GENERAL HEART CONSTRUCTION AND THE GABRIEL-QUILLEN EMBEDDING

YASUAKI OGAWA

ABSTRACT. The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. We provide an extension to some extriangulated categories of Auslander's formula, that is, the Serre quotient of the functor category mod C relative to the Auslander's defects is equivalent to lex C, the full subcategory of left exact functor over C. This is closely related to the Gabriel-Quillen embedding theorem. As an application, we show that the heart of a cotorsion pair $(\mathcal{U}, \mathcal{V})$ in a triangulated category is equivalent to lex \mathcal{U} .

Key Words: extriangulated category, Serre quotient, cotorsion pair.2000 Mathematics Subject Classification: Primary 18E10; Secondary 18E30, 18E35.

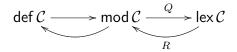
1. INTRODUCTION

Recently, the notion of extriangulated category was introduced in [10] as a simultaneous generalization of triangulated categories and exact categories. It allows us to unify many results on exact categories and triangulated categories in the same framework [4, 8]. A typical example of extriangulated categories (which are possibly neither triangulated nor exact) is an extension-closed subcategory in a triangulated category. Especially, the cotorsion class of a cotorsion pair in a triangulated category has a natural extriangulated structure.

In [2], it was proved that, for any abelian category \mathcal{A} , the Yoneda embedding \mathbb{Y} from \mathcal{A} to the category $\mathsf{mod} \mathcal{A}$ of finitely presented functors from \mathcal{A} to the category of abelian groups, has an exact left adjoint Q. Moreover the adjoint pair gives rise to a localization sequence

$$\operatorname{def} \mathcal{A} \xrightarrow{\qquad } \operatorname{mod} \mathcal{A} \xrightarrow{\qquad Q \\ \bigvee} \mathcal{A}$$

which is called Auslander's formula in [6]. Here def \mathcal{A} denotes the full subcategory of Auslander's defects in mod \mathcal{A} (see Definition 1). The first aim of this article is to present an extension to extriangulated categories of Auslander's formula: for some extriangulated categories \mathcal{C} , there exists a localization sequence



The detailed version of this paper will be submitted for publication elsewhere.

where $\mathsf{lex} \mathcal{C}$ denotes the full subcategory of left exact functors in $\mathsf{mod} \mathcal{C}$ (Theorem 5). Subsequently, using the composed functor $E_{\mathcal{C}} := Q \circ \mathbb{Y} : \mathcal{C} \to \mathsf{mod} \mathcal{C} \to \mathsf{lex} \mathcal{C}$, we provide characterizations for a given extriangulated category \mathcal{C} to be exact and abelian, respectively.

Furthermore, considering an expansion of $\operatorname{\mathsf{def}}\nolimits \mathcal C$ by taking the direct colimits, namely,

$$\overline{\operatorname{\mathsf{def}}}\, \mathcal{C} := \{S \in \operatorname{\mathsf{Mod}}\, \mathcal{C} \mid S \text{ is a direct colimit of objects in } \operatorname{\mathsf{def}}\, \mathcal{C}\},\$$

we construct a localization sequence of $\operatorname{\mathsf{Mod}}\nolimits \mathcal{C}$ relative to $\overrightarrow{\operatorname{\mathsf{def}}\nolimits \mathcal{C}}$ with a canonical equivalence $\frac{\operatorname{\mathsf{Mod}}\nolimits \mathcal{C}}{\operatorname{\operatorname{def}}\nolimits \mathcal{C}} \simeq \operatorname{\mathsf{Lex}}\nolimits \mathcal{C}$. We explain that, if \mathcal{C} is exact, this localization sequence recovers the Gabriel-Quillen embedding functor (Section 3).

Our second result is an application for a cotorsion pair $(\mathcal{U}, \mathcal{V})$ in a triangulated category \mathcal{T} . In [9, 1], it was proved that there exists an abelian category $\underline{\mathcal{H}}$ associated to the cotorsion pair, called the heart, and a cohomological functor $\mathbb{H} : \mathcal{T} \to \underline{\mathcal{H}}$. This result has been shown for two extremal cases [3, 5], namely, t-structures and 2-cluster tilting subcategories (see [9, Proposition 2.6] for details). Since the cotorsion class \mathcal{U} has a natural extriangulated structure, we have thus obtained the localization sequence $\operatorname{def} \mathcal{U} \to \operatorname{mod} \mathcal{U} \to \operatorname{lex} \mathcal{U}$. Using this localization, we provide a good understanding for a construction of the heart and the cohomological functor, especially, there exists an equivalence $\underline{\mathcal{H}} \xrightarrow{\sim} \operatorname{lex} \mathcal{U}$.

