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Abstract. Let A be a truncated quiver algebra over an algebraically closed field such
that any oriented cycle in the ordinary quiver of A is zero in A. We give the number of
the indecomposable direct summands of the middle term of an almost split sequence for
a class of Hochschild extension algebras of A by the standard duality module D(A).
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1. Introduction

Let K be an algebraically closed field and A = K∆A/I a bound quiver algebra, where
∆A is a finite connected quiver and the ideal I is admissible. We denote by D(A) the
standard duality module HomK(A, K). By a Hochschild extension over A by D(A), we
mean an exact sequence

0 −→ D(A)
κ−→ T

ρ−→ A −→ 0

such that T is a K-algebra, ρ is an algebra epimorphism and κ is a T -bimodule monomor-
phism. The algebra T is called a Hochschild extension algebra. It is well known that T
is isomorphic to A⊕D(A) with the multiplication

(a, f)(b, g) = (ab, ag + fb+ α(a, b)),

where α : A× A −→ D(A) is a 2-cocycle. We denote by Tα(A) the Hochschild extension
algebra corresponding to a 2-cocycle α. Then, T0(A) is just the trivial extension algebra
A⋉D(A).

In [1], Brenner showed how to determine the number of indecomposable direct sum-
mands of the middle term of an almost split sequence starting with a simple module. As
a consequence of this result, for a self-injective artin algebra, she obtained the number
of indecomposable direct summands of radP/socP , where P is an indecomposable pro-
jective module. These results by Brenner play an important role in the representation
theory of algebras. However, in general, it is not easy to compute these numbers for a
given algebra. So there is few works to compute these numbers. In [2], Fernández and
Platzeck gave a simple interpretation of them in the particular case of the trivial extension
T0(A). This is done by focusing on the number of nonzero cycles in ∆T0(A). Fernández
and Platzeck proved that the set of nonzero cycles coincides with the set of elementary
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cycles. Using this fact, they gave the numbers considered by Brenner by computing the
cardinality of the equivalent classes of the set of nonzero cycles.

In this paper, for a truncated quiver algebra A such that any oriented cycle is zero in
A, we give a similar interpretation of the numbers considered by Brenner for a Hochschild
extension algebra Tα(A) such that ∆Tα(A) = ∆T0(A) holds. Unfortunately, for a Hochschild
extension algebra, the set of nonzero cycles does not coincide with the set of elementary
cycles in general. So by defining an α-revived cycle, we will prove that a nonzero cycle in
Tα(A) is either an elementary cycle or an α-revived cycle. So we enumerate these nonzero
cycles and then we can give the numbers considered by Brenner easily.

2. A 2-cocycle induced by a cycle in the ordinary quiver

From now on, let K be an algebraically closed field, ∆ a quiver and A := K∆/Rn
∆ (n ≥

2) a truncated quiver algebra such that any oriented cycle in ∆ is zero in A. We assume
that dimA > 1.

Since A is a truncated quiver algebra, we can take a set M := {pi | i = 1, . . . , t} of paths
in ∆ such that {pi | i = 1, . . . , t} is a basis of socAe A. Moreover, let {p1, . . . , pt, . . . , pd}
be a basis of A by taking paths pt+1, . . . , pd in ∆. We denote by {p1∗, . . . , pt∗, . . . , pd∗} the
dual basis in D(A). We note that, by [2, Proposition 2.2.], the ordinary quiver ∆T0(A) is
given by

• (∆T0(A))0 = ∆0,
• (∆T0(A))1 = ∆1 ∪ {yp1 , . . . , ypt},

where, for each i, ypi is an arrow from t(pi) to s(pi).
Next, under the notation of [3] and [4], we will define a 2-cocycle α. For n + 1 ≤ s ≤

2n−2, let γ = x1x2 · · ·xs ∈ ∆c
s be a cycle. Then it is easy to check that γ is a basic cycle.

We regard the subscripts i of xi modulo s (1 ≤ i ≤ s). Moreover, ((A⊗Ae P ∗)s, (d̃∗)s) is
∆c

s/Cs-graded and {vi = xi+n · · ·xi+s−1 ⊗K∆e
0
xixi+1 · · ·xi+n−1 | 1 ≤ i ≤ s} is a basis of

((A⊗K∆e
0
K∆n)s)γ. We denote by {v∗i | 1 ≤ i ≤ s} the dual basis inD(((A⊗K∆e

0
K∆n)s)γ).

Then we have the following complex

D(((A⊗K∆e
0
K∆1)s)γ)

0−→D(((A⊗K∆e
0
K∆n)s)γ)

D(((d̃3)s)γ)−−−−−−→ D(((A⊗K∆e
0
K∆n+1)s)γ),

and we have the following isomorphism

D(HH2, s, γ(A)) ∼= Ker (D(((d̃3)s)γ)) = ⟨v∗1 + · · ·+ v∗s⟩.

