A BATALIN-VILKOVISKY DIFFERENTIAL ON THE COMPLETE COHOMOLOGY RING OF A FROBENIUS ALGEBRA

TOMOHIRO ITAGAKI, KATSUNORI SANADA AND SATOSHI USUI

ABSTRACT. We study the existence of a Batalin-Vilkovisky differential on the complete cohomology ring of a Frobenius algebra. We construct a Batalin-Vilkovisky differential on the complete cohomology ring in the case of Frobenius algebras with diagonalizable Nakayama automorphisms.

1. INTRODUCTION

Inspired by Buchweitz's result on Tate cohomology of Iwanaga-Gorenstein algebras, Wang has defined Tate-Hochschild cohomology groups of an associative algebra A as $\underline{\operatorname{Ext}}_{A\otimes_k A^{\operatorname{op}}}^r(A, A) := \operatorname{Hom}_{\mathcal{D}_{\operatorname{sg}}(A\otimes_k A^{\operatorname{op}})}(A, A[r])$, where $r \in \mathbb{Z}$ and $\mathcal{D}_{\operatorname{sg}}(A\otimes_k A^{\operatorname{op}})$ is the singularity category of $A \otimes_k A^{\operatorname{op}}$. He discovered in [?, ?] that Tate-Hochschild cohomology $\underline{\operatorname{Ext}}_{A\otimes_k A^{\operatorname{op}}}^{\bullet}(A, A) := \bigoplus_{r \in \mathbb{Z}} \underline{\operatorname{Ext}}_{A\otimes_k A^{\operatorname{op}}}^r(A, A)$ has a Gerstenhaber algebra structure. If Ais a finite dimensional Frobenius algebra, then the Tate-Hochschild cohomology groups of A are isomorphic to the complete cohomology groups $\widehat{\operatorname{HH}}^*(A, A)$ of A, which are the cohomology groups based on a complete resolution of A. Wang also showed that there exists a graded commutative product, called \star -product, on $\widehat{\operatorname{HH}}^{\bullet}(A, A)$ such that $\widehat{\operatorname{HH}}^{\bullet}(A, A)$ is isomorphic to $\underline{\operatorname{Ext}}_{A\otimes_k A^{\operatorname{op}}}^{\bullet}(A, A)$ as graded algebras and that the complete cohomology ring $\widehat{\operatorname{HH}}^{\bullet}(A, A)$ carries a BV algebra structure in the case that A is a symmetric algebra. In this paper, we generalize Wang's result to the case of finite dimensional Frobenius algebras with diagonalizable Nakayama automorphisms.

Throughout this paper, A denotes a finite dimensional, associative and unital algebra over a field k and let A^{e} be the enveloping algebra $A \otimes_{k} A^{op}$ of A. For simplicity, we write $\otimes := \otimes_{k}$, Hom := Hom_k and $\overline{b}_{1,n} := \overline{b}_{1} \otimes \cdots \otimes \overline{b}_{n} \in \overline{A}^{\otimes n}$ with the quotient vector space $\overline{A} := A/(k \cdot 1_{A})$.

2. Preliminaries

Definition 1. A Gerstenhaber algebra is a graded k-module $\mathcal{H}^{\bullet} = \bigoplus_{r \in \mathbb{Z}} \mathcal{H}^r$ equipped with two graded maps, a cup product $\smile: \mathcal{H}^m \otimes \mathcal{H}^n \to \mathcal{H}^{m+n}$ of degree 0 and a Lie bracket, called the Gerstenhaber bracket, $[,]: \mathcal{H}^m \otimes \mathcal{H}^n \to \mathcal{H}^{m+n-1}$ of degree -1, satisfying

- (i) $(\mathcal{H}^{\bullet}, \smile)$ is a graded commutative algebra with unit $1 \in \mathcal{H}^0$.
- (ii) $(\mathcal{H}^{\bullet}[1], [,])$ is a graded Lie algebra with components $(\mathcal{H}^{\bullet}[1])^r = \mathcal{H}^{r+1}$.
- (iii) For homogeneous elements α, β and $\gamma \in \mathcal{H}^{\bullet}$

$$[\alpha,\beta\smile\gamma] = [\alpha,\beta]\smile\gamma + (-1)^{(|\alpha|-1)|\beta|}\beta\smile[\alpha,\gamma],$$

The detailed version of this paper will be submitted for publication elsewhere.

where $|\alpha|$ denotes the degree of a homogeneous element α in \mathcal{H}^{\bullet} .