Notation and convention. For an additive category \mathcal{C} , a *(right)* \mathcal{C} -module is defined to be a contravariant functor $\mathcal{C} \to \mathsf{Ab}$ and a morphism $X \to Y$ between \mathcal{C} -modules X and Y is a natural transformation. Thus we define an abelian category $\mathsf{Mod}\,\mathcal{C}$ of \mathcal{C} -modules. In the functor category $\mathsf{Mod}\,\mathcal{C}$, the morphism-space $(\mathsf{Mod}\,\mathcal{C})(X,Y)$ is usually denoted by $\operatorname{Hom}_{\mathcal{C}}(X,Y)$. We denote by $\mathsf{mod}\,\mathcal{C}$ the full subcategory of finitely presented \mathcal{C} -module in $\mathsf{Mod}\,\mathcal{C}$.

2. Auslander's defects over extriangulated categories

Throughout this section, the symbol C denotes an extriangulated category which admits weak-kernels (see [10] for the definition). We firstly show that the subcategory of defects in mod C forms a Serre subcategory.

Definition 1. Let $Z \longrightarrow Y \longrightarrow X \xrightarrow{\delta}$ be an \mathbb{E} -triangle in an extriangulated category \mathcal{C} . Then we have an exact sequence $(-, Z) \to (-, Y) \to (-, X) \to \tilde{\delta} \to 0$ in mod \mathcal{C} . The functor $\tilde{\delta}$ is called a *defect of* δ . We denote by def \mathcal{C} the full subcategory in mod \mathcal{C} consisting of all functors isomorphic to defects.

This notion was originally introduced by Auslander in the case that \mathcal{C} is abelian.

Proposition 2. Let C be an extriangulated category with weak-kernels. Then, the subcategory def C forms a Serre subcategory in mod C.

Thus we have a Serre quotient of $\mathsf{mod} \mathcal{C}$ relative to $\mathsf{def} \mathcal{C}$. We consider the following perpendicular category

 $(\operatorname{\mathsf{def}}\nolimits\mathcal{C})^{\perp} := \{F \in \operatorname{\mathsf{mod}}\nolimits\mathcal{C} \mid \operatorname{Hom}_{\mathcal{C}}(G,F) = 0 = \operatorname{Ext}^1_{\mathcal{C}}(G,F) \text{ for any } G \in \operatorname{\mathsf{def}}\nolimits\mathcal{C}\}.$

To understand the Serre quotient, it is basic to study the perpendicular category. The following proposition shows that $(\operatorname{def} \mathcal{C})^{\perp}$ coincides with the full subcategory of left exact functors.

Definition 3. Let \mathcal{A} and $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an abelian category and an extriangulated category, respectively. A contravariant functor $F : \mathcal{C} \to \mathcal{A}$ is said to be *left exact*, if F sends a conflation $Z \to Y \to X$ to an exact sequence $0 \to FZ \to FY \to FX$. We denote by $\mathsf{lex}\mathcal{C}$ (resp. $\mathsf{Lex}\mathcal{C}$) the full subcategory of all left exact functors in $\mathsf{mod}\mathcal{C}$ (resp. $\mathsf{Mod}\mathcal{C}$).

Let us remark that, if \mathcal{C} is a triangulated category, the left exact functors should be zero.

Proposition 4. Let C be an extriangulated category with weak-kernels. Then, we have an equality $(\det C)^{\perp} = \ker C$.

The following is our first result which directly follows from Propositions 2 and 4.

Theorem 5. Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category with weak-kernels. Then, we have a Serre quotient

(2.1)
$$\operatorname{def} \mathcal{C} \longrightarrow \operatorname{mod} \mathcal{C} \xrightarrow{Q} \xrightarrow{\operatorname{mod} \mathcal{C}}_{\operatorname{def} \mathcal{C}}.$$

Moreover, if the quotient functor Q has a right adjoint, we have a localization sequence

$$(2.2) \qquad \qquad \operatorname{def} \mathcal{C} \xrightarrow{Q} \operatorname{mod} \mathcal{C} \xrightarrow{Q} \operatorname{lex} \mathcal{C}$$

where R deotes the canonical inclusion.

