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ABSTRACT. In a triangulated category, for a given ¢-structure, the HRS-tilting induces
an isomorphism between the poset of certain t¢-structures and the poset of torsion pairs
in the heart of the ¢-structure. On the other hand, Asai—Pfeifer and Tattar established a
poset isomorphism for torsion pairs in an abelian category. In this article, as a common
generalization of t-structures and torsion pairs, we introduce the notion of s-torsion pairs
in an extriangulated category with a negative first extension. Moreover, we provide a
poset isomorphism for s-torsion pairs which unifies two poset isomorphisms above.

Throughout this article, we assume that every category is skeletally small, that is, the
isomorphism classes of objects form a set. In addition, all subcategories are assumed to
be full and closed under isomorphisms.

First we give the definition of torsion pairs in an exact category.

Definition 1. Let £ be an exact category. A pair (7, F) of subcategories of £ is called
a torsion pair in £ if it satisfies the following two conditions.

e For each E € &, there exists a conflation 0 - T — F — F — 0 such that T' € T
and F' € F.
e &(T,F)=0.

Let tors £ denote the set of torsion pairs in £. We write (71, F1) < (T2, F2) if T C Ts.
Then (tors &, <) clearly becomes a poset. Let t; := (77, F1) and ty := (T3, F2) be torsion
pairs in £ with ¢; < t5. Let tors[tq, t5] denote the interval in the poset of torsion pairs in £
consisting of ¢ := (T, F) with ¢; <t <t,. We call the subcategory H, 1, := T2 N F; the
heart of tors[ty, o). Since the heart Hp, 4, is an extension-closed subcategory, it becomes
an exact category.

The following isomorohism induces fruitful results for the poset structure of torsion
pairs in an abelian category.

Theorem 2 ([2, 7]). Let A be an abelian category. Fori=1,2, lett; .= (T;, F;) € tors A
with t; < ty. Then there exists a poset isomorphism between tors|ty,ts] and tors Hity 0]

This isomorphism originally appeared in the context of 7-tilting reduction in [5].
Next we recall the definition of ¢-structures on a triangulated category.
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Definition 3. Let D be a triangulated category with a shift functor . A pair (U, V) of
subcategories of D is called a t-structure on D if it satisfies the following three conditions.
e For each D € D, there exists a triangle U = D — V — XU such that U € U and
Vev.
e DU,V)=0.
e U is closed under a positive shift, that is, XU C U.

It is well known that the heart & N XV of a t-structure (U,V) is always an abelian
category. Let t-str D denote the poset of t-structures on D, where we define (U, V) <
(U, Vo) if Uy C Us. For t-structures (U, V1) < (Us, Vs) on D, let

t—str[(Z/ll, V1>, (UQ, VQ)] = {(U, V) € t-strD | U, CU C Z/{Q}

Happel, Reiten and Smalg ([4]) provided a construction of new ¢-structures through tor-
sion pairs in the heart of a given t-structure. This construction induces a close connection
between t-structures and torsion pairs as follows.

Theorem 4 ([4, 8]). Let D be a triangulated category with a shift functor ¥2. Let (U, V) €
t-sttD and H = U N XV the heart of (U,V). Then there exists a poset isomorphism
between t-str[(XU, XV), (U, V)] and tors H.

The aim of this article is to show that two poset isomorphisms in Theorem 2 and Theo-
rem 4 are consequences of a more general poset isomorphism in an extriangulated category,
which is a simultaneous generalization of triangulated categories and exact categories.

Let C := (C,E,s) denote an extriangulated category. For definition and terminologies,

see [6]. A complex A 1, B4 Cin C is called an s-conflation if there exists 6 € E(C, A)
such that s(0) = [A ENy; JER C], where [A ENy; JER C1] is an equivalence class of a complex

AL B2 . We write the s-conflation as A 5 B % ¢ —§+. For two subcategories X
and Y of C, let X x ) denote the subcategory of C consisting of M € C which admits an
s-conflation X — M — Y --» with X € X and Y € ). A subcategory C’ of C is said to
be extension-closed if C' x C' C C'.

We introduce a negative first extension structure on an extriangulated category.

Definition 5 ([1, Definition 2.3]). Let C be an extriangulated category. A negative first
extension structure on C consists of the following data:

(NE1) E7': C°? x C — Ab is an additive bifunctor.
(NE2) For each § € E(C, A), there exist two natural transformations

5ﬂ_1 E7H(—,0) = C(—, A),
5 i ETYA, -) = C(C,—)
such that for each s-conflation A s B % ¢ —§+ and each W € C, two sequences

)

B~ (W, 4) 0 5w, B) —— C(W, B),

(0 W) T B B, W) S, B (4, ) SR E—

are exact.
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Then we call C := (C,E,s,E™1) an extriangulated category with a negative first extension.

Note that a negative first extension is a special case of partial d-functors in the sense of
[3, Definition 4.7]. Triangulated categories and exact categories naturally admit negative
first extension structures as follows.

Example 6. (1) A triangulated category D becomes an extriangulated category with
a negative first extension by the following data.

o E(C,A):=D(C,XA) for all A,C € D, where X is a shift functor of D.

e For § € E(C, A), we take a triangle A 5 B % ¢ % YA Then we define
s(0)=[AL B %)

e E(C,A):=D(C,271A) for all A,C € D.

5 .
e For an s-conflation A & B % ¢ --+, we define two natural transformations

(5;1 and (5ﬁ_1 as follows: for W € D,

w,x-15) D

(6w : 7L (W, C) = D(W, =1 C) = (W, ),

(6" ) E-HA, W) = DA, S'W) = DzA, w) 28 pe,w).

