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Abstract. In commutative ring theory, Knörrer’s periodicity theorem is a powerful tool
to study Cohen-Macaulay representation theory over hypersurfaces, and matrix factor-
izations are essential ingredients to prove the theorem. In order to study noncommutative
hypersurfaces, which are major objects of study in noncommutative algebraic geometry,
we introduce a notion of noncommutative matrix factorization and show noncommuta-
tive graded versions of Eisenbud’s matrix factorization theorem and Knörrer’s periodicity
theorem. Furthermore, we give four graphical methods to compute the stable category
of graded maximal Cohen-Macaulay modules over a skew quadric hypersurface.

1. Introduction

This article is based on our works [4] and [5].
Let S = k[[x1, . . . , xn]] be the formal power series ring in n variables over an alge-

braically closed field k of characteristic not equal to 2, and let f ∈ (x1, . . . , xn)
2 ⊂ S be

a nonzero element. A matrix factorization of f is a pair (Φ,Ψ) of r × r square matrices
whose entries are elements in S such that ΦΨ = ΨΦ = fEr. In [2, Section 6], Eisen-
bud showed the factor category MFS(f) := MFS(f)/ add{(1, f), (f, 1)} of the category
MFS(f) of matrix factorizations of f is equivalent to the stable category CM(S/(f)) of
maximal Cohen-Macaulay S/(f)-modules. By this equivalence, we can apply the theory
of (reduced) matrix factorizations to the representation theory of Cohen-Macaulay mod-
ules (with no free summand) over hypersurfaces. In [3, Theorem 3.1], Knörrer proved the
following famous theorem, which is now called Knörrer’s periodicity theorem.

Theorem 1 ([3]). Let S = k[[x1, . . . , xn]] and 0 ̸= f ∈ (x1, . . . , xn)
2. Then

CM(S/(f)) ∼= MFS(f)
∼= MFS[[u,v]](f + u2 + v2) ∼= CM(S[[u, v]]/(f + u2 + v2)).

In commutative ring theory, Knörrer’s periodicity theorem is a powerful tool to study
Cohen-Macaulay representation theory. In this article, we discuss what happens if we
replace S in the above theorem by an AS-regular algebra, which is a noncommutative
graded analogue of a regular local ring in noncommutative algebraic geometry.

2. Preliminaries

2.1. Noncommutative Hypersurfaces. Throughout this paper, we fix an algebraically
closed field k of characteristic not equal to 2.
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The following classes of algebras are main objects of study in noncommutative algebraic
geometry.

Definition 2. A noetherian connected graded algebra S = k⊕ S1 ⊕ S2 ⊕ · · · is called an
AS-regular algebra (resp. AS-Gorenstein algebra) of dimension n if

(1) gldimS = n <∞ (resp. injdimS S = injdimSo S = n <∞), and

(2) ExtiS(k, S)
∼= ExtiSo(k, S) ∼=

{
0 if i ̸= n

k if i = n

where So is the the opposite ring of S.
A quantum polynomial algebra of dimension n is a noetherian AS-regular algebra A of

dimension n with HS(t) :=
∑

i∈Z(dimk Si)t
i = (1− t)−n.

Definition 3. Let S be a ring.

(1) f ∈ S is called regular if, for every a ∈ S, af = 0 or fa = 0 implies a = 0.
(2) f ∈ S is called normal if Sf = fS.

Note that S is a domain if and only if every non-zero element is regular. Moreover a
central element is normal, so if S is commutative, then every element is normal.

If S is a quantum polynomial algebra of dimension n and f ∈ S is a homogeneous
regular normal element of positive degree d, then A = S/(f) is a noetherian AS-Gorenstein
algebra of dimension n − 1, and A is regarded as (a homogeneous coordinate ring of) a
noncommutative hypersurface of degree d.