If C is abelian, the above localization sequence (2.2) is nothing other than the following Auslander's formula ([2, p. 205]).

Proposition 6 (Auslander's formula). Suppose that C is abelian. Then, the Yoneda embedding $\mathbb{Y} : C \hookrightarrow \mathsf{mod} C$ admits an exact left adjoint Q. Moreover, we have a localization sequence:

$$\operatorname{def} \mathcal{C} \xrightarrow{\qquad } \operatorname{mod} \mathcal{C} \xrightarrow{\qquad Q \qquad } \mathcal{C}.$$

In particular, Auslander's formula and Theorem 5 tell us that, for abelian category \mathcal{C} : (1) the subcategory def \mathcal{C} is localizing, namely, the associated quotient functor Q: mod $\mathcal{C} \to \frac{\text{mod }\mathcal{C}}{\text{def }\mathcal{C}}$ has a right adjoint; (2) there exists an equivalence $\mathcal{C} \simeq \text{lex }\mathcal{C}$. However, even if a given category \mathcal{C} is exact, the quotient functor Q does not necessarily have a right adjoint (see [11, Example 2.10]).

The following theorem provides characterizations for \mathcal{C} to be exact or abelian via the functor $E_{\mathcal{C}} := Q \mathbb{Y} : \mathcal{C} \to \frac{\operatorname{mod} \mathcal{C}}{\operatorname{def} \mathcal{C}}$.

Theorem 7. Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category with weak-kernels. Then the following hold.

- (1) The functor $E_{\mathcal{C}}$ is exact and fully faithful if and only if \mathcal{C} is an exact category.
- (2) The functor $E_{\mathcal{C}}$ is an exact equivalence if and only if \mathcal{C} is an abelian category. If this is the case, we have an equivalence $\mathcal{C} \simeq \text{lex } \mathcal{C}$.

2.1. The case of enough projectives. We study the case that an extriangulated category \mathcal{C} has enough projectives.

Definition 8. Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. We say that \mathcal{C} has enough projectives if there exists a full subcategory \mathcal{P} in \mathcal{C} with $\mathbb{E}(\mathcal{P},\mathcal{C}) = 0$ and, for every $C \in \mathcal{C}$, there exists a conflation $C' \to P \to C$ with $P \in \mathcal{P}$.

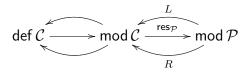
In this case, we have nicer forms of the quotient functor $Q : \operatorname{\mathsf{mod}} \mathcal{C} \to \frac{\operatorname{\mathsf{mod}} \mathcal{C}}{\operatorname{\mathsf{def}} \mathcal{C}}$ and the functor $E_{\mathcal{C}}: \mathcal{C} \to \frac{\operatorname{mod} \mathcal{C}}{\operatorname{def} \mathcal{C}}$.

Proposition 9. Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category with weak-kernels which has enough projectives. Let \mathcal{P} be the subcategory of projectives in \mathcal{C} and consider the restriction functor $\operatorname{res}_{\mathcal{P}} : \operatorname{mod} \mathcal{C} \to \operatorname{mod} \mathcal{P}$. Then the following hold.

- (1) There exists an equivalence $Q' : \frac{\operatorname{mod} \mathcal{C}}{\operatorname{def} \mathcal{C}} \simeq \operatorname{mod} \mathcal{P}$ with $\operatorname{res}_{\mathcal{P}} \cong Q' \circ Q$. (2) The functor $E_{\mathcal{C}} : \mathcal{C} \to \operatorname{mod} \mathcal{P}$ sends X to $\operatorname{Hom}_{\mathcal{C}}(-, X)|_{\mathcal{P}}$, where $\operatorname{Hom}_{\mathcal{C}}(-, X)|_{\mathcal{P}}$ is a restricted functor on \mathcal{P} .
- (3) An equality def $\mathcal{C} = \operatorname{mod}(\mathcal{C}/[\mathcal{P}])$ holds in mod \mathcal{C} .

