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Abstract. The Sally module of an ideal is an important tool to interplay between
Hilbert coefficients and the properties of the associated graded ring. In this talk we give
new insights on the structure of the Sally module. We apply these results characterizing
the almost minimal value of the first and the second normal Hilbert coefficients in an
analytically unramified Cohen-Macaulay local ring.
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1. Introduction

This report is based on a joint work with S. K. Masuti, M. E. Rossi, and H. L. Truong.
Throughout this report, let (R,m) be an analytically unramified Cohen-Macaulay local

ring of dimension d > 0 with infinite residue field R/m and I an m-primary ideal of R.
We say that, for an ideal J in R, the element x ∈ R is integral over J , if there exist an
integer n > 0 and elements ai ∈ J i for 1 ≤ i ≤ n such that the equality

xn + a1x
n−1 + · · ·+ aix

n−i + · · ·+ an = 0

holds true. We set
J = {x ∈ R | x is integral over J}

and call it the integral closure of J . Consider the so called normal filtration {In}n∈Z and
we are interested in the corresponding Hilbert-Samuel polynomial. It is well-known that
there are integers ei(I), called the normal Hilbert coefficients of I, such that for n ≫ 0

ℓR(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I).

Here ℓR(N) denotes, for an R-module N , the length of N . Since R/m is infinite there
exists a minimal reduction J = (a1, . . . , ad) of I and, under our assumptions, there ex-

ists an integer r ≥ 0 such that In+1 = JIn for all n ≥ r. We set rJ(I) := min{r ≥
0 | In+1 = JIn for all n ≥ r} the normal reduction number of I with respect to J .

By [2, 3, 6, 8] it is known that

e2(I) ≥ e1(I)− e0(I) + ℓR(R/I) ≥ ℓR(I2/JI)

hold true and if either of the inequalities is an equality then In+1 = Jn−1I2 for every
n ≥ 1 (that is rJ(I) ≤ 2). In this case the normal associated graded ring G(I) of I is
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Cohen-Macaulay (see also Corollary 4). We notice that ℓR(I2/JI) does not depend on a
minimal reduction J of I (see for instance [14]).

Thus the ideals I with e1(I) = e0(I) − ℓR(R/I) + ℓR(I2/JI) and/or e2(I) = e1(I) −
e0(I)+ℓR(R/I) enjoy nice properties. In Section 2 we will introduce some auxiliary results
on the structure of Sally module and explore the equality

e1(I) = e0(I)− ℓR(R/I) + ℓR(I2/JI) + 1.

In Section 3 we will focus on the second normal Hilbert coefficient and investigate the
equality

e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1.

As the title outlines, an important tool in this report is the Sally module introduced
by W. V. Vasconcelos [15]. The aim of this report was to define a module in between
the associated graded ring and the Rees algebra taking care of important information
coming from a minimal reduction. Actually, a more detailed information comes from the
graded parts of a suitable filtration {C(ℓ)} of the Sally module that was introduced by M.
Vaz Pinto in [16]. In this report we introduce some important results on {C(2)} which
will be key ingredients for proving the main result. Some of them are stated in a very
general setting. Our hope is that these will be successfully applied to give new insights
to problems related to the normal Hilbert coefficients, for instance [8].

2. Filtering the Sally module

In this section we study the Sally module associated to any I-admissible filtration I.
Following M. Vaz Pinto [16] we introduce a filtration of the Sally module, C(ℓ)(I) for ℓ ≥ 1.
This approach is extremely useful for relating the properties of the Hilbert coefficients
and the graded module associated to an I-admissible filtration I, as evidenced in [1],
[12]. In [1] the authors analyzed the Sally module (=C(1)(I)) of the normal filtration
to study the equality ē1(I) = ē0(I) − ℓR(R/I) + 1. In order to investigate the equality

ē1(I) = ē0(I)−ℓR(R/I)+ℓR(I2/JI)+1, in this section we prove some important properties
of C(2)(I). These properties will play an important role in proving our main results.

We recall that C(2)(I) has been studied in [12] for I-adic filtration. For our purpose we
need more deep results.