2.2. Totally Reflexive Modules. Let C be an additive category and S a set of objects
of C closed under direct sums. Then the factor category C/S has the same objects as
C and the morphism space is given by HomC/S(M,N) = HomC(M,N)/S(M,N) where
S(M,N) consists of all morphisms from M to N that factor through objects in S. Note
that C/S is also an additive category.

Definition 4. Let A be a (graded) ring. A (graded) right A-module M is called totally
reflexive if

(1) ExtiA(M,A) = 0 for all i ≥ 1,
(2) ExtiAo(HomA(M,A), A) = 0 for all i ≥ 1, and
(3) the natural biduality map M → HomAo(HomA(M,A), A) is an isomorphism.

The category consisting of finitely generated totally reflexive modules is denoted by
TR(A). (The category consisting of finitely generated graded totally reflexive modules is
denoted by TRZ(A).)

Let P be a set of finitely generated (graded) free right A-modules. Then the stable
category of TR(A) is defined by TR(A) := TR(A)/P . (The stable category of TRZ(A) is
defined by TRZ(A) := TRZ(A)/P .)
If A is a noetherian AS-Gorenstein algebra, then

CMZ(A) := {finitely generated graded modulesM such that ExtiA(M,A) = 0 for all i ≥ 1}

coincides with TRZ(A), and hence CMZ(A) := CMZ(A)/P coincides with TRZ(A).



3. Noncommutative Matrix Factorizations

Definition 5 ([4]). Let S be a ring and f ∈ S an element. A noncommutative right
matrix factorization of f over S is a sequence of right S-module homomorphisms {ϕi :
F i+1 → F i}i∈Z where F i are free right S-modules of rank r for some r ∈ N such that
there is a commutative diagram

F i+2

∼=
��

ϕiϕi+1

// F i

∼=
��

Sr
f · // Sr

for every i ∈ Z. A morphism µ : {ϕi : F i+1 → F i}i∈Z → {ψi : Gi+1 → Gi}i∈Z of non-
commutative right matrix factorizations is a sequence of right S-module homomorphisms
{µi : F i → Gi}i∈Z such that the diagram

F i+1

µi+1

��

ϕi // F i

µi

��
Gi+1 ψi

// Gi

commutes for every i ∈ Z. We denote by NMFS(f) the category of noncommutative right
matrix factorizations.

Let S be a graded ring and f ∈ Sd a homogeneous element. A noncommutative graded
right matrix factorization of f over S is a sequence of graded right S-module homomor-
phisms {ϕi : F i+1 → F i}i∈Z where F i are graded free right S-modules of rank r for some
r ∈ N such that there is a commutative diagram

F i+2

∼=
��

ϕiϕi+1

// F i

∼=
��⊕r

s=1 S(−mi+2,s)
⊕r

s=1 S(−mis − d)
f · //

⊕r
s=1 S(−mis)

for every i ∈ Z. We can similarly define the category of noncommutative graded right
matrix factorizations NMFZ

S(f).

Remark 6. Let S be a (graded) ring and f ∈ S a (homogeneous) element.

(1) Let {ϕi : F i+1 → F i}i∈Z be a noncommutative right matrix factorization of f
over S of rank r. We often identify F i = Sr. In this case, every ϕi is the left
multiplication of a matrix Φi whose entries are elements in S, so that ΦiΦi+1 = fEr
where Er is the identity matrix of size r.

(2) Let {ϕi : F i+1 → F i}i∈Z be a noncommutative graded right matrix factorization
of f over S of rank r such that F i =

⊕r
s=1 S(−mis). In this case, we may write

ϕi = (ϕist) where ϕist : S(−mi+1,t) → S(−mis) is the left multiplication of an
element in Smi+1,t−mis

, so ϕi is the left multiplication of a matrix Φi whose entries
are homogeneous elements in S, so that ΦiΦi+1 = fEr where Er is the identity
matrix of size r.



Definition 7 ([4]). Let S be a ring and f ∈ S. For a free right S-module F , we define
ϕF , Fϕ ∈ NMFS(f) by

ϕ2i
F = idF : F → F, ϕ2i+1

F = f · : F → F,

Fϕ
2i = f · : F → F, Fϕ

2i+1 = idF : F → F.

