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Abstract. Let A = A(α, β) be a graded down-up algebra with (deg x,deg y) = (1, n)
and β ̸= 0, and let ∇A be the Beilinson algebra of A. If n = 1, then a description of the
Hochschild cohomology group of ∇A was given by Belmans. In this report, we calculate
the Hochschild cohomology group of ∇A for the case n ≥ 2. Moreover, we apply our
results to study the bounded derived category of the noncommutative projective scheme
of A.
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1. Beilinson algebras of graded down-up algebras

In this section, we give a brief overview of the Beilinson algebras of graded down-up
algebras. Throughout, let k be an algebraically closed field of char k = 0.

Definition 1 ([1]). A connected graded k-algebra A = k ⊕ A1 ⊕ A2 ⊕ · · · is called a
d-dimensional AS-regular algebra of Gorenstein parameter l if it satisfies the following
conditions:

(i) gldimA = d < ∞,
(ii) GKdimA := inf{α ∈ R | dimk(

∑n
i=0Ai) ≤ nα for all n ≫ 0} < ∞, where GKdimA

is called the Gelfand-Kirillov dimension of A, and

(iii) (Gorenstein condition) ExtiA(k,A)
∼=

{
k(l) (i = d),
0 (i ̸= d).

For example, if a graded algebra A is commutative, then A is an n-dimensional AS-
regular algebra if and only if A ∼= k[x1, . . . , xn]. Also, a graded algebra

A = k⟨x, y⟩/(x2y + yx2, xy2 + y2x)

is a 3-dimensional AS-regular algebra.

Definition 2 ([6]). A graded algebra

A(α, β