Definition 2. A graded commutative algebra $(\mathcal{H}^{\bullet} = \bigoplus_{r \in \mathbb{Z}} \mathcal{H}^r, \smile)$ with $1 \in \mathcal{H}^0$ is a *Batalin-Vilkovisky algebra* (BV algebra, for short) if there exists a graded k-linear map $\Delta : \mathcal{H}^* \to \mathcal{H}^{*-1}$, called *BV differential*, of degree -1 such that:

(i) $\Delta^2 = 0$ and $\Delta_0(1) = 0$.

(ii) For homogeneous elements α, β and γ in \mathcal{H}^{\bullet} ,

$$\begin{split} \Delta(\alpha \smile \beta \smile \gamma) &= \Delta(\alpha \smile \beta) \smile \gamma + (-1)^{|\alpha|} \alpha \smile \Delta(\beta \smile \gamma) \\ &+ (-1)^{|\beta|(|\alpha|-1)} \beta \smile \Delta(\alpha \smile \gamma) - \Delta(\alpha) \smile \beta \smile \gamma \\ &- (-1)^{|\alpha|} \alpha \smile \Delta(\beta) \smile \gamma - (-1)^{|\alpha|+|\beta|} \alpha \smile \beta \smile \Delta(\gamma), \end{split}$$

where $|\alpha|$ denotes the degree of a homogeneous element $\alpha \in \mathcal{H}^{\bullet}$.

Remark 3. For each BV algebra $(\mathcal{H}^{\bullet}, \smile, \Delta)$, we can associate a graded Lie bracket [,] of degree -1 as

$$[\alpha,\beta] := (-1)^{|\alpha||\beta|+|\alpha|+|\beta|} \left((-1)^{|\alpha|+1} \Delta(\alpha \smile \beta) + (-1)^{|\alpha|} \Delta(\alpha) \smile \beta + \alpha \smile \Delta(\beta) \right),$$

where α, β are homogeneous elements of \mathcal{H}^{\bullet} . It follows from [?, Proposition1.2] that the bracket [,] above makes $(\mathcal{H}^{\bullet}, \smile, [,])$ into a Gerstenhaber algebra.

Definition 4. Let M be an A-bimodule. We define two complexes $(C^*(A, M), \delta^*)$ and $(C_*(A, M), \partial_*)$ as follows:

$$C^*(A,M): C^0(A,M) \xrightarrow{\delta^0} C^1(A,M) \to \dots \to C^n(A,M) \xrightarrow{\delta^n} C^{n+1}(A,M) \to \dots,$$

where

$$C^{0}(A, M) := \operatorname{Hom}(k, M) \cong M, \quad C^{n}(A, M) := \operatorname{Hom}(\overline{A}^{\otimes n}, M),$$

$$\delta^{n}(f)(\overline{a}_{1,n+1}) = a_{1}f(\overline{a}_{2,n+1}) + \sum_{i=1}^{n} (-1)^{i}f(\overline{a}_{1,i-1} \otimes \overline{a_{i}a_{i+1}} \otimes \overline{a}_{i+2,n}) + (-1)^{n+1}f(\overline{a}_{1,n})a_{n+1}.$$

On the other hand,

$$C_*(A, M) : \dots \to C_n(A, M) \xrightarrow{\partial_n} C_{n-1}(A, M) \to \dots \to C_1(A, M) \xrightarrow{\partial_1} C_0(A, M),$$

where

$$C_0(A,M) := M, \quad C_n(A,M) := M \otimes \overline{A}^{\otimes n},$$

$$\partial_n(m \otimes \overline{a}_{1,n}) = ma_1 \otimes \overline{a}_{2,n} + \sum_{i=1}^{n-1} (-1)^i m \otimes \overline{a}_{1,i-1} \otimes \overline{a_i a_{i+1}} \otimes \overline{a}_{i+2,n} + (-1)^n a_n m \otimes \overline{a}_{1,n-1}$$

The *n*-th Hochschild (co)homology group $H_*(A, M)$ (resp. $H^*(A, M)$) of A with coefficients in M is defined by the *n*-th cohomology group of $C_*(A, M)$ (resp. $C^*(A, M)$).