We end this section by mentioning that, in the case that \mathcal{C} is an exact category having enough projectives, the quotient functor $Q : \operatorname{mod} \mathcal{C} \to \frac{\operatorname{mod} \mathcal{C}}{\operatorname{def} \mathcal{C}} \simeq \operatorname{mod} \mathcal{P}$ always admits a right adjoint.

Proposition 10. Let $(\mathcal{C}, \mathbb{E})$ be an exact category with weak-kernels which has enough projectives. Then, the restriction functor $\operatorname{res}_{\mathcal{P}} : \operatorname{mod} \mathcal{C} \to \operatorname{mod} \mathcal{P}$ admits a right adjoint R. Moreover, it induces a recollement



3. Connection to the Gabriel-Quillen embedding theorem

In this section, we study a connection between the localization sequence (2.2) and the Gabriel-Quillen embedding theorem. Let \mathcal{C} be a skeletally small extriangulated category with weak-kernels. We denote by $\overline{\operatorname{def} \mathcal{C}}$ the full subcategory in $\operatorname{Mod} \mathcal{C}$ consisting of direct colimits of objects in $\operatorname{def} \mathcal{C}$.

Theorem 11. Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be a skeletally small extriangulated category with weak-kernels. Then, the Serre quotient (2.1) induces the following localization sequence

$$(3.1) \qquad \qquad \overrightarrow{\operatorname{def} \mathcal{C}} \longrightarrow \operatorname{Mod} \mathcal{C} \longrightarrow \operatorname{Lex} \mathcal{C}$$

where R denotes the canonical inclusion. Moreover, the composed functor $\mathcal{C} \hookrightarrow \mathsf{Mod}\,\mathcal{C} \to$ Lex C is isomorphic to the Gabriel-Quillen embedding functor.

4. General heart construction versus Left exact functors

Throughout this section, we fix a triangulated category \mathcal{T} with a translation [1]. Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair in \mathcal{T} (equivalently, $(\mathcal{U}, \mathcal{V}[1])$ forms a torsion pair in \mathcal{T}). Since \mathcal{U} is extension-closed and contravariantly finite in \mathcal{T} , it gives rise to an extriangulated category with weak-kernels by setting $\mathbb{E}(+, -) := \mathcal{U}(+, -[1])$. For this extriangulated category \mathcal{U} , the associated quotient functor $Q : \operatorname{mod} \mathcal{U} \to \frac{\operatorname{mod} \mathcal{U}}{\operatorname{def} \mathcal{U}}$ has a right adjoint.

Proposition 12. The quotient functor $Q : \operatorname{mod} \mathcal{U} \to \frac{\operatorname{mod} \mathcal{U}}{\operatorname{def} \mathcal{U}}$ has a right adjoint. Moreover, there exists a localization sequence

$$\operatorname{def} \mathcal{U} \xrightarrow{\qquad } \operatorname{mod} \mathcal{U} \xrightarrow{\qquad Q \qquad} \operatorname{lex} \mathcal{U}$$

where R denotes the canonical inclusion.

Finally we study a connection between $\text{lex } \mathcal{U}$ and the heart of the cotorsion pair $(\mathcal{U}, \mathcal{V})$. Let us introduce the following notion: For two classes \mathcal{U} and \mathcal{V} of objects in \mathcal{T} , we denote by $\mathcal{U} * \mathcal{V}$ the class of objects X occurring in a triangle $U \to X \to V \to U[1]$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

Definition 13. Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair in a triangulated category \mathcal{T} . We define the following associated categories:

- Put $\mathcal{W} := \mathcal{U} \cap \mathcal{V};$
- For a sequence $\mathcal{W} \subseteq \mathcal{S} \subseteq \mathcal{T}$ of subcategories, we put $\underline{\mathcal{S}} := \mathcal{S}/[\mathcal{W}]$ and denote by $\pi : \mathcal{S} \to \underline{\mathcal{S}}$ the canonical ideal quotient functor;
- We put $\mathcal{T}^+ := \mathcal{W} * \mathcal{V}[1], \mathcal{T}^- := \mathcal{U}[-1] * \mathcal{W} \text{ and } \mathcal{H} := \mathcal{T}^+ \cap \mathcal{T}^-.$

We call the category $\underline{\mathcal{H}}$ the heart of $(\mathcal{U}, \mathcal{V})$.

