANGULATED CATEGORIES WITH NEGATIVE FIRST EXTENSIONS

TAKAHIDE ADACHI, HARUHISA ENOMOTO AND MAYU TSUKAMOTO

ABSTRACT. In a triangulated category, for a given t-structure, the HRS-tilting induces an isomorphism between the poset of certain t-structures and the poset of torsion pairs in the heart of the t-structure. On the other hand, Asai–Pfeifer and Tattar established a poset isomorphism for torsion pairs in an abelian category. In this article, as a common generalization of t-structures and torsion pairs, we introduce the notion of s-torsion pairs in an extriangulated category with a negative first extension. Moreover, we provide a poset isomorphism for s-torsion pairs which unifies two poset isomorphisms above.

Throughout this article, we assume that every category is skeletally small, that is, the isomorphism classes of objects form a set. In addition, all subcategories are assumed to be full and closed under isomorphisms.

First we give the definition of torsion pairs in an exact category.

Definition 1. Let \mathcal{E} be an exact category. A pair $(\mathcal{T}, \mathcal{F})$ of subcategories of \mathcal{E} is called a *torsion pair* in \mathcal{E} if it satisfies the following two conditions.

- For each $E \in \mathcal{E}$, there exists a conflation $0 \to T \to E \to F \to 0$ such that $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- $\mathcal{E}(\mathcal{T},\mathcal{F})=0.$

Let $\operatorname{tors} \mathcal{E}$ denote the set of torsion pairs in \mathcal{E} . We write $(\mathcal{T}_1, \mathcal{F}_1) \leq (\mathcal{T}_2, \mathcal{F}_2)$ if $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Then $(\operatorname{tors} \mathcal{E}, \leq)$ clearly becomes a poset. Let $t_1 := (\mathcal{T}_1, \mathcal{F}_1)$ and $t_2 := (\mathcal{T}_2, \mathcal{F}_2)$ be torsion pairs in \mathcal{E} with $t_1 \leq t_2$. Let $\operatorname{tors}[t_1, t_2]$ denote the *interval* in the poset of torsion pairs in \mathcal{E} consisting of $t := (\mathcal{T}, \mathcal{F})$ with $t_1 \leq t \leq t_2$. We call the subcategory $\mathcal{H}_{[t_1, t_2]} := \mathcal{T}_2 \cap \mathcal{F}_1$ the *heart* of $\operatorname{tors}[t_1, t_2]$. Since the heart $\mathcal{H}_{[t_1, t_2]}$ is an extension-closed subcategory, it becomes an exact category.

The following isomorphism induces fruitful results for the poset structure of torsion pairs in an abelian category.

Theorem 2 ([2, 7]). Let \mathcal{A} be an abelian category. For i = 1, 2, let $t_i := (\mathcal{T}_i, \mathcal{F}_i) \in \text{tors } \mathcal{A}$ with $t_1 \leq t_2$. Then there exists a poset isomorphism between $\text{tors}[t_1, t_2]$ and $\text{tors } \mathcal{H}_{[t_1, t_2]}$.

This isomorphism originally appeared in the context of τ -tilting reduction in [5]. Next we recall the definition of *t*-structures on a triangulated category.

The detailed version of this paper will be submitted for publication elsewhere.

Definition 3. Let \mathcal{D} be a triangulated category with a shift functor Σ . A pair $(\mathcal{U}, \mathcal{V})$ of subcategories of \mathcal{D} is called a *t*-structure on \mathcal{D} if it satisfies the following three conditions.

- For each $D \in \mathcal{D}$, there exists a triangle $U \to D \to V \to \Sigma U$ such that $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- $\mathcal{D}(\mathcal{U},\mathcal{V})=0.$
- \mathcal{U} is closed under a positive shift, that is, $\Sigma \mathcal{U} \subseteq \mathcal{U}$.

It is well known that the heart $\mathcal{U} \cap \Sigma \mathcal{V}$ of a *t*-structure $(\mathcal{U}, \mathcal{V})$ is always an abelian category. Let t -str \mathcal{D} denote the poset of *t*-structures on \mathcal{D} , where we define $(\mathcal{U}_1, \mathcal{V}_1) \leq (\mathcal{U}_2, \mathcal{V}_2)$ if $\mathcal{U}_1 \subseteq \mathcal{U}_2$. For *t*-structures $(\mathcal{U}_1, \mathcal{V}_1) \leq (\mathcal{U}_2, \mathcal{V}_2)$ on \mathcal{D} , let

$$\mathsf{t}\operatorname{\mathsf{-str}}[(\mathcal{U}_1,\mathcal{V}_1),(\mathcal{U}_2,\mathcal{V}_2)] := \{(\mathcal{U},\mathcal{V}) \in \mathsf{t}\operatorname{\mathsf{-str}} \mathcal{D} \mid \mathcal{U}_1 \subseteq \mathcal{U} \subseteq \mathcal{U}_2\}.$$

Happel, Reiten and Smalø ([4]) provided a construction of new t-structures through torsion pairs in the heart of a given t-structure. This construction induces a close connection between t-structures and torsion pairs as follows.