The normalized bar resolution Bar(A) of A is a projective resolution of A as an Abimoudle with components $Bar_n(A) := A \otimes \overline{A}^{\otimes n} \otimes A$ and differentials $d_n : Bar_n(A) \to$ $\operatorname{Bar}_{n-1}(A)$ given by

$$d_n(a_0 \otimes \overline{a}_{1,n} \otimes a_{n+1}) = \sum_{i=0}^n (-1)^i a_0 \otimes \overline{a}_{1,i-1} \otimes \overline{a}_{i} \overline{a}_{i+1} \otimes \overline{a}_{i+2,n} \otimes a_{n+1}.$$

It is easy to check that the two complexes $C^*(A, M)$ and $C_*(A, M)$ are isomorphic to $\operatorname{Hom}_{A^{e}}(\operatorname{Bar}(A), M)$ and $\operatorname{Bar}(A) \otimes_{A^{e}} M$. This implies that $\operatorname{H}^*(A, M) \cong \operatorname{Ext}_{A^{e}}^*(A, M)$ and $\operatorname{H}_*(A, M) \cong \operatorname{Tor}_*^{A^{e}}(A, M)$.

Definition 5 ([?]). let σ be an automorphism of A. Define a k-linear map

$$B_r^{\sigma}: C_r(A, A_{\sigma}) \to C_{r+1}(A, A_{\sigma})$$

by

$$B_r^{\sigma}(a_0 \otimes \overline{a}_{1,r}) = \sum_{i=1}^{r+1} (-1)^{ir} 1 \otimes \overline{a}_i \otimes \cdots \otimes \overline{a}_r \otimes \overline{a}_0 \otimes \overline{\sigma(a_1)} \otimes \cdots \otimes \overline{\sigma(a_{i-1})}$$

We call B^{σ} the Conne operator twisted by σ and write $B := B^{\mathrm{id}_A}$. Let $T : C_r(A, A_{\sigma}) \to C_r(A, A_{\sigma})$ be the k-linear map defined by

$$T(a_0 \otimes \overline{a}_{1,r}) = \sigma(a_0) \otimes \overline{\sigma(a_1)} \otimes \cdots \otimes \overline{\sigma(a_r)}.$$

A direct calculation shows that $\partial_{r+1}B_r^{\sigma} - B_{r-1}^{\sigma}\partial_r = (-1)^{r+1}(\mathrm{id} - T)$ for all $r \ge 0$.

We end this section with recalling Wang's result, which says that Tate-Hochschild cohomology $\underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\operatorname{op}}}(A, A)$ carries a Gerstenhaber algebra structure.

Theorem 6 ([?, ?]). There exists a graded map

$$[\ ,\]_{\rm sg}: \underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\rm op}}(A,A)\otimes \underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\rm op}}(A,A) \to \underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\rm op}}(A,A)$$

of degree -1 such that the triple $(\underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\operatorname{op}}}(A, A), \smile_{\operatorname{sg}}, [,]_{\operatorname{sg}})$ forms a Gerstenhaber algebra, where $\smile_{\operatorname{sg}}$ denotes the Yoneda product.