Throughout this section, let (R,m) be a Cohen-Macaulay local ring (not necessarily
analytically unramified) and I an m-primary ideal in R. Recall that a a filtration of ideals
I := {In}n∈Z is a chain of ideals in R such that R = I0 and In ⊇ In+1 for all n ∈ Z. We
say that a filtration I is I-admissible if for all m,n ∈ Z, Im ·In ⊆ Im+n, I

n ⊆ In and there
exists k ∈ N such that In ⊆ In−k for all n ∈ Z. It is well known that if R is analytically
unramified, then {In}n∈Z is an I-admissible filtration.

For an I-admissible filtration I = {In}n∈Z, let

R(I) =
∑
i≥0

I iti ⊆ R[t], R′(I) =
∑
i∈Z

I iti ⊆ R[t, t−1], and G(I) = R′(I)/t−1R′(I)



denote, respectively, the Rees algebra, the extended Rees algebra, and the associated
graded ring of I where t is an indeterminate over R. We set

R(I) :=
∑
n≥0

Intn ⊆ R[t], R′(I) :=
∑
n∈Z

Intn ⊆ R[t, t−1], andG(I) := R′(I)/t−1R′(I)

for the Rees algebra, the extended Rees algebra and the associated graded ring of {In}n∈Z,
respectively.

Since R/m is infinite there exists a minimal reduction J = (a1, a2, . . . , ad) of I, that is
there exists an integer r ∈ Z such that the equality In+1 = JIn holds true for all n ≥ r.
Let

rJ(I) := min{r ≥ 0 | In+1 = JIn hold true for all n ≥ r }
be the reduction number of I with respect to J . We set

T := R(J) := R({Jn}n∈Z)

and M = mT +T+ denotes the graded maximal ideal of T . Then R(I) is a module finite
extension of T . Hence there exist integers ei(I), called as the Hilbert coefficients of I such
that the equality

ℓR(R/In+1) = e0(I)
(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I)

holds true for all n ≫ 0 (c.f. [11, Proposition 3.1]). This polynomial is called the Hilbert-
Samuel polynomial of I. For a graded T -module E and α ∈ Z we denote by E(α) the
graded T -module whose grading is given by [E(α)]n = Eα+n for all n ∈ Z.

Following Vasconcelos [15], we consider

SJ(I) :=
R(I)≥1t

−1

I1T
∼=

⊕
n≥1

In+1/J
nI1

the Sally module of I with respect to J . Notice that SJ(I) is a finite T -module. In [16]
Vaz Pinto introduced a filtration of the Sally module in the case I = {In}n∈Z. Following
this line, we extend the definition to any I-admissible filtration I.

Definition 1. For each ℓ ≥ 1, consider the T -module

C
(ℓ)
J (I) := R(I)≥ℓt

−1

IℓTtℓ−1
∼=

⊕
n≥ℓ

In+1/J
n−ℓ+1Iℓ.

Let L
(ℓ)
J (I) = [C(ℓ)(I)]ℓT be the T -submodule of C(ℓ)(I). Then

L
(ℓ)
J (I) ∼=

⊕
n≥ℓ

Jn−ℓIℓ+1/J
n−ℓ+1Iℓ.

Hence for every ℓ ≥ 1 we have the following natural exact sequence of graded T -modules

0 → L
(ℓ)
J (I) → C

(ℓ)
J (I) → C

(ℓ+1)
J (I) → 0.



Throughout this section we set

S := SJ(I), C(ℓ) := C
(ℓ)
J (I) and L(ℓ) := L

(ℓ)
J (I)

unless otherwise specified. Notice that C(1) = S, and since R(I) is a finite graded T -
module, C(ℓ) and L(ℓ) are finitely generated graded T -modules for every ℓ ≥ 1.
Let us begin with the following lemma.

Lemma 2. Let ℓ ≥ 1 be an integer. Then the following assertions hold true.

(1) mkC(ℓ) = (0) for integers k ≫ 0; hence dimT C(ℓ) ≤ d.
(2) C(ℓ) = (0) if and only if rJ(I) ≤ ℓ.

In this report, the structure of the graded module C(2) plays an important role. We
derive some basic properties of C(2) which we need.
In the following result we need that J ∩ I2 = JI1 holds true. This condition is au-

tomatically satisfied if I = {mn}n∈Z or if I = {In}n∈Z (see [4, 7, 9]). We also notice
that

ℓR(I2/JI1) = e0(I) + (d− 1)ℓR(R/I1)− ℓR(I1/I2)

holds true (see for instance [14, Corollary 2.1]), so that ℓR(I2/JI1) does not depend on a
minimal reduction J of I. We remark that the following Proposition 3 was proved in [12,
Propositions 2.2, 2.8, and 2.9] in the case I = {In}n∈Z.