As mentioned in Introduction, the heart $\underline{\mathcal{H}}$ is abelian and there exists a *cohomological* functor $\mathbb{H} : \mathcal{T} \to \underline{\mathcal{H}}$, namely, \mathbb{H} sends any triangle $X \to Y \to Z \to X[1]$ in \mathcal{T} to an exact sequence $\mathbb{H}X \to \mathbb{H}Y \to \mathbb{H}Z \to \mathbb{H}X[1]$ in $\underline{\mathcal{H}}$. The following provides us a good understanding for the heart $\underline{\mathcal{H}}$ and the cohomological functor \mathbb{H} .

Theorem 14. Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair in a triangulated category \mathcal{T} . Then the following hold.

- (1) There exists a natural equivalence $\Psi : \underline{\mathcal{H}} \xrightarrow{\sim} \mathsf{lex} \mathcal{U}[-1].$
- (2) The cohomological functor \mathbb{H} is isomorphic to the composed functor $\mathcal{T} \to \operatorname{mod} \mathcal{U}[-1] \xrightarrow{Q} \operatorname{lex} \mathcal{U}[-1] \xrightarrow{\Psi^{-1}} \underline{\mathcal{H}}.$

The construction of the equivalence $\Psi : \underline{\mathcal{H}} \xrightarrow{\sim} \text{lex } \mathcal{U}[-1]$ is as follows: By Proposition 12, we have a localization sequence of $\text{mod } \mathcal{U}[-1]$ relative to $\text{def } \mathcal{U}[-1]$. We consider the following diagram:

$$\begin{array}{c} \mathcal{H} & \longrightarrow \mathcal{T} \xrightarrow{\mathbb{Y}_{\mathcal{U}[-1]}} \operatorname{mod} \mathcal{U}[-1] \xrightarrow{Q} \operatorname{lex} \mathcal{U}[-1] \\ \xrightarrow{\pi} \\ \mathcal{H} & \Psi \end{array}$$

There uniquely exists a dotted arrow Ψ which makes the diagram commutative up to isomorphism. Hence, we have an isomorphism $\Psi(\pi(H)) \cong \operatorname{Hom}_{\mathcal{T}}(-,H)|_{\mathcal{U}[-1]}$ for each $H \in \mathcal{H}$, which gives an explicit description of the equivalence Ψ .

Theorem 14 generalize the following result.

Corollary 15. [7, Thm. 2.10] Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair in a triangulated category \mathcal{T} and \mathcal{P} the full subcategory of projectives in the extrianguated category \mathcal{U} . If \mathcal{U} has enough projectives, then we have an equivalence $\underline{\mathcal{H}} \xrightarrow{\sim} \operatorname{mod} \mathcal{P}$.

References

- N. Abe, H. Nakaoka, General heart construction on a triangulated category (II): Associated homological functor, Appl. Categ. Structures 20 (2012), no. 2, 161–174.
- [2] M. Auslander, *Coherent functors*, 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp. 189–231 Springer, New York.
- [3] A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux Pervers (Perverse sheaves)*. Analysis and Topology on Singular Spaces, I, Luminy, 1981, Asterisque 100 (1982) 5-171 (in French).
- [4] O. Iyama, H. Nakaoka, Y. Palu, Auslander-Reiten theory in extriangulated categories, arXiv:1805.03776v2, May. 2018.
- [5] S. Koenig, B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework (English summary), Math. Z. 258(1), 143-160 (2008).
- [6] H. Lenzing, Auslander's work on Artin algebras, in Algebras and modules, I (Trondheim, 1996), 83–105, CMS Conf. Proc., 23, Amer. Math. Soc., Providence, RI, 1998.
- [7] Y. Liu, Hearts of cotorsion pairs are functor categories over cohearts, arXiv:1504.05271v5, Apr. 2015.
- [8] Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra 528 (2019), 96–149.
- H. Nakaoka, General heart construction on a triangulated category (I): Unifying t-structures and cluster tilting subcategories, Appl. Categ. Structures 19 (2011), no. 6, 879–899.
- [10] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Topol. Géom. Différ. Catég, vol LX (2019), Issue 2, 117-193.
- [11] Y. Ogawa, Auslander's defects over extriangulated categories: an application for the General Heart Construction, arXiv:1911.00259, Nov. 2019.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FURO-CHO, CHIKUSA-KU, NAGOYA 464-8602 JAPAN Email address: m11019b@math.nagoya-u.ac.jp