3. Complete cohomology of a Frobenius Algebra

Recall that a k-algebra A is a Frobenius algebra if there exists a non-degenerate bilinear form $\langle -, - \rangle : A \otimes A \to k$ satisfying $\langle ab, c \rangle = \langle a, bc \rangle$ for a, b and $c \in A$. The bilinear form gives rise to a left A-module isomorphism $t : A \to D(A)$ given by $x \mapsto \langle -, x \rangle$, where the left (right) A-module structure of D(A) is given by (af)(x) := f(xa) ((fa)(x) :=f(ax)). For a k-basis $\{u_i\}_i$ of A, we have another k-basis $\{v_i\}_i$ such that $\langle v_i, u_j \rangle = \delta_{ij}$ for all $1 \leq i, j \leq r$, where δ_{ij} denotes the Kronecker delta. We call $\{v_i\}_i$ the dual basis of $\{u_i\}_i$. It is known that there exists an algebra automorphism ν , the so-called the Nakayama automorphism, of A such that $\langle a, b \rangle = \langle b, \nu(a) \rangle$ for $a, b \in A$. Then the Nakayama automorphism ν of A makes the left A-module isomorphism $t : A \to D(A)$ into an A-bimodule isomorphism $_1A_{\nu} \to D(A)$. A Frobenius algebra A is called symmetric if the Nakayama automorphism of A is the identity id_A .

Definition 7. Let A be a Frobenius k-algebra.

(1) A complete resolution \mathbf{T} of A as an A-bimodule is an exact sequence

$$\mathbf{T}:\cdots \to T_2 \to T_1 \xrightarrow{d_1} T_0 \xrightarrow{T_{-1}} T_{-1} \to T_{-2} \to \cdots$$

where $T_{\geq 0}$ is a projective resolution of A and $T_{<0}$ is a (-1)-shifted injective resolution of A (see [?] for more general cases).

(2) For $r \in \mathbb{Z}$, the *r*-th complete cohomology group of A is defined by the *r*-th cohomology group of the cochain complex $\operatorname{Hom}_{A^{e}}(\mathbf{T}, A)$ and denoted by $\widehat{\operatorname{HH}}^{r}(A, A)$.

Remark that the well-definedness of complete cohomology groups of A follows form [?, Lemma 5.3]. Using the normalized bar resolution Bar(A), Nakayama [?] constructed the complete bar resolution \mathbf{X} of a Frobenius algebra A defined as follows:

where

$$X_r := \operatorname{Bar}_r(A) \ (r \ge 0), \quad X_{-s} := {}_1D(\operatorname{Bar}_{s-1}(A))_{\nu^{-1}} \ (s \ge 1),$$

$$D(\varepsilon)(f) = f\varepsilon \quad (f \in {}_1D(A)_{\nu^{-1}}), \quad d_0 = D(\varepsilon)t\varepsilon, \qquad d_{-s}(g) = gd_s \quad (g \in X_{-s}).$$

Sanada [?, Lemma1.1] proved that $\operatorname{Hom}_{A^{e}}(\mathbf{X}, A)$ is isomorphic to the cochain complex

$$\cdots \to C_2(A, {}_1A_{\nu^{-1}}) \xrightarrow{\partial_2} C_1(A, {}_1A_{\nu^{-1}}) \xrightarrow{\partial_1} {}_1A_{\nu^{-1}} \xrightarrow{\mu} A \xrightarrow{\delta^0} C^1(A, A) \xrightarrow{\delta^1} C^2(A, A) \to \cdots,$$

where $\mu : {}_{1}A_{\nu^{-1}} \to A$ is given by $\mu(x) := \sum_{i} u_{i}xv_{i}$ and A is of degree 0. This complex will be denoted by $(\mathcal{D}^{*}(A, A), \widehat{d}^{*})$. Clearly, we have $\widehat{\operatorname{HH}}^{r}(A, A) = \operatorname{H}^{r}(A, A)$ for $r \geq 1$ and $\widehat{\operatorname{HH}}^{r}(A, A) = \operatorname{H}_{-r-1}(A, {}_{1}A_{\nu^{-1}})$ for $r \leq -2$.

The following is the product

 $\star: \mathcal{D}^*(A, A) \otimes \mathcal{D}^*(A, A) \to \mathcal{D}^*(A, A)$

introduced by Wang ([?]): let $f \in C^m(A, A)$, $g \in C^n(A, A)$ and $\alpha = a_0 \otimes \overline{a}_{1,p} \in C_p(A, {}_1A_{\nu^{-1}})$, $\beta = b_0 \otimes \overline{b}_{1,q} \in C_q(A, {}_1A_{\nu^{-1}})$.

