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Abstract. The notion of extriangulated category was introduced by Nakaoka and Palu
giving a simultaneous generalization of exact categories and triangulated categories. We
provide an extension to some extriangulated categories of Auslander’s formula, that is,
the Serre quotient of the functor category mod C relative to the Auslander’s defects is
equivalent to lex C, the full subcategory of left exact functor over C. This is closely related
to the Gabriel-Quillen embedding theorem. As an application, we show that the heart
of a cotorsion pair (U ,V) in a triangulated category is equivalent to lexU .
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1. Introduction

Recently, the notion of extriangulated category was introduced in [10] as a simultaneous
generalization of triangulated categories and exact categories. It allows us to unify many
results on exact categories and triangulated categories in the same framework [4, 8].
A typical example of extriangulated categories (which are possibly neither triangulated
nor exact) is an extension-closed subcategory in a triangulated category. Especially, the
cotorsion class of a cotorsion pair in a triangulated category has a natural extriangulated
structure.

In [2], it was proved that, for any abelian category A, the Yoneda embedding Y from
A to the category modA of finitely presented functors from A to the category of abelian
groups, has an exact left adjoint Q. Moreover the adjoint pair gives rise to a localization
sequence

defA // modA Q //
ff A

Y

dd

which is called Auslander’s formula in [6]. Here defA denotes the full subcategory of
Auslander’s defects in modA (see Definition 1). The first aim of this article is to present
an extension to extriangulated categories of Auslander’s formula: for some extriangulated
categories C, there exists a localization sequence

def C // mod C Q //
ee lex C

R

ee

The detailed version of this paper will be submitted for publication elsewhere.



where lex C denotes the full subcategory of left exact functors in mod C (Theorem 5).
Subsequently, using the composed functor EC := Q ◦ Y : C → mod C → lex C, we provide
characterizations for a given extriangulated category C to be exact and abelian, respec-
tively.

Furthermore, considering an expansion of def C by taking the direct colimits, namely,

−−→
def C := {S ∈ Mod C | S is a direct colimit of objects in def C},

we construct a localization sequence ofMod C relative to
−−→
def C with a canonical equivalence

Mod C
−−→
def C

≃ Lex C. We explain that, if C is exact, this localization sequence recovers the

Gabriel-Quillen embedding functor (Section 3).
Our second result is an application for a cotorsion pair (U ,V) in a triangulated category

T . In [9, 1], it was proved that there exists an abelian category H associated to the cotor-
sion pair, called the heart, and a cohomological functor H : T → H. This result has been
shown for two extremal cases [3, 5], namely, t-structures and 2-cluster tilting subcategories
(see [9, Proposition 2.6] for details). Since the cotorsion class U has a natural extriangu-
lated structure, we have thus obtained the localization sequence def U → modU → lexU .
Using this localization, we provide a good understanding for a construction of the heart
and the cohomological functor, especially, there exists an equivalence H ∼−→ lexU .

Notation and convention. For an additive category C, a (right) C-module is defined to
be a contravariant functor C → Ab and a morphism X → Y between C-modules X and
Y is a natural transformation. Thus we define an abelian category Mod C of C-modules.
In the functor category Mod C, the morphism-space (Mod C)(X,Y ) is usually denoted by
HomC(X,Y ). We denote by mod C the full subcategory of finitely presented C-module in
Mod C.

2. Auslander’s defects over extriangulated categories

Throughout this section, the symbol C denotes an extriangulated category which admits
weak-kernels (see [10] for the definition). We firstly show that the subcategory of defects
in mod C forms a Serre subcategory.

Definition 1. Let Z −→ Y −→ X
δ99K be an E-triangle in an extriangulated category

C. Then we have an exact sequence (−, Z) → (−, Y ) → (−, X) → δ̃ → 0 in mod C.
The functor δ̃ is called a defect of δ. We denote by def C the full subcategory in mod C
consisting of all functors isomorphic to defects.