Proposition 3. Let P = mT and suppose that J∩I2 = JI1. Then the following assertions
hold true.

(1) AssT (C(2)) ⊆ {P}. Hence dimT C(2) = d, if C(2) ̸= (0).
(2) For all n ≥ 0,

ℓR(R/In+1) = e0(I)
(
n+ d

d

)
− {e0(I)− ℓR(R/I1) + ℓR(I2/JI1)}

(
n+ d− 1

d− 1

)
+ℓR(I2/JI1)

(
n+ d− 2

d− 2

)
− ℓR([C

(2)]n).

(3) e1(I) = e0(I)− ℓR(R/I1) + ℓR(I2/JI1) + ℓTP (C
(2)
P ).

(4) Suppose C(2) ̸= (0) and let c = depthT C(2). Then depth G(I) = c − 1, if c < d.
Moreover, depth G(I) ≥ d− 1 if and only if C(2) is a Cohen-Macaulay T -module.

Combining Proposition 3 (1), (3), (4), and Lemma 2 (2), and using the Valabrega-
Valla criterion (c.f.[14, Theorem 1.1]) we obtain the following result that was proven by
Elias and Valla [2, Theorem 2.1] in the case I = {mn}n∈N and by Guerrieri and Rossi [3,
Theorem 2.2 and Proof of Proposition 2.3] for any I-admissible filtration.

Corollary 4. Suppose that J ∩ I2 = JI1. Then we have

e1(I) ≥ e0(I)− ℓR(R/I1) + ℓR(I2/JI1).

The equality e1(I) = e0(I) − ℓR(R/I1) + ℓR(I2/JI1) holds true if and only if rJ(I) ≤ 2.
When this is the case, the following assertions hold true:

(i) If d ≥ 2, then e2(I) = ℓR(I2/JI1) = e1(I) − e0(I) + ℓR(R/I1) and ei(I) = 0 for
all 3 ≤ i ≤ d, and



(ii) G(I) is a Cohen-Macaulay ring, and so is R(I) if d ≥ 3.

We now prove an important property of C(2) in Proposition 5 which plays a crucial role
in the proof of the main result.

Proposition 5. Let d ≥ 3 and 0 ≤ n ≤ d − 1. Suppose that J ∩ I2 = JI1 and R(I)
satisfies Serre’s property (Sn) as a T -module. Then C(2) also satisfies Serre’s property
(Sn) (as T -module).

We set C := C
(2)
J ({In}n∈Z) and B := T/mT ∼= (R/m)[X1, X2, · · · , Xd] the polynomial

ring with d indeterminates over the field R/m. Then thanks to Proposition 5, the module
C satisfies Serre’s property (S2).

The first main result of this report is stated as follows.

Theorem 6. Let (R,m) be an analytically unramified Cohen-Macaulay local ring of di-
mension d > 0 and I an m-primary ideal in R, Then following statements are equivalent:

(1) e1(I) = e0(I)− ℓR(R/I) + ℓR(I2/JI) + 1;
(2) C ≃ B(−m) as graded T -modules for some m ≥ 2;

(3) ℓR(Im+1/JIm) = 1 and In+1 = JIn for all 2 ≤ n ≤ m−1 and n ≥ m+1 for some
m ≥ 2.

In this case, the following assertions follow:

(i) rJ(I) = m+ 1.

(ii) e2(I) = ℓR(I2/JI) +m and ei(I) =
(

m
i−1

)
for 3 ≤ i ≤ d.

(iii) depth G(I) ≥ d− 1.

(iv) G(I) is Cohen-Macaulay if and only if I3 ⊈ J. In this case, we have m = 2.

3. The structure of the Sally module when e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1

In this section let us introduce the structure theorem of the Sally module with the

equality e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1. We set C = CJ(I) = C
(2)
J ({In}n∈Z).

In the following theorem we recall few results on the vanishing of local cohomology
modules from [8] (see also [4]). From now onwards we set M ′ = (t−1,m, It)R′(I) for the
graded maximal ideal of R′(I) := R′({In}n∈Z) and N ′ = ItR′(I).