(1) $(m, n \ge 0) \star : C^m(A, A) \otimes C^n(A, A) \to C^{m+n}(A, A)$ is given by $(f \star g)(\overline{x}_{1, m+n}) := f(\overline{x}_{1, m})g(\overline{x}_{m+1, m+n});$

$$\begin{array}{l} (2) \ (m \geq 0, p \geq 0, p \geq m) \\ (a) \ \star : C_p(A, {}_1A_{\nu^{-1}}) \otimes C^m(A, A) \to C_{p-m}(A, {}_1A_{\nu^{-1}}) \ \text{is given by} \\ \alpha \star f := m\alpha(\overline{a}_{1,p}) \otimes \overline{a}_{p+1,r} \ ; \\ (b) \ \star : C^m(A, A) \otimes C_p(A, {}_1A_{\nu^{-1}}) \to C_{p-m}(A, {}_1A_{\nu^{-1}}) \ \text{is given by} \\ f \star \alpha := f(\overline{a}_{p-m+1,p})a_0 \otimes \overline{a}_{1,p-m} \ ; \\ (3) \ (m \geq 0, p \geq 0, p < m) \end{array}$$

(a)
$$\star : C^m(A, A) \otimes C_p(A, {}_1A_{\nu^{-1}}) \to C^{m-p-1}(A, A)$$
 is given by
 $(f \star \alpha)(\overline{x}_{1,m-p-1}) := \sum_i f(\overline{x}_{1,m-p-1} \otimes \overline{u_i\nu(a_0)} \otimes \overline{a}_{1,p})v_i$;
(b) $\star : C_p(A, {}_1A_{\nu^{-1}}) \otimes C^m(A, A) \to C^{m-p-1}(A, A)$ is given by
 $(\alpha \star f)(\overline{x}_{1,m-p-1}) := \sum_i u_i\nu(a_0)f(\overline{a}_{1,p} \otimes \overline{v}_i \otimes \overline{x}_{1,m-p-1})$;
(4) $(p,q \ge 0) \star : C_p(A, {}_1A_{\nu^{-1}}) \otimes C_q(A, {}_1A_{\nu^{-1}}) \to C_{p+q+1}(A, {}_1A_{\nu^{-1}})$ is given by
 $\alpha \star \beta := \sum_i v_i b_0 \otimes \overline{b}_{1,q} \otimes \overline{u_i\nu(a_0)} \otimes \overline{a}_{1,p}$.

Proposition 8 ([?, Lemma 6.2, Propositions 6.5 and 6.9]). Let A be a Frobenius algebra. Then the product \star is compatible with the differentials \widehat{d} of $\mathcal{D}(A, A)$. Moreover, the induced product on $\widehat{HH}^{\bullet}(A, A)$, still denoted by \star , is graded commutative and associative. In particular, $(\widehat{HH}^{\bullet}(A, A), \star)$ is isomorphic to $(\underline{Ext}_{A^{e}}^{\bullet}(A, A), \smile_{sg})$ as graded algebras.

4. MAIN RESULT

From now, A denotes a Frobenius k-algebra. Let us recall the result of Wang.

Theorem 9 ([?, ?]). Let A be a symmetric k-algebra. Then the complete cohomology ring $(\widehat{HH}^{\bullet}(A, A), \star)$ is a BV algebra together with an operator $\widehat{\Delta}_* : \widehat{HH}^*(A, A) \to \widehat{HH}^{*-1}(A, A)$ defined by

$$\widehat{\Delta}_{r} = \begin{cases} \Delta_{r} & \text{if } r \ge 1, \\ 0 & \text{if } r = 0, \\ (-1)^{r} B_{-r-1} & \text{if } r \le -1, \end{cases}$$

where B_* is the Connes operator, and Δ_* defined in [?] is the dual of the Connes operator B_{*-1} . In particular, the induced Gerstenhaber algebra is isomorphic to the one on $\operatorname{Ext}_{A\otimes_k A^{\operatorname{op}}}(A, A)$.