We denote the map Θ(v∗i ) : A×A −→ D(A) by αi for i = 1, 2, . . . , s. Then each αi is the
map as follows:

αi(a, b) =


xi+m · · ·xi+s−1

∗ if a, b ̸= 0 in A, n ≤ m < s

and ab = xi · · ·xi+m−1,

s(xi)
∗

if a, b ̸= 0 in A and ab = xi · · ·xi+s−1,

0 otherwise,



where a, b are paths in ∆, m denotes the length of ab. Moreover,
∑s

i=1 αi is a 2-cocycle
and the cohomology class [

∑s
i=1 αi] is a basis of D(HH2, s, γ(A)). We fix a nonzero element

k( ̸=0) ∈ K and let α = k
∑s

i=1 αi. Then we have the following proposition.

Proposition 1. The ordinary quiver of Tα(A) coincides with ∆T0(A).

Proof. We can prove this proposition by a similar way to [3, Theorem 4.3]. □

3. Elementary cycles and α-revived cycles

Let α = k
∑s

i=1 αi be the 2-cocycle defined in Section 2. We define an elementary
cycle and its weight for Tα(A) based on [2, Definition 3.1]. Let C be an oriented cycle in
∆Tα(A). We say that C is elementary if C = δ2ypiδ1 for some paths δ1 and δ2 in K∆ and

pi ∈ M such that pi
∗(δ1δ2) ̸= 0. Now let C = a1 · · · aj be an oriented cycle in ∆Tα(A) where

a1, . . . , aj ∈ ∆1. We say that C is α-revived if there exist a, b ∈ ∆+ such that a, b ̸= 0 in

A, C = a1 · · · aj = ab and α(a, b) ̸= 0. Then, under the notation above, it is easy to see

that j = s, C = xi · · ·xi+s−1 for some i and α(a, b)(1A) = k, where k is the fixed element
in the above. Moreover, we define a weight w(C) of an elementary cycle C = δ2ypiδ1 by

pi
∗(δ1δ2), and we also define a weight w(C) of an α-revived cycle C by k.
We say that a path q is contained in a path q′, if q′ = γ1qγ2, where γ1, γ2 are paths

with t(γ1) = s(q) and s(γ2) = t(q).

Remark 2 (cf. [2, Remark 3.3]). If 0 ̸= v ∈ A, then there are paths δ1, δ2 in K∆ and
pj ∈ M such that pj

∗(δ1vδ2) ̸= 0, and in particular, any nonzero path in A is contained
in an elementary cycle.

Remark 3. If C = a1 · · · am with a1, . . . , am ∈ (∆Tα(A))1 is an elementary cycle, then
a2a3 · · · ama1 is also an elementary cycle.

Remark 4. If C = a1 · · · aj with a1, . . . , aj ∈ ∆1 is an α-revived cycle, then a2a3 · · · aja1
is also an α-revived cycle.

Definition 5 (cf. [2, Definition 3.4]). Let q be a path contained in an elementary cycle
C of length less than or equal to the length of C. The supplement of q in C is defined as
follows: {

the trivial path es(q) if s(q) = t(q),

the path formed by the remaining arrows of C if s(q) ̸= t(q).

Theorem 6. Let C be an oriented cycle in K∆Tα(A). Then the following conditions are
equivalent:

(1) C is an elementary cycle or α-revived cycle.
(2) C is nonzero in Tα(A).

4. An application of a theorem of Brenner

In this section, we give the number of indecomposable direct summands of the middle
term of almost split sequence for Tα(A). We define a relation on the set of nonzero oriented
cycles with same origin in ∆Tα(A). We will show that the above number is equal to the
cardinality of the equivalence classes.



Definition 7. For each h ∈ (∆Tα(A))0, let us denote by Ch the set of all oriented cycles
C such that C ̸= 0 in Tα(A) and s(C) = t(C) = h. Let C, C ′ be in Ch. If there exists an
arrow a belonging to C and C ′ with s(a) = h or t(a) = h, then we write CRC ′.

Definition 8. For each h ∈ (∆Tα(A))0, let Ah = {a ∈ (∆Tα(A))1 | t(a) = h}. For
a, a′ ∈ Ah, if there exists an arrow b ∈ (∆Tα(A))1 such that ab ̸= 0 and a′b ̸= 0 in Tα(A)
then we write aR′a′.

We note that, for any path a ∈ Ah, aR
′a holds.

From now on, we denote by “ ≡ ” and “ ≈ ” the equivalence relations generated by R

in Ch and by R′ in Ah, respectively.

Proposition 9. card(Ch/≡) = card(Ah/≈).

We have the following theorem, which is similar to [2, Proposition 4.9]:

Proposition 10. Let h be a vertex in ∆Tα(A), and let eh be the idempotent element
corresponding to h. Then we have Neh = neh = card(Ch/≡).

The following theorems are partial generalizations of [2].

Theorem 11. Let Sh be the simple Tα(A)-module corresponding to the vertex h. Then the
number of indecomposable direct summands of the middle term of almost split sequence

0 −→ Sh −→ E −→ τ−1Sh −→ 0

is equal to the number of equivalence classes in Ch. Furthermore, the number of indecom-
posable projective summands of E is equal to zero.

Theorem 12. Let Ph be the indecomposable projective Tα(A)-module corresponding to the
vertex h. Then the number of indecomposable direct summands of radPh/socPh is equal
to the number of equivalence classes in Ch.

Corollary 13. Let n ≥ 3 and h ∈ ∆0 be neither sink nor source in ∆. Then we have
card(Ch/≡) = 1.
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