Theorem 7. ([8, Proposition 13]) Suppose that d ≥ 2. Then we have the following.

(1) [Hi
N ′(R′(I))]n = (0) for all n ≫ 0 and all i ≥ 0;

(2) H0
M ′(R′(I)) = H1

M ′(R′(I)) = (0);
(3) [H2

M ′(R′(I))]n = (0) for n ≤ 0;
(4) Hi

M ′(R′(I)) ∼= Hi
N ′(R′(I)) for 0 ≤ i ≤ d− 1.

To prove the main result of this section we use induction on the dimension d. One of
the main difficulties in applying the induction on d for the normal filtration is that the
image of a normal ideal going modulo a superficial element need not be normal. Thanks
to [8, Theorem 1] (see also [4]) we may choose a1 ∈ I such that I(R/(a1)) = I(R/(a1)),

and In(R/(a1)) = In(R/(a1)) for all n ≫ 0. In particular, a1t is G(I)-regular. From now
onwards we set S = R/(a1).



We remark that the following result works like the Sally’s machine [14, Lemma 1.4],
but is not a consequence of it.

Proposition 8. Assume d ≥ 3 and depth G(IS) ≥ 2. Then we have depth G(I) =
depth G(IS) + 1.

The following result plays a key role for our proof of Theorem 10. Thanks to Proposition
8, we need only to show the case where d ≤ 3 for the proof of Theorem 9.

Theorem 9. Suppose d ≥ 2. Assume e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1 and e3(I) ̸= 0

(if d ≥ 3), then ℓR(I3/JI2) = 1 and In+1 = JIn for all n ≥ 3. We then furthermore have
depthG(I) ≥ d− 1.

Now we give a complete structure of the Sally module and we describe the Hilbert
series of the associated graded ring in the case e2(I) = e1(I) − e0(I) + ℓR(R/I) + 1 and
e3(I) ̸= 0.

Theorem 10. Let (R,m) be an analytically unramified Cohen-Macaulay local ring of
dimension d ≥ 2 and I an m-primary ideal in R. Suppose that d ≥ 2. Then following
statements are equivalent:

(1) e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1 and, if d ≥ 3, e3(I) ̸= 0,

(2) e2(I) = ℓR(I2/JI) + 2,
(3) CJ(I) ∼= B(−2) as graded T -modules, and

(4) ℓR(I3/JI2) = 1 and In+1 = JIn for all n ≥ 3.

In this case, the following assertions follow:

(i) e1(I) = e0(I)− ℓR(R/I) + ℓR(I2/JI) + 1.
(ii) e3(I) = 1 if d ≥ 3, and ei(I) = 0 for 4 ≤ i ≤ d.

(iii) depth G(I) ≥ d− 1, and G(I) is Cohen-Macaulay if and only if I3 ⊈ J.

By the above result we notice that if d ≥ 3 and e2(I) ≤ e1(I) − e0(I) + ℓR(R/I) + 1,
then e3(I) ≤ 1.

The following example, due to Huckaba and Huneke [5, Theorem 3.12], shows that if
I is normal, e2(I) = e1(I) − e0(I) + ℓR(R/I) + 1 and e3(I) ̸= 0, then G(I) need not be
Cohen-Macaulay and hence Theorem 10 is sharp.

Example 11. Let K be a field of characteristic ̸= 3 and set R = K[[X,Y, Z]] the formal
power series ring over K, where X,Y, Z are indeterminates. Let N = (X4, X(Y 3 +
Z3), Y (Y 3 + Z3), Z(Y 3 + Z3)) and set I = N + m5, where m is the maximal ideal of
R. Then the ideal I is a normal m-primary ideal whose associated graded ring G(I) has
depth d− 1 = 2. Moreover,

HSG(I)(t) =
31 + 43t+ t2 + t3

(1− t)3
,

and hence ℓR(R/I) = 31, e0(I) = 76, e1(I) = 48, e2(I) = 4, e3(I) = 1. Thus e2(I) =
e1(I)− e0(I) + ℓR(R/I) + 1. For the computations see [1, Example 3.2].



4. The structure of the Sally module when e3(I) = 0

In the rest of this report let us consider the case where e2(I) = e1(I)−e0(I)+ℓR(R/I)+1
and e3(I) = 0 in three dimensional case.

