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Abstract. We have studied about group algebras of non-noetherian groups and showed
that they are often primitive if base groups have non-abelian free subgroups. Our main
method includes using two edge-colored graphs. In general our method using these graphs
seems to be effective for group algebras of groups with non-abelian free subgroups. But
there exist some non-Noetherian groups with no non-abelian free subgroups such as
Thompson’s group F . In this talk, we first introduce an application of (undirected) two
edge-colored graphs to group algebras of non-Noetherian groups and then improve our
graph theory in order to enable to investigate group algebras of Thompson’s group F .
Finally, we introduce an application our graph theory to a problem on group algebras of
Thompson’s group F .

1. Introduction

Let G be a group and KG the group algebra of G over a field K. We denote KG \ {0},
the non-zero elements in KG, by KG∗. KG is a ring which has common right multipliers
if for any A and B in KG∗, there exist X and Y in KG∗ such that AX = BY . We begin
with the following simple problem.

Problem 1. Find elements A and B in KG∗ such that AX +BY ̸= 0 for any X and Y
in KG∗. When this is the case, KG does not have common right multipliers.

If G has a non-abelian free subgroup, then we can find elements A and B of KG∗ having
the property desired in Problem 1.

In fact, in this case, G has a subgroup freely generated by infinitely many elements; say
a1, a2, b1, b2, · · · . We let here A = a1 + a2 and B = b1 + b2 and suppose, to the contrary,
that AX+BY = 0 for some X and Y in KG∗. Since X and Y in KG, they are expressed
as follows:

X =
∑
x∈SX

αxx, Y =
∑
y∈SY

βyy,

where αx, βy ∈ K \ {0}, SX = Supp(X) and SY = Supp(Y ). Since AX + BY = 0, we
have

(1.1)
∑
x∈SX

αx(a1x+ a2x) +
∑
y∈SY

βy(b1y + b2y) = 0.

We would like to regard these elements aix and biy as vertices and construct the graph
(V,E, F ) with two edge sets E and F . The graph is called a two-edge coloured graph
(see the next section). We therefore distinguish all of these elements aix and biy even
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if for i ̸= j, aix = ajx
′, biy = bjy

′ or aix = bjy in G, and define the vertex set as
V = {(ai, x), (bi, y) | i = 1, 2, x ∈ SX , y ∈ SY }. Two edge sets are defined as follows:

E = {vw | v, w ∈ V ; v ̸= w, ṽ = w̃ in G}, where ṽ = ax if v = (a, x).
F = {vw | v, w ∈ V ; v ̸= w, either v = (a1, x), w = (a2, x) or v = (b1, y), w = (b2, y)}.
Because of (1.1), all elements of G in the left side of the equation (1.1) are cancelled each
other. That is, for each v1 ∈ V , there exists w1 ∈ V with v1 ̸= w1 such that v1w1 ∈ E,
and then, by the definition of F , there exists v2 ∈ V such that w1v2 ∈ F . We can continue
with this procedure.

We have v1w1 ∈ E, w1v2 ∈ F , · · · . On the other hand, since V is a finite set, we may
assume zm+1 = z1, where vi = c2i−1zi, wi = c2izi+1, ci ∈ {ai, bi | i = 1, 2} and zi ∈ SX∪SY .
We then get c1z1 = c2z2, c3z2 = c4z3, · · · . This implies that c−1

1 c2 · · · c2m−1c2m = 1; a
contradiction, because {ai, bi | i = 1, 2} is a free basis.
We have thus seen that we can find elements A and B of KG which have the property

desired in Problem 1. That is, KG does not have common right multipliers for any field
K provided G has a non-abelian free subgroup.

It is known that KG has common right multipliers for any field K provided G is
amenable. Therefore we see that G is non-amenable if G has a non-abelian free subgroup.
On the other hand, it is an open problem whether Thompson’s group F is amenable or
not.

The definition of amenability is as follows:

Definition 2. A group G is amenable if for P (G) = {S | S ⊆ G}, there exists µ :
P (G) −→ [0, 1] such that

1. µ(G) = 1,
2. if S and T are disjoint subsets of G, then µ(S ∪ T ) = µ(S) + µ(T ),
3. if S ∈ P (G) and g ∈ G, then µ(gS) = µ(S).

2. SR-graphs

As in the previous section, if G has a free subgroup, then it is easy to find elements
A and B of KG such that the right ideal A(KG) + B(KG) generated by A and B is



proper;thus for any X,Y ∈ KG, AX + BY ̸= 1. However, in general, it is often difficult
to find elements Ai (i ∈ I) such that

∑
i∈I AiXi ̸= 1 for any Xi ∈ KG if, for example, Ai

has the form Ai = UiVi + 1 for Vi, Ui ∈ KG. Therefore we need to investigate in which
case an SR-cycle exists in an SR-graph with purely graph theoretical consideration.

In this section, we introduce an SR-graph and an SR-cycle; we show that certain SR-
graphs have SR-cycles. A class of SR-graphs is a subclass of the class of two-edge coloured
graphs which are intensively studied in 1980s and again recently.