We define F := {ϕF | F ∈ modS is free}, G := {ϕF ⊕ Gϕ | F,G ∈ modS are free} and
NMFS(f) := NMFS(f)/G.
Let S be a graded ring and f ∈ Sd. For a graded free right S-module F , we define

ϕF , Fϕ ∈ NMFZ
S(f) by

ϕ2i
F = idF : F (−id) → F (−id), ϕ2i+1

F = f · : F (−id− d) → F (−id),
Fϕ

2i = f · : F (−id− d) → F (−id), Fϕ
2i+1 = idF : F (−id− d) → F (−id− d).

We define F := {ϕF | F ∈ grmodS is free}, G := {ϕF ⊕ Gϕ | F,G ∈ grmodS are free}
and NMFZ

S(f) := NMFZ
S(f)/G.

Theorem 8 ([4]). If S is a noetherian ring, f ∈ S is a regular normal element, and
A = S/(f), then there are fully faithful embeddings

NMFS(f)/F → TR(A) and NMFS(f) → TR(A)

A similar result holds in the graded case.

The following theorem is a noncommutative graded version of Eisenbud’s matrix fac-
torization theorem.

Theorem 9 ([1], [4]). Let S be a graded quotient algebra of a noetherian AS-regular
algebra and f ∈ Sd a regular normal element, and A = S/(f). Then

NMFZ
S(f)/F ∼= TRZ

S(A) and NMFZ
S(f)

∼= TRZ
S(A)

where TRZ
S(A) := {M ∈ TRZ(A) | projdimSM < ∞} and TRZ

S(A) := TRZ
S(A)/P. In

particular, if S is a noetherian AS-regular algebra, then

NMFZ
S(f)/F ∼= CMZ(A) and NMFZ

S(f)
∼= CMZ(A).

4. Knörrer’s Periodicity Theorem

Definition 10. Let S be a (graded) ring and σ a (graded) ring automorphism of S. An
Ore extension S[u;σ] of S by σ is a (graded) ring such that S[u;σ] = S[u] as a (graded)
free right S-module, and au = uσ(a) for a ∈ S.

Theorem 11 ([5]). Let S be a noetherian ring, and f ∈ S a regular normal element.
If σ, τ are ring automorphisms of S such that σ(f) = τ(f) = f and af = fσ(τ(a)) =
fτ(σ(a)) for every a ∈ S, then there is a fully faithful embedding

NMFS(f) → NMFS[u;σ][v;τ ](f + uv).

A similar result holds in the graded case.

The first main result of this article is the following theorem, which is a noncommutative
graded version of Knörrer’s periodicity theorem.



Theorem 12 ([5]). Let S be a noetherian AS-regular algebra and f ∈ S a regular normal
homogeneous element of even degree. If there exists a graded algebra automorphism σ
such that σ(f) = f and af = fσ2(a) for every a ∈ S, then

CMZ(S/(f)) ∼= NMFZ
S(f)

∼= NMFZ
S[u;σ][v;σ](f+u

2+v2) ∼= CMZ(S[u;σ][v;σ]/(f+u2+v2)).

where deg u = deg v = 1
2
deg f .

Note that the technical assumptions in Theorem 12 are needed to guarantee f+u2+v2 ∈
S[u;σ][v;σ] is a homogeneous normal element. If f ∈ S is a regular central homogeneous
element of even degree, then we may take σ = idS to apply Theorem 12.

Theorem 12 is a useful tool to compute CMZ(S/(f)) over a noncommutative hypersur-
face S/(f) since it reduces the number of variables. If f is a central element of degree 2,
then there is another way to reduce the number of variables, which applies only in the
noncommutative setting.

Theorem 13. If S is a quantum polynomial algebra and f ∈ S2 is a regular central
element, then

CMZ(S[u;−1][v;−1]/(f +u2+ v2)) ∼= CMZ(S[u;−1]/(f +u2))×CMZ(S[v;−1]/(f + v2)).