Theorem 4 ([4, 8]). Let \mathcal{D} be a triangulated category with a shift functor Σ . Let $(\mathcal{U}, \mathcal{V}) \in$ t-str \mathcal{D} and $\mathcal{H} := \mathcal{U} \cap \Sigma \mathcal{V}$ the heart of $(\mathcal{U}, \mathcal{V})$. Then there exists a poset isomorphism between t-str[$(\Sigma \mathcal{U}, \Sigma \mathcal{V}), (\mathcal{U}, \mathcal{V})$] and tors \mathcal{H} .

The aim of this article is to show that two poset isomorphisms in Theorem 2 and Theorem 4 are consequences of a more general poset isomorphism in an extriangulated category, which is a simultaneous generalization of triangulated categories and exact categories.

Let $\mathcal{C} := (\mathcal{C}, \mathbb{E}, \mathfrak{s})$ denote an extriangulated category. For definition and terminologies, see [6]. A complex $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{C} is called an \mathfrak{s} -conflation if there exists $\delta \in \mathbb{E}(C, A)$ such that $\mathfrak{s}(\delta) = [A \xrightarrow{f} B \xrightarrow{g} C]$, where $[A \xrightarrow{f} B \xrightarrow{g} C]$ is an equivalence class of a complex $A \xrightarrow{f} B \xrightarrow{g} C$. We write the \mathfrak{s} -conflation as $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{-\delta}$. For two subcategories \mathcal{X} and \mathcal{Y} of \mathcal{C} , let $\mathcal{X} * \mathcal{Y}$ denote the subcategory of \mathcal{C} consisting of $M \in \mathcal{C}$ which admits an \mathfrak{s} -conflation $X \to M \to Y \xrightarrow{--}$ with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. A subcategory \mathcal{C}' of \mathcal{C} is said to be *extension-closed* if $\mathcal{C}' * \mathcal{C}' \subseteq \mathcal{C}'$.

We introduce a negative first extension structure on an extriangulated category.

Definition 5 ([1, Definition 2.3]). Let C be an extriangulated category. A *negative first* extension structure on C consists of the following data:

(NE1) $\mathbb{E}^{-1} : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{A}b$ is an additive bifunctor.

(NE2) For each $\delta \in \mathbb{E}(C, A)$, there exist two natural transformations

$$\delta_{\sharp}^{-1} : \mathbb{E}^{-1}(-, C) \to \mathcal{C}(-, A),$$

$$\delta_{-1}^{\sharp} : \mathbb{E}^{-1}(A, -) \to \mathcal{C}(C, -)$$

such that for each \mathfrak{s} -conflation $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\delta}$ and each $W \in \mathcal{C}$, two sequences $\mathbb{E}^{-1}(W,A) \xrightarrow{\mathbb{E}^{-1}(W,f)} \mathbb{E}^{-1}(W,B) \xrightarrow{\mathbb{E}^{-1}(W,g)} \mathbb{E}^{-1}(W,C) \xrightarrow{(\delta_{\sharp}^{-1})_{W}} \mathcal{C}(W,A) \xrightarrow{\mathcal{C}(W,f)} \mathcal{C}(W,B),$ $\mathbb{E}^{-1}(C,W) \xrightarrow{\mathbb{E}^{-1}(g,W)} \mathbb{E}^{-1}(B,W) \xrightarrow{\mathbb{E}^{-1}(f,W)} \mathbb{E}^{-1}(A,W) \xrightarrow{(\delta_{\sharp}^{\sharp})_{W}} \mathcal{C}(C,W) \xrightarrow{\mathcal{C}(g,W)} \mathcal{C}(B,W)$ are exact. Then we call $\mathcal{C} := (\mathcal{C}, \mathbb{E}, \mathfrak{s}, \mathbb{E}^{-1})$ an extriangulated category with a negative first extension.

Note that a negative first extension is a special case of partial δ -functors in the sense of [3, Definition 4.7]. Triangulated categories and exact categories naturally admit negative first extension structures as follows.

Example 6. (1) A triangulated category \mathcal{D} becomes an extriangulated category with a negative first extension by the following data.