Let G = (V,E) be a simple graph (i.e., an undirected graph without loops or multi-
edges) with vertex set V and edge set E. G is a two-edge coloured graph if each of the
edges is coloured either red or blue. We call a path alternating if the successive edges in
G alternate in colour. For any W ⊆ V , we let G[W ] denote the subgraph of G induced by
W , i.e., G[W ] := (W, {vw ∈ E | v, w ∈ W}); let Gv := G[V \ {v}].

We let X(G) denote the set of all cut-vertices of G, i.e., the set of all v ∈ V so that
c(Gv) > c(G). For any terminology and notation which we do not define, we follow [3]
(which can also serve as an introductory text if needed).

The following result is due to Grossman and Häggkvist [7]:

Theorem 3. ([7, Theorem]) Let G be a two-edge coloured graph so that every vertex is
incident with at least one edge of each colour. Then either G has a cut vertex separating
colours, or G has an alternating cycle.

We let I(G) denote the isolated vertices of G, i.e., the set of all v ∈ V for which vw /∈ E
for all w ∈ V . We denote by C(G) the set of components of G, i.e., the set of subgraphs
of G which partition G, so that in each subgraph any two vertices are joined by a path,
and so that no vertices which do not lie in the same subgraph are joined by a path in
G; we let c(G) := |C(G)|. We say that G is connected if c(G) = 1. We begin with two
definitions, an SR-graph and an SR-cycle:



Definition 4. Let G := (V,E) and H := (V, F ). If every component of G is a complete
graph, and if E ∩ F = ∅, then we call the triple S = (V,E, F ) a sprint relay graph,
abbreviated SR-graph. We view S as the graph (V,E∪F ), guaranteed simple as E∩F = ∅,
with edges partitioned into E and F ; we denote S by (G,H) rather than (V,E, F ) when
convenient.

Definition 5. A cycle in an SR-graph (V,E, F ) is called an SR-cycle if its edges belong
alternatively to E and not to E; more formally, we call cycle (V ′, E ′) an SR-cycle if there
is labeling V ′ = {v1, v2, . . . , vc} and E ′ = {v1v2, v2v3, . . . , vc−1vc, vcv1} so that vivi+1 ∈ E
if and only if i is odd, for some even c.

Recall that X(G) denote the set of all cut-vertices of G. The following result follows
from Theorem 3:

Lemma 6. If S has no SR-cycle, then I(G) ∪ I(H) ∪X(S) ̸= ∅.

Let S = (V,E, F ), G = (V,E), and H = (V, F ) so that V ̸= ∅, every component of G
complete, and S an SR-graph. Moreover, let H1,H2, . . . ,Hn denote the components of
H with Hi = (Vi, Ei) over i ∈ [n] = {1, 2, . . . , n}. We first address the case in which Hi

is a complete graph for each i ∈ [n]. By making of Lemma 6 above, we can prove the
following theorem:

Theorem 7. ([2, Theorem 2.3]) If S is connected and each component of H is complete,
then S has an SR-cycle if and only if c(G) + c(H) < |V |+ 1.

Now, let I := I(G), W := V \ I, Wi := Vi \ I, and say H[Wi] = (Wi, Fi). For
any m1,m2, . . . ,mk ∈N, we let Km1,m2,...,mk

denote the complete multipartite graph with
partite sets of size m1,m2, . . . ,mk, i.e., the graph (V ′, E ′) so that V ′ can be partitioned
into sets P1, P2, . . . , Pk called partite sets, with |Pi| = mi and vw ∈ E ′ if and only if v and
w are in different partite sets for all v, w ∈ V . We let µ(Km1,m2,...,mk

) := maxi∈[k]{mi}.
We now handle the case in which each component of H is complete multipartite. We can
then get the following theorem:

Theorem 8. ([2, Theorem 2.6]) Assume that Hi is a complete multipartite graph for each
i ∈ [n]. If |I| ≤ n and |Vi| > 2µ(Hi) for each i ∈ [n], then S has an SR-cycle.

Theorem 7 and Theorem 8 seem to be effective for the group algebra of a group with a
non-abelian free subgroup. In addition, non-Noetherian groups often include non-abelian
free subgroups. Therefore, we can show primitivity group algebras for such groups by
using these theorems (e.g. [2], [8], [1]). However, there exist some non-Noetherian groups
with no non-abelian free subgroups; for example Thompson’s group F and a free Burnside
group of large exponent. We will next introduce the Thompson’s group F and then
improve our method to be effective for the group.

3. Thompson’s group F

We here briefly introduce the Thompson’s group F . We refer the reader to Can-
non, Floyd, and Parry [5] for a more detailed discussion of the Thompson’s groups
(F, T and V ).



Originally Thompson’s groups F ⊆ T ⊆ V were defined by Richard Thompson in 1965
to construct finitely-presented groups with unsolvable word problems [6]. The Thompson’s
group F was rediscovered by homotopy theorists in connection with work on homotopy,
and then Brin and Squier [4] proved that F does not contain a free group of rank greater
than one. After that, many papers on F have been produced until today.