Example 14. If S = k⟨x, y, z⟩/(yz + zy, zx + xz, xy + yx) = k[x][y;−1][z;−1] and
A = S/(x2 + y2 + z2), then

CMZ(A) ∼= CMZ(k[x][y;−1]/(x2 + y2))× CMZ(k[x][z;−1]/(x2 + z2))

∼= CMZ(k[x, y]/(x2 + y2))× CMZ(k[x, z]/(x2 + z2))

∼= Db(mod k2)×Db(mod k2) ∼= Db(mod k4).

5. Knörrer’s Periodicity for Skew Quadric Hypersurfaces

It is well-known that A is the homogeneous coordinate ring of a smooth quadric hy-
persurface in Pn−1 if and only if A ∼= k[x1, . . . , xn]/(x

2
1 + · · · + x2n). Applying the graded

Knörrer’s periodicity theorem (see also Theorem 12), we have

CMZ(A) ∼=

{
CMZ(k[x1]/(x

2
1))

∼= Db(mod k) if n is odd,

CMZ(k[x1, x2]/(x
2
1 + x22))

∼= Db(mod k2) if n is even.

In this section, we study a skew version of this equivalence using graphical methods.
A graph G consists of a set V (G) of vertices and a set E(G) of edges between two

vertices. In this paper, we assume that every graph has no loop and there is at most one
edge between two distinct vertices. An edge between two vertices v, w ∈ V (E) is written
by (v, w) ∈ E(G).

Notation 15. For a symmetric matrix ε := (εij) ∈ Mn(k) such that εii = 1 and εij =
εji = ±1, we fix the following notations:

(1) the standard graded algebra Sε := k⟨x1, . . . , xn⟩/(xixj − εijxjxi), called a (±1)-
skew polynomial algebra in n variables,

(2) the point scheme Eε of Sε,
(3) the central element fε := x21 + · · ·+ x2n ∈ Sε,
(4) Aε := Sε/(fε), and



(5) the graph Gε where V (Gε) = {1, . . . , n} and E(Gε) = {(i, j) | εij = εji = 1}.

Let G be a graph. A graph G′ is a full subgraph of G if V (G′) ⊂ V (G) and E(G′) =
{(v, w) ∈ E(G) | v, w ∈ V (G′)}. For a subset I ⊂ V (G), we denote by G \ I the full
subgraph of G such that V (G \ I) = V (G) \ I. For a full subgraph G′ of G, we define the
complement graph of G′ in G by G \G′ := G \ V (G′).

Definition 16 (Mutation [5]). Let G be a graph and v ∈ V (G). The mutation µv(G) of
G at v is a graph µv(G) where V (µv(G)) = V (G) and

E(µv(G)) = {(v, u) | (v, u) ̸∈ E(G), u ̸= v} ∪ {(u, u′) | (u, u′) ∈ E(G), u, u′ ̸= v}.

Example 17.

G =

1

2

3

4
��
��
�

??
??

?

=⇒ µ2(G) =

1

2

3

4
??

??
?

??
??

? .

Lemma 18 (Mutation Lemma [5]). If Gε′ = µv(Gε) for some v ∈ V (Gε), then CMZ(Aε) ∼=
CMZ(Aε′).

Definition 19 (Relative Mutation [5]). Let v, w ∈ V (G) be distinct vertices. Then
the relative mutation µv←w(G) of G at v with respect to w is a graph µv←w(G) where
V (µv←w(G)) = V (G) and E(µv←w(G)) is given by the following rules:

(1) For distinct vertices u, u′ ̸= v, we define that (u, u′) ∈ E(µv←w(G)) :⇔ (u, u′) ∈
E(G).

(2) For a vertex u ̸= v, w, we define that

(v, u) ∈ E(µv←w(G)) :⇔

{
(v, u) ∈ E(G) and (w, u) ̸∈ E(G), or

(v, u) ̸∈ E(G) and (w, u) ∈ E(G).