This case faces the difficult problem stated by Itoh in [8] on the vanishing of e3(I)
which asserts that if e3(I) = 0 and R is Gorenstein, then G(I) is Cohen-Macaulay or
equivalently e2(I) = e1(I)− e0(I) + ℓR(R/I). Hence for the class of ideals verifying Itoh’s
conjecture the assumptions of this section doesn’t occur. This is the case for instance
when I = m and R is Gorenstein, see [8, Theorem 3(2)] (more generally, R satisfying

ℓR(I2/JI) ≥ type(R)− 2, see [1]). If R is not Gorenstein or R is Gorenstein and I ̸= m,
our analysis can be useful for proving or disproving Itoh’s conjecture, also because the
doubt of the validity of Itoh’s conjecture is growing among the experts.

In Theorem 14 we prove that if e2(I) = e1(I)− e0(I)+ ℓR(R/I)+1 and e3(I) = 0, then
G(Iℓ) is Cohen-Macaulay for all ℓ ≥ 2. For this purpose we need the following proposition
which is a consequence of Serre’s formula and it seems to be well known. We set, for
ℓ ∈ Z, I(ℓ) = {Inℓ}n∈Z, and ai(G(I)) = max{n ∈ Z | [Hi

M(G(I)]n ̸= (0)} for i ∈ Z.

Proposition 12. Let ℓ > max{ai(G(I)) | 0 ≤ i ≤ d} be an integer. Then we have

ℓR(R/Iℓ(n+1)) =
∑d

i=0(−1)iei(I(ℓ))
(
n+d−i
d−i

)
for all n ≥ 0. In particular, the equality

ℓR(R/Iℓ) =
∑d

i=0(−1)iei(I(ℓ)) holds true for all n ≥ 0.

As a consequence of Proposition 12 we obtain a result of Rees [13, Theorem 2.6] (see
also [7, Theorem 4.5]) in dimension two which states that: e2(I) = 0 if and only if

e1(I
ℓ) = e0(I

ℓ) − ℓR(R/Iℓ) for all ℓ ≥ 1. In particular, by [14, Theorem 2.9], G(Iℓ) is
Cohen-Macaulay for all ℓ ≥ 1.

Analogously we obtain the following result on vanishing of e3(I) in dimension three as
a consequence of Proposition 12. Notice that next result for normal ideals can be also
obtained as a consequence of [10, Corollary 5.3.]

Corollary 13. Let d = 3, then the following conditions are equivalent.

(1) e3(I) = 0,

(2) e1(I
ℓ) = 2e0(I

ℓ)+ℓR(R/Iℓ)−ℓR(Iℓ/I2ℓ) for some (equiv. all) ℓ > max{ai(G(I)) | 1 ≤
i ≤ 3}, and

(3) e2(I
ℓ) = e1(I

ℓ) − e0(I
ℓ) + ℓR(R/Iℓ) for some (equiv. all) ℓ > max{ai(G(I)) | 1 ≤

i ≤ 3}.
In particular, G(Iℓ) is Cohen-Macaulay for all ℓ > max{ai(G(I)) | 1 ≤ i ≤ 3} if any of
the above conditions are satisfied.

The last assertion of Corollary 13 is a consequence of [8, Theorem 2(2)]. Now we are
ready to introduce the main theorem of this section.

Theorem 14. Let (R,m) be an analytically unramified Cohen-Macaulay local ring of
dimension three and let I be an m-primary ideal in R. Suppose d = 3. Then the following
conditions are equivalent.

(1) e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1 and e3(I) = 0;



(2) there exists an exact sequence

0 → B(−3) → B(−2)⊕3 → C → 0

of graded T -modules.

When this is the case, the following assertions hold true:

(i) mC = (0) and rankB C = 2, and depthT C = 2,

(ii) mI3 ⊆ JI2, ℓR(I3/JI2) = 3, In+1 = JIn for all n ≥ 3,

(iii) e1(I) = e0(I)− ℓR(R/I) + ℓR(I2/JI) + 2 and e2(I) = ℓR(I2/JI) + 3,
(iv) depth G(I) = 1, and H1

M ′(G(I)) = [H1
M ′(G(I))]0, ℓR([H

1
M ′(G(I))]0) = 1, a2(G(I)) =

1, and a3(G(I)) ≤ −1,
(v) G(Iℓ) is Cohen-Macaulay for all ℓ ≥ 2.
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