Thompson’s group F is defined as a group of piecewise linear maps of the interval [0, 1]
as follows:

Definition 9. Thompson’s group F is the group (under composition) of those homeo-
morphisms of the interval [0, 1], which satisfy the following conditions:

(1) they are piecewise linear and orientation-preserving,

(2) in the pieces where the maps are linear, the slope is always a power of 2, and

(3) the breakpoints are dyadic, i.e., they belong to the set D × D, where
D = [0, 1] ∩Z[1

2
].

Example 10. The following two functions A and B are elements in Thompson’s group
F .

A(x) =



x

2
0 ≤ x ≤ 1

2

x− 1

4

1

2
≤ x ≤ 3

4

2x− 1
3

4
≤ x ≤ 1

B(x) =



x 0 ≤ x ≤ 1

2

x

2
+

1

4

1

2
≤ x ≤ 3

4

x− 1

8

3

4
≤ x ≤ 7

8

2x− 1
7

8
≤ x ≤ 1

An element of F can be represented by a tree pair diagram which is a pair of binary
trees with the same number of leaves.

Formally, a tree pair diagram is an ordered pair (R,S) of τ -trees such that R and S
have the same number of leaves, where τ is defined as follows. The vertices of τ are the



standard dyadic intervals in [0, 1]. An edge of τ is pair (I, J) of standard dyadic intervals
I and J such that either I is the left half of J , in which case (I, J) is a left edge, or I is
the right half of J , in which case (I, J) is a right edge.

For example, A and B described above are as follows:

Actually, Thompson’s group F is generated by A and B above, and so F is finitely
generated. Moreover, F is finitely presented. For example, it is known the following
presentation:

⟨a, b | [ab−1, a−1ba], [ab−1, a−2ba2]⟩,

where [x, y] denotes the commutator of x and y. On the other hand, F has the following
presentation:

F = ⟨x0, x1, x2, · · ·xn, · · · , | x−1
i xjxi = xj+1, for i < j⟩.

For the above presentation, every non-trivial element of F can be expressed in unique
normal form

xβ0

0 xβ0

1 · · ·xβn
n x−αn

n · · ·x−α1
1 x−α0

0 ,

where n, α0, . . . , αn, b0, · · · , bn are non-negative integers such that
1. exactly one of an and bn is non-zero and
2. if ak > 0 and bk > 0 for some integer k with 0 ≤ k < n, then ak+1 > 0 or bk+1 > 0.
As is mentioned above, F is finitely generated and finitely presented. In addition, it is

known that F is torsion free and has no non-abelian free subgroup.

4. A directed SR-graph

We first see the following example to know why we need an improvement of SR-graph
theory.

Example 11. Let ai and bi (i = 1, 2, 3) be in G, and set A = a1+a2+a3, B = b1+b2+b3,
A1 = a1a

−1
2 and B1 = b1b

−1
2 . For any X =

∑
i αixi and Y =

∑
j βjyj in KG∗, We consider

the following SR-cycle in an SR-graph:



We have the equation A1B1B1A
−1
1 B−1

1 = 1. In general, an SR-cycle in this SR-graph

can induce an equation of the form A±α1
1 B±β1

1 · · ·A±αm
1 B±βm

1 = 1. Hence, if A1 and B1 are
free generators in G, then the above equation induce a contradiction. This means that
our method is effective for the group algebra of a group with a non-abelian free subgroup.

We would like to improve our method so as to be effective for the group algebra of
a group which has no non-abelian free subgroup. To do this, we change a part of an
SR-graph which is undirected into a directed graph. We call it a DSR-graph and define
as follows:

Definition 12. Let G := (V,E) and H := (V, F ). If every component of G is a complete
graph, H is a simple directed graph and if E∩F = ∅, then we call the triple D = (V,E, F )
a DSR-graph.

Definition 13. A cycle in an DSR-graph (V,E, F ) is called an DSR-cycle if its edges
belong alternatively to E and F ; more formally, we call cycle (V ′, E ′) an DSR-cycle if
there is labeling V ′ = {v1, v2, . . . , vc} and E ′ = {v1v2, v2v3, . . . , v2m−1v2m, v2mv1} so that
v2i−1v2i ∈ E and (v2i, v2i+1) ∈ F .

We might be able to get a desired cycle which induce a equation containing only positive
words by using a DSR-graph. This means that our new method does not always need to
be a free subgroup in a group. In fact, by making use of our new graph theory, we can
get the following result:

Theorem 14. Let F be a Thompson’s group F . If there exist elements ai, bi (i ∈ [3]) in
F such that for ui ∈ {a1a−1

2 , a2a
−1
3 , a3a

−1
1 , b1b

−1
2 , b2b

−1
3 , b3b

−1
1 }, u1 · · ·un = 1 implies that

ui ̸= cjc
−1
k and ui+1 = ckc

−1
l for some i ∈ [3] and ci ∈ {ai, bi | i ∈ [3]}, then two elements

A =
∑3

i=1 ai and B =
∑3

i=1 bi of KF satisfy AX +BY ̸= 0 for any X,Y ∈ KG∗.
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