(3) We define that (v, w) ∈ E(µv←w(G)) :⇔ (v, w) ∈ E(G).

Example 20.

G =

1
2

3
4

5

6
qqq

11
11
11 M
MM

=⇒ µ6←5(G) =

1
2

3
4

5

6
qqq

11
11
11
qqqqqqq

.

Lemma 21 (Relative Mutation Lemma [5]). Suppose that u ∈ V (Gε) is an isolated vertex.
If Gε′ = µv←w(Gε) for some distinct v, w ∈ V (Gε) not equal to u, then CMZ(Aε) ∼=
CMZ(Aε′).

Definition 22. An isolated segment [v, w] of a graph G consists of distinct vertices v, w ∈
V (G) with an edge (v, w) ∈ E(G) between them such that neither v nor w are connected
by an edge to any other vertex.

Lemma 23 (Knörrer’s Reduction [5]). Suppose that [v, w] is an isolated segment in Gε.
If Gε′ = Gε \ {v, w}, then CMZ(Aε) ∼= CMZ(Aε′).



Note that Knörrer’s reduction is a consequence of Theorem 12.

Lemma 24 (Two Points Reduction [5]). Suppose that v, w ∈ V (Gε) are two distinct
isolated vertices. If Gε′ = Gε \ {v}, then CMZ(Aε) ∼= CMZ(Aε′)

×2.

Note that two points reduction is a consequence of Theorem 13.
The second main result of this article is the following theorem, which shows that the

four graphical operations are very powerful in computing CMZ(Aε).

Theorem 25 ([5]). By using mutation, relative mutation, Knörrer reduction, and two
points reduction, we can completely compute CMZ(Aε) up to n = 6.

Example 26. Let Sε = k⟨x1, . . . , x6⟩/(xixj − εijxjxi) where

ε12 = ε14 = ε23 = ε25 = ε35 = ε36 = ε46 = ε56 = +1,

ε13 = ε15 = ε16 = ε24 = ε26 = ε34 = ε45 = −1.

Let Aε = Sε/(fε) where fε = x21 + · · ·+ x26 ∈ Sε. Then

Gε =

1
2

3
4

5

6
qqq

MMM
MMM

M qqqqqqq


.

One can check that

G′ := µ4µ2(Gε) =

1
2

3
4

5

6

MMM

qqqqqqq
qqq

and

µ4←5µ4←3µ3←2µ5←2(G
′) =

1
2

3
4

5

6
.

Hence, by using Knörrer’s reduction and two points reduction, we have

CMZ(Aε) ∼= CMZ(k[x]/(x2))×2 ∼= Db(mod k)×2 ∼= Db(mod k2).

By using Theorem 25, we can obtain the following result.

Theorem 27 ([5]). Let ℓ be the number of irreducible components of Eε that are isomor-
phic to P1. Assume that n ≤ 6.

(1) If n is odd, then ℓ ≤ 10 and

ℓ = 0 ⇐⇒ CMZ(Aε) ∼= Db(mod k),

0 < ℓ ≤ 3 ⇐⇒ CMZ(Aε) ∼= Db(mod k4),

3 < ℓ ≤ 10 ⇐⇒ CMZ(Aε) ∼= Db(mod k16).



(2) If n is even, then ℓ ≤ 15 and

0 ≤ ℓ ≤ 1 ⇐⇒ CMZ(Aε) ∼= Db(mod k2),

1 < ℓ ≤ 6 ⇐⇒ CMZ(Aε) ∼= Db(mod k8),

6 < ℓ ≤ 15 ⇐⇒ CMZ(Aε) ∼= Db(mod k32).

In particular, [6, Conjecture 1.3] holds true for n ≤ 6.

Remark 28. It is known that [6, Conjecture 1.3] fails in the case n = 7 (see [5, Remark
6.21]).
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