In the case that A is a symmetric algebra, the Nakayama automorphism ν of A is the identity id_A , and hence $\widehat{\Delta}$ defined on $\mathcal{D}^*(A, A)$ can be always lifted to the homology level. In general, $\widehat{\Delta}$ can not be necessarily defined on the homology level. For this, we use the the subcomplexes of $C^*(A, A)$ and $C_*(A, {}_1A_{\nu^{-1}})$ defined in [?]: let Λ be the set of eigenvalues of the Nakayama automorphism ν of A. We assume that $\Lambda \subset k$. Let $\widehat{\Lambda} := \langle \Lambda \rangle$ be the submonoid of k^{\times} generated by Λ . For $\lambda \in \Lambda$ with eigenspace A_{λ} , we write $\overline{A}_{\lambda} = A_{\lambda}$ for $\lambda \neq 1$ and $\overline{A}_1 = A_1/(k \cdot 1_A)$ for $\lambda = 1$. For any automorphism σ of A and $\mu \in \widehat{\Lambda}$, we define subcomplexes

$$C_r^{(\mu)}(A, {}_1A_{\sigma}) := \bigoplus_{\mu_i \in \Lambda, \prod \mu_i = \mu} A_{\mu_0} \otimes \overline{A}_{\mu_1} \otimes \dots \otimes \overline{A}_{\mu_r},$$

$$C_{(\mu)}^r(A, A) := \left\{ f \in C^r(A, A) \middle| f(\overline{A}_{\mu_1} \otimes \dots \otimes \overline{A}_{\mu_r}) \subset A_{\mu\mu_1 \dots \mu_r}, \text{ for any } \mu_i \in \Lambda \right\}.$$

The *n*-th homology groups of $C^{(\mu)}_*(A, {}_1A_{\sigma})$ and $C^*_{(\mu)}(A, A)$ are denoted by $H^{(\mu)}_n(A, {}_1A_{\sigma})$ and $H^n_{(\mu)}(A, A)$, respectively.

Proposition 10. For any automorphism σ of A, the restriction of $B^{\sigma} : C_*(A, {}_1A_{\sigma}) \to C_{*+1}(A, {}_1A_{\sigma})$ to $C_*^{(1)}(A, A_{\sigma})$ induces an operator

$$B^{\sigma}: \mathrm{H}^{(1)}_{*}(A, A_{\sigma}) \to \mathrm{H}^{(1)}_{*+1}(A, A_{\sigma}),$$

and it satisfies $(B^{\sigma})^2 = 0$.

For any $\mu \in \widehat{\Lambda}$, we define a subspace $\mathcal{D}^*_{(\mu)}(A, A)$ of $\mathcal{D}^*(A, A)$ as follows: for any $\mu \in \widehat{\Lambda}$,

$$\mathcal{D}^{r}_{(\mu)}(A,A) := \begin{cases} C^{r}_{(\mu)}(A,A) & \text{if } r \ge 0, \\ C^{(\mu)}_{-r-1}(A, {}_{1}A_{\sigma}) & \text{if } r \le -1 \end{cases}$$

One easily check that $\mathcal{D}^*_{(\mu)}(A, A)$ is a subcomplex of $\mathcal{D}^*(A, A)$. We denote $\widehat{\operatorname{HH}}^r_{(\mu)}(A, A) :=$ $\operatorname{H}^r(\mathcal{D}^{\bullet}_{(\mu)}(A, A))$. Using the results of Lambre-Zhou-Zimmermann in [?] yields the following.

Proposition 11. If the Nakayama automorphism ν of A is diagonalizable, then the following statements hold.

- (1) For $\mu \neq 1 \in \widehat{\Lambda}$, we get $\widehat{HH}^*_{(\mu)}(A, A) = 0$.
- (2) There exists an isomorphism $\widehat{\operatorname{HH}}^*_{(1)}(A, A) \cong \widehat{\operatorname{HH}}^*(A, A)$.