This notion was originally introduced by Auslander in the case that C is abelian.

Proposition 2. Let C be an extriangulated category with weak-kernels. Then, the subcat-
egory def C forms a Serre subcategory in mod C.

Thus we have a Serre quotient of mod C relative to def C. We consider the following
perpendicular category

(def C)⊥ := {F ∈ mod C | HomC(G,F ) = 0 = Ext1C(G,F ) for any G ∈ def C}.



To understand the Serre quotient, it is basic to study the perpendicular category. The
following proposition shows that (def C)⊥ coincides with the full subcategory of left exact
functors.

Definition 3. Let A and (C,E, s) be an abelian category and an extriangulated category,
respectively. A contravariant functor F : C → A is said to be left exact, if F sends a
conflation Z → Y → X to an exact sequence 0 → FZ → FY → FX. We denote by lex C
(resp. Lex C) the full subcategory of all left exact functors in mod C (resp. Mod C).
Let us remark that, if C is a triangulated category, the left exact functors should be

zero.

Proposition 4. Let C be an extriangulated category with weak-kernels. Then, we have
an equality (def C)⊥ = lex C.

The following is our first result which directly follows from Propositions 2 and 4.

Theorem 5. Let (C,E, s) be an extriangulated category with weak-kernels. Then, we have
a Serre quotient

(2.1) def C // mod C Q // mod C
def C .

Moreover, if the quotient functor Q has a right adjoint, we have a localization sequence

(2.2) def C // mod C Q //
ee lex C

R

ee

where R deotes the canonical inclusion.

If C is abelian, the above localization sequence (2.2) is nothing other than the following
Auslander’s formula ([2, p. 205]).

Proposition 6 (Auslander’s formula). Suppose that C is abelian. Then, the Yoneda
embedding Y : C ↪→ mod C admits an exact left adjoint Q. Moreover, we have a localization
sequence:

def C // mod C Q //
ee C.

Y

dd

In particular, Auslander’s formula and Theorem 5 tell us that, for abelian category
C: (1) the subcategory def C is localizing, namely, the associated quotient functor Q :
mod C → mod C

def C has a right adjoint; (2) there exists an equivalence C ≃ lex C. However,
even if a given category C is exact, the quotient functor Q does not necessarily have a
right adjoint (see [11, Example 2.10]).

The following theorem provides characterizations for C to be exact or abelian via the
functor EC := QY : C → mod C

def C .

Theorem 7. Let (C,E, s) be an extriangulated category with weak-kernels. Then the
following hold.

(1) The functor EC is exact and fully faithful if and only if C is an exact category.
(2) The functor EC is an exact equivalence if and only if C is an abelian category. If

this is the case, we have an equivalence C ≃ lex C.



2.1. The case of enough projectives. We study the case that an extriangulated cat-
egory C has enough projectives.

Definition 8. Let (C,E, s) be an extriangulated category. We say that C has enough
projectives if there exists a full subcategory P in C with E(P , C) = 0 and, for every
C ∈ C, there exists a conflation C ′ → P → C with P ∈ P .

In this case, we have nicer forms of the quotient functor Q : mod C → mod C
def C and the

functor EC : C → mod C
def C .

Proposition 9. Let (C,E, s) be an extriangulated category with weak-kernels which has
enough projectives. Let P be the subcategory of projectives in C and consider the restriction
functor resP : mod C → modP. Then the following hold.

(1) There exists an equivalence Q′ : mod C
def C ≃ modP with resP ∼= Q′ ◦Q.

(2) The functor EC : C → modP sends X to HomC(−, X)|P , where HomC(−, X)|P is
a restricted functor on P.

(3) An equality def C = mod(C/[P ]) holds in mod C.

We end this section by mentioning that, in the case that C is an exact category having
enough projectives, the quotient functor Q : mod C → mod C

def C ≃ modP always admits a
right adjoint.