- $\mathbb{E}(C, A) := \mathcal{D}(C, \Sigma A)$ for all $A, C \in \mathcal{D}$, where Σ is a shift functor of \mathcal{D} .
- For $\delta \in \mathbb{E}(C, A)$, we take a triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\delta} \Sigma A$. Then we define $\mathfrak{s}(\delta) := [A \xrightarrow{f} B \xrightarrow{g} C].$
- $\mathbb{E}^{-1}(C, A) := \mathcal{D}(C, \Sigma^{-1}A)$ for all $A, C \in \mathcal{D}$.
- For an \mathfrak{s} -conflation $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\delta}$, we define two natural transformations δ_{\sharp}^{-1} and δ_{-1}^{\sharp} as follows: for $W \in \mathcal{D}$,

$$(\delta_{\sharp}^{-1})_{W} : \mathbb{E}^{-1}(W, C) = \mathcal{D}(W, \Sigma^{-1}C) \xrightarrow{\mathcal{D}(W, \Sigma^{-1}\delta)} \mathcal{D}(W, A), (\delta_{-1}^{\sharp})_{W} : \mathbb{E}^{-1}(A, W) = \mathcal{D}(A, \Sigma^{-1}W) \cong \mathcal{D}(\Sigma A, W) \xrightarrow{\mathcal{D}(\delta, W)} \mathcal{D}(C, W).$$

- (2) An exact category \mathcal{E} becomes an extriangulated category with a negative first extension by the following data.
 - $\mathbb{E}(C, A)$ is the set of isomorphism classes of conflations in \mathcal{E} of the form $0 \to A \to B \to C \to 0$ for $A, C \in \mathcal{E}$.
 - \mathfrak{s} is the identity.
 - $\mathbb{E}^{-1}(C, A) = 0$ for all $A, C \in \mathcal{E}$.
 - For each $W \in \mathcal{E}$, the maps $(\delta_{\sharp}^{-1})_W$ and $(\delta_{-1}^{\sharp})_W$ are zero.
- (3) Let \mathcal{C} be an extriangulated category with a negative first extension and let \mathcal{C}' be an extension-closed subcategory of \mathcal{C} . Then by restricting the extriangulated structure and the negative first extension structure to \mathcal{C}' , we can regard \mathcal{C}' as an extriangulated category with a negative first extension.

The following example shows that negative first extension structures are not uniquely determined by given extriangulated categories.

Example 7. Let \mathbf{k} be an algebraically closed field. Consider the stable category $\mathcal{D} := \underline{\text{mod}} \Lambda$ of a self-injective Nakayama \mathbf{k} -algebra Λ with three simple modules and the Loewy length three. Then the Auslander-Reiten quiver of \mathcal{D} is as follows, where two 1's are identified.

Since the subcategory $\mathcal{A} := \mathsf{add}\{1, \frac{2}{1}, 2\}$ is clearly equivalent to the category of finitedimensional representations of an A_2 quiver, it is abelian. Thus \mathcal{A} becomes an extriangulated category with a negative first extension $\mathbb{E}_1^{-1} := 0$ by Example 6(2). On the other hand, since \mathcal{A} is extension-closed in \mathcal{D} , it becomes an induced extriangulated category with a negative first extension $\mathbb{E}_2^{-1}(-,-) := \mathcal{D}(-,\Sigma^{-1}-)$ by Example 6(3). We can check that extriangulated category structures coincide with each other, but negative first extension structures do not. Indeed, $\mathbb{E}_2^{-1}(2,1) = \mathcal{D}(2,\Sigma^{-1}(1)) = \mathcal{D}(2,\frac{3}{2}) \neq 0$ holds.

In the following, let $\mathcal{C} := (\mathcal{C}, \mathbb{E}, \mathfrak{s}, \mathbb{E}^{-1})$ be an extriangulated category with a negative first extension. We introduce the notion of s-torsion pairs in \mathcal{C} .

Definition 8. Let C be an extriangulated category with a negative first extension. We call a pair $(\mathcal{T}, \mathcal{F})$ of subcategories of C an *s*-torsion pair in C if it satisfies the following three conditions.

(STP1) C = T * F. (STP2) C(T, F) = 0. (STP3) $\mathbb{E}^{-1}(T, F) = 0$.

Let $\operatorname{tors} \mathcal{C}$ denote the poset of s-torsion pairs in \mathcal{C} , where we define $(\mathcal{T}_1, \mathcal{F}_1) \leq (\mathcal{T}_2, \mathcal{F}_2)$ if $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

The following examples show that s-torsion pairs are a common generalization of t-structures on a triangulated category and torsion pairs in an exact category.

- **Example 9.** (1) Let \mathcal{D} be a triangulated category. By regarding \mathcal{D} as the extriangulated category with the negative first extension (see Example 6(1)), *t*-structures on \mathcal{D} are exactly *s*-torsion pairs in \mathcal{D} , that is, **t**-str $\mathcal{D} = \operatorname{stors} \mathcal{D}$. Indeed, let $(\mathcal{U}, \mathcal{V})$ be a pair of subcategories of \mathcal{D} satisfying the conditions (STP1) and (STP2). By the negative first extension structure on \mathcal{D} , we have $\mathbb{E}^{-1}(\mathcal{U}, \mathcal{V}) = \mathcal{D}(\mathcal{U}, \Sigma^{-1}\mathcal{V}) \cong \mathcal{D}(\Sigma\mathcal{U}, \mathcal{V})$. Hence $\mathbb{E}^{-1}(\mathcal{U}, \mathcal{V}) = 0$ if and only if $\Sigma\mathcal{U} \subseteq \{X \in \mathcal{D} \mid \mathcal{D}(X, \mathcal{V}) = 0\} = \mathcal{U}$.
 - (2) Let \mathcal{E} be an exact category. By regarding \mathcal{E} as the extriangulated category with the negative first extension (see Example 6(2)), it follows from $\mathbb{E}^{-1} = 0$ that torsion pairs in the exact category \mathcal{E} are exactly *s*-torsion pairs in \mathcal{E} , that is, we have tors $\mathcal{E} = \text{stors } \mathcal{E}$.

Taking negative first extension structures different from Example 6(2), we give an example which satisfies (STP1) and (STP2) but does not satisfy (STP3).

Example 10. Let Λ and \mathcal{A} be in Example 7. Due to Example 7, we regard \mathcal{A} as the extriangulated category with the negative first extension \mathbb{E}_2^{-1} . Since \mathcal{A} is an abelian category, a pair of subcategories $(\mathcal{T}, \mathcal{F})$ satisfies (STP1) and (STP2) if and only if it is a (usual) torsion pair in the abelian category \mathcal{A} . Thus, $(\mathsf{add}\{^2_1, 2\}, \mathsf{add}\{1\})$ satisfies (STP1) and (STP2). On the other hand, since $\mathbb{E}_2^{-1}(2, 1) \neq 0$ holds, this pair does not satisfy (STP3).

The following notion plays an important role in this article.

Definition 11. Let C be an extriangulated category with a negative first extension. For i = 1, 2, let $t_i := (\mathcal{T}_i, \mathcal{F}_i) \in \text{stors } C$ with $t_1 \leq t_2$. Then we call the subposet

$$\operatorname{stors}[t_1, t_2] := \{t := (\mathcal{T}, \mathcal{F}) \in \operatorname{stors} \mathcal{C} \mid t_1 \le t \le t_2\} \subseteq \operatorname{stors} \mathcal{C}$$

an interval in stors C and the subcategory $\mathcal{H}_{[t_1,t_2]} := \mathcal{T}_2 \cap \mathcal{F}_1 \subseteq C$ the heart of the interval $\mathsf{stors}[t_1, t_2]$. Since $\mathcal{H}_{[t_1,t_2]}$ is extension-closed, we can regard $\mathcal{H}_{[t_1,t_2]}$ as the extriangulated category with the negative first extension (see Example 6(3)).

By Example 9(1), we can easily check that the heart of a *t*-structure $(\mathcal{U}, \mathcal{V})$ on \mathcal{D} coincides with the heart of the interval stors[$(\Sigma \mathcal{U}, \Sigma \mathcal{V}), (\mathcal{U}, \mathcal{V})$].

Now we state a main result of this article.

Theorem 12 ([1, Theorem 3.9]). Let C be an extriangulated category with a negative first extension. For i = 1, 2, let $t_i := (\mathcal{T}_i, \mathcal{F}_i) \in \text{stors } C$ with $t_1 \leq t_2$. Then there exist mutually inverse poset isomorphisms

stors
$$[t_1, t_2] \xrightarrow{\Phi}_{\Psi}$$
 stors $\mathcal{H}_{[t_1, t_2]}$,

where $\Phi(\mathcal{T}, \mathcal{F}) := (\mathcal{T} \cap \mathcal{F}_1, \mathcal{T}_2 \cap \mathcal{F})$ and $\Psi(\mathcal{X}, \mathcal{Y}) := (\mathcal{T}_1 * \mathcal{X}, \mathcal{Y} * \mathcal{F}_2)$. In particular, Φ and Ψ preserve hearts, that is, for stors $[t, t'] \subseteq \operatorname{stors}[t_1, t_2]$ and stors $[x, x'] \subseteq \operatorname{stors} \mathcal{H}_{[t_1, t_2]}$, we have $\mathcal{H}_{[t, t']} = \mathcal{H}_{[\Phi(t), \Phi(t')]}$ and $\mathcal{H}_{[x, x']} = \mathcal{H}_{[\Psi(x), \Psi(x')]}$.