A direct computation shows that the product \star on $\widehat{\operatorname{HH}}^*(A, A)$ restricts to $\star_{\mu, \mu'}$: $\widehat{\operatorname{HH}}^*_{(\mu)}(A, A) \otimes \widehat{\operatorname{HH}}^*_{(\mu')}(A, A) \to \widehat{\operatorname{HH}}^*_{(\mu\mu')}(A, A)$ for any μ and $\mu' \in \widehat{\Lambda}$. Putting $\star_1 := \star_{1,1}$, we get the following.

Proposition 12. If the Nakayama automorphism ν of A is diagonalizable, then we have an isomorphism $(\widehat{\operatorname{HH}}_{(1)}^{\bullet}(A), \star_1) \cong (\widehat{\operatorname{HH}}^{\bullet}(A), \star)$ of graded algebras.

We are now ready to prove our main result. Using Lambre-Zhou-Zimmermann's BV differential BV differential Δ^{ν} on $H^*_{(1)}(A, A)$ and the twisted Connes operator $B^{\nu^{-1}}$ on $H^{(1)}_*(A, {}_1A_{\nu^{-1}})$, we have the following.

Theorem 13. Let A be a Frobenius k-algebra. If the Nakayama automorphism ν is diagonalizable, then the graded commutative ring $(\widehat{\operatorname{HH}}_{(1)}^{\bullet}(A, A), \star_1)$ is a BV algebra together with an operator $\widehat{\Delta}_* : \widehat{\operatorname{HH}}_{(1)}^*(A, A) \to \widehat{\operatorname{HH}}_{(1)}^{*-1}(A, A)$ defined by

$$\widehat{\Delta}_{r} = \begin{cases} \Delta_{r}^{\nu} & \text{if } r \ge 1, \\ 0 & \text{if } r = 0, \\ (-1)^{i} B_{-r-1}^{\nu^{-1}} & \text{if } r \le -1, \end{cases}$$

where $B^{\nu^{-1}}$ is the Connes operator twisted by ν^{-1} , and Δ^{ν}_{*} defined in [?] is the dual of the Connes operator B^{ν} twisted by ν . In particular, the induced Gerstenhaber algebra is isomorphic to the one on $\underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\operatorname{op}}}(A, A)$.

Since $\widehat{\operatorname{HH}}^{\bullet}(A,A) \cong \widehat{\operatorname{HH}}^{\bullet}_{(1)}(A,A)$ as graded algebras, we have our main result.

Corollary 14. Let A be a Frobenius k-algebra whose Nakayama automorphism ν is diagonalizable. Then the complete cohomology ring $\widehat{HH}^{\bullet}(A, A)$ of A is a BV algebra such that the induced Gerstenhaber algebra is isomorphic to the one on $\underline{\operatorname{Ext}}^{\bullet}_{A\otimes_k A^{\operatorname{op}}}(A, A)$.

Acknowledgments

First author's research was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 17K14175. Second author's research was partially supported by JSPS Grantin-Aid for Scientific Research (C) 17K05211.

References

- L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. 85 (3) (2002), 393–440.
- [2] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), 265–285.
- [3] N. Kowalzing, U. Krähmer, Batalin-Vilkovisky structures on Ext and Tor, J. Reine Angew. Math. 697 (2014), 159-219.
- [4] T. Lambre, G. Zhou, A. Zimmermann, The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra, J. Algebra 446 (2016), 103– 131.
- [5] T. Nakayama, On the complete cohomology theory of Frobenius algebras, Osaka Math. J. 9 (1957), 165–187.
- [6] K. Sanada, On the cohomology of Frobenius algebras, J. Pure Appl. Algebra 80 (1992), 65–88.
- T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier 58 (7) (2008), 2351–2379.
- [8] Z. Wang, Singular Hochschild cohomology and Gerstenhaber algebra structure, arXiv:1508.00190 (2015), preprint.
- [9] _____, Gerstenhaber algebra and Deligne's conjecture on Tate-Hochschild cohomology, arXiv:1801.07990 (2018), preprint.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE DIVISION 1 TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601 JAPAN *E-mail address*: titagaki@rs.tus.ac.jp, sanada@rs.tus.ac.jp, 1119702@ed.tus.ac.jp