Proposition 10. Let (C,E) be an exact category with weak-kernels which has enough
projectives. Then, the restriction functor resP : mod C → modP admits a right adjoint
R. Moreover, it induces a recollement

def C // mod C resP //
ee

ww
modP

R

ff

L
ww

3. Connection to the Gabriel-Quillen embedding theorem

In this section, we study a connection between the localization sequence (2.2) and the
Gabriel-Quillen embedding theorem. Let C be a skeletally small extriangulated category

with weak-kernels. We denote by
−−→
def C the full subcategory in Mod C consisting of direct

colimits of objects in def C.

Theorem 11. Let (C,E, s) be a skeletally small extriangulated category with weak-kernels.
Then, the Serre quotient (2.1) induces the following localization sequence

(3.1)
−−→
def C // Mod C //

ee Lex C
R

ee

where R denotes the canonical inclusion. Moreover, the composed functor C ↪→ Mod C →
Lex C is isomorphic to the Gabriel-Quillen embedding functor.



4. General heart construction versus Left exact functors

Throughout this section, we fix a triangulated category T with a translation [1]. Let
(U ,V) be a cotorsion pair in T (equivalently, (U ,V [1]) forms a torsion pair in T ). Since
U is extension-closed and contravariantly finite in T , it gives rise to an extriangulated
category with weak-kernels by setting E(+,−) := U(+,−[1]). For this extriangulated
category U , the associated quotient functor Q : modU → modU

def U has a right adjoint.

Proposition 12. The quotient functor Q : modU → modU
def U has a right adjoint. Moreover,

there exists a localization sequence

def U // modU Q //
ee lexU

R

ee

where R denotes the canonical inclusion.

Finally we study a connection between lexU and the heart of the cotorsion pair (U ,V).
Let us introduce the following notion: For two classes U and V of objects in T , we denote
by U ∗ V the class of objects X occurring in a triangle U → X → V → U [1] with U ∈ U
and V ∈ V .
Definition 13. Let (U ,V) be a cotorsion pair in a triangulated category T . We define
the following associated categories:

• Put W := U ∩ V ;
• For a sequence W ⊆ S ⊆ T of subcategories, we put S := S/[W ] and denote by
π : S → S the canonical ideal quotient functor;

• We put T + := W ∗ V [1], T − := U [−1] ∗W and H := T + ∩ T −.

We call the category H the heart of (U ,V).
As mentioned in Introduction, the heart H is abelian and there exists a cohomological

functor H : T → H, namely, H sends any triangle X → Y → Z → X[1] in T to an
exact sequence HX → HY → HZ → HX[1] in H. The following provides us a good
understanding for the heart H and the cohomological functor H.

Theorem 14. Let (U ,V) be a cotorsion pair in a triangulated category T . Then the
following hold.

(1) There exists a natural equivalence Ψ : H ∼−→ lexU [−1].

(2) The cohomological functor H is isomorphic to the composed functor T → modU [−1]
Q−→

lexU [−1]
Ψ−1

−−→ H.

The construction of the equivalence Ψ : H ∼−→ lexU [−1] is as follows: By Proposition
12, we have a localization sequence of modU [−1] relative to def U [−1]. We consider the
following diagram:

H
π

��

� � / T
YU[−1]// modU [−1]

Q // lexU [−1]

H
Ψ

33



There uniquely exists a dotted arrow Ψ which makes the diagram commutative up to
isomorphism. Hence, we have an isomorphism Ψ(π(H)) ∼= HomT (−, H)|U [−1] for each
H ∈ H, which gives an explicit description of the equivalence Ψ.

Theorem 14 generalize the following result.

Corollary 15. [7, Thm. 2.10] Let (U ,V) be a cotorsion pair in a triangulated category T
and P the full subcategory of projectives in the extrianguated category U . If U has enough
projectives, then we have an equivalence H ∼−→ modP.
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