We give two applications of Theorem 12. We have the following result, which recovers Theorem 4.

Corollary 13. Let \mathcal{D} be a triangulated category. For i = 1, 2, let $(\mathcal{U}_i, \mathcal{V}_i) \in \mathsf{t-str} \mathcal{D}$ with $\mathcal{U}_1 \subseteq \mathcal{U}_2$ and $\mathcal{H} := \mathcal{U}_2 \cap \mathcal{V}_1$. Then there exist mutually inverse poset isomorphisms

$$\mathsf{t}\operatorname{\mathsf{-str}}\left[(\mathcal{U}_1,\mathcal{V}_1),(\mathcal{U}_2,\mathcal{V}_2)\right] \xrightarrow{\Phi}_{\Psi} \mathsf{stors}\,\mathcal{H}$$

where $\Phi(\mathcal{T}, \mathcal{F}) := (\mathcal{T} \cap \mathcal{V}_1, \mathcal{U}_2 \cap \mathcal{F})$ and $\Psi(\mathcal{X}, \mathcal{Y}) := (\mathcal{U}_1 * \mathcal{X}, \mathcal{Y} * \mathcal{V}_2)$. In addition, if $\Sigma \mathcal{U}_2 \subseteq \mathcal{U}_1$ holds, then \mathcal{H} becomes an exact category by the induced extriangulated structure, and we have stors $\mathcal{H} = \text{tors } \mathcal{H}$.

By Theorem 12, we have the following corollary, which is a further generalization of Theorem 2, where the abelian category case is proved.

Corollary 14. Let \mathcal{E} be an exact category. For i = 1, 2, let $t_i := (\mathcal{T}_i, \mathcal{F}_i) \in \text{tors } \mathcal{E}$ with $t_1 \leq t_2$. Then there exist mutually inverse poset isomorphisms

$$\operatorname{tors}\left[t_{1}, t_{2}\right] \xrightarrow{\Phi}_{\Psi} \operatorname{tors} \mathcal{H}_{\left[t_{1}, t_{2}\right]},$$

where $\Phi(\mathcal{T},\mathcal{F}) := (\mathcal{T} \cap \mathcal{F}_1, \mathcal{T}_2 \cap \mathcal{F})$ and $\Psi(\mathcal{X}, \mathcal{Y}) := (\mathcal{T}_1 * \mathcal{X}, \mathcal{Y} * \mathcal{F}_2).$

References

- T. Adachi, H. Enomoto, M. Tsukamoto, Intervals of s-torsion pairs in extriangulated categories with negative first extensions, arXiv:2103.09549.
- [2] S. Asai, C. Pfeifer, Wide subcategories and lattices of torsion classes, to appear in Algebras and Representation Theory, arXiv:1905.01148.
- [3] M. Gorsky, H. Nakaoka, Y. Palu, Positive and negative extensions in extriangulated categories, arXiv:2103.12482.
- [4] D. Happel, I. Reiten, S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575.
- [5] G. Jasso, Reduction of τ-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 2015, no. 16, 7190–7237.
- [6] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117–193.

- [7] A. Tattar, Torsion pairs and quasi-abelian categories, Algebr. Represent. Theory 24 (2021), no. 16, 1557–1581.
- [8] J. Woolf, Stability conditions, torsion theories and tilting, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 663-682.

FACULTY OF GLOBAL AND SCIENCE STUDIES YAMAGUCHI UNIVERSITY YOSHIDA, YAMAGUCHI 753-8541, JAPAN *Email address*: tadachi@yamaguchi-u.ac.jp

GRADUATE SCHOOL OF SCIENCE OSAKA PREFECTURE UNIVERSITY GAKUEN-CHO, NAKA-KU, SAKAI, OSAKA 599-8531, JAPAN *Email address*: the35883@osakafu-u.ac.jp

GRADUATE SCHOOL OF SCIENCES AND TECHNOLOGY FOR INNOVATION YAMAGUCHI UNIVERSITY YOSHIDA, YAMAGUCHI 753-8512, JAPAN *Email address*: tsukamot@yamaguchi-u.ac.jp