(2) An exact category £ becomes an extriangulated category with a negative first
extension by the following data.

e E(C,A) is the set of isomorphism classes of conflations in € of the form
0>A—=B—=>C—0for A,Ce€€.

e 5 is the identity.

e E1(C,A)=0forall A,C € €.

e For each W € &, the maps ((511_1)W and (6%, )y are zero.

(3) Let C be an extriangulated category with a negative first extension and let C’
be an extension-closed subcategory of C. Then by restricting the extriangulated
structure and the negative first extension structure to C’, we can regard C’ as an
extriangulated category with a negative first extension.

The following example shows that negative first extension structures are not uniquely
determined by given extriangulated categories.

Example 7. Let k be an algebraically closed field. Consider the stable category D :=
mod A of a self-injective Nakayama k-algebra A with three simple modules and the Loewy
length three. Then the Auslander-Reiten quiver of D is as follows, where two 1’s are
identified.
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Since the subcategory A := add{1,2 2} is clearly equivalent to the category of finite-
dimensional representations of an A, quiver, it is abelian. Thus A becomes an extri-
angulated category with a negative first extension E;' := 0 by Example 6(2). On the



other hand, since A is extension-closed in D, it becomes an induced extriangulated cate-
gory with a negative first extension E;'(—, —) := D(—, X ~!~) by Example 6(3). We can
check that extriangulated category structures coincide with each other, but negative first
extension structures do not. Indeed, E5'(2,1) = D(2,£7!(1)) = D(2,3) # 0 holds.

In the following, let C := (C,E,s,E~') be an extriangulated category with a negative
first extension. We introduce the notion of s-torsion pairs in C.

Definition 8. Let C be an extriangulated category with a negative first extension. We
call a pair (7, F) of subcategories of C an s-torsion pair in C if it satisfies the following
three conditions.

(STP1) C =T = F.

(STP2) C(T,F) =0.

(STP3) E-(T,F) = 0.

Let torsC denote the poset of s-torsion pairs in C, where we define (71, F;) < (72, F2)
it Tt € 7a.

The following examples show that s-torsion pairs are a common generalization of t-
structures on a triangulated category and torsion pairs in an exact category.

Example 9. (1) Let D be a triangulated category. By regarding D as the extriangu-
lated category with the negative first extension (see Example 6(1)), ¢-structures
on D are exactly s-torsion pairs in D, that is, t-str D = stors D. Indeed, let (U, V)
be a pair of subcategories of D satisfying the conditions (STP1) and (STP2). By
the negative first extension structure on D, we have E~1(U,V) = DU, X71V) =
D(XU,V). Hence E71(U, V) =0ifand only if XU C {X € D | D(X,V) =0} =U.
(2) Let £ be an exact category. By regarding £ as the extriangulated category with the
negative first extension (see Example 6(2)), it follows from E~! = 0 that torsion
pairs in the exact category £ are exactly s-torsion pairs in &, that is, we have

tors £ = stors €.

Taking negative first extension structures different from Example 6(2), we give an
example which satisfies (STP1) and (STP2) but does not satisfy (STP3).

Example 10. Let A and A be in Example 7. Due to Example 7, we regard A as the
extriangulated category with the negative first extension E;'. Since A is an abelian
category, a pair of subcategories (7, F) satisfies (STP1) and (STP2) if and only if it is a
(usual) torsion pair in the abelian category A. Thus, (add{%,2},add{1}) satisfies (STP1)
and (STP2). On the other hand, since E;'(2,1) # 0 holds, this pair does not satisfy

(STP3).
The following notion plays an important role in this article.

Definition 11. Let C be an extriangulated category with a negative first extension. For
i=1,2,let t; := (T;, F;) € storsC with t; < t5. Then we call the subposet
stors[ty, to] := {t := (T, F) € storsC | t; <t < ty} CstorsC

an interval in storsC and the subcategory Hp, 4, := To N Fi C C the heart of the interval
stors[ty, to]. Since Hy, 4, is extension-closed, we can regard Hp, 4, as the extriangulated
category with the negative first extension (see Example 6(3)).



By Example 9(1), we can easily check that the heart of a t-structure (U,)V) on D
coincides with the heart of the interval stors[(XU, XV), (U, V)].
Now we state a main result of this article.

Theorem 12 ([1, Theorem 3.9]). Let C be an extriangulated category with a negative first
extension. Fori=1,2, let t; :== (T;, F;) € storsC with t; < ty. Then there exist mutually
wverse poset isomorphisms

[0}
stors [t1, ta] =—= stors H, +.1,
v

where ®(T,F) .= (T NF, TaNF) and U(X,Y) := (T1 « X, Y x F). In particular, ®
and W preserve hearts, that is, for stors[t,t’] C stors[ty,ts] and stors|z, x| C stors Hy, 1),
we have Hiry) = Hiaw,e)) and Hipw) = Hiww) @)

We give two applications of Theorem 12. We have the following result, which recovers
Theorem 4.

Corollary 13. Let D be a triangulated category. For i = 1,2, let (U, V;) € t-str D with
Uy CTUy and H :=Us N V1. Then there exist mutually inverse poset isomorphisms

testr [(Us, V1), (Us, V)] % stors 1,

where ®(T, F) := (TOV,UsNF) and U (X, Y) := (U X, Y*Vs). In addition, if XU C U,
holds, then H becomes an exact category by the induced extriangulated structure, and we
have stors H = tors H.

By Theorem 12, we have the following corollary, which is a further generalization of
Theorem 2, where the abelian category case is proved.

Corollary 14. Let £ be an ezxact category. For i = 1,2, let t; :== (T;, F;) € torsE with
t1 < ty. Then there exist mutually inverse poset isomorphisms

tors [t1, to] <£> tors Hg, 1,1,
v
where (T, F) = (T NF, TaNF) and V(X,Y) := (T1 * X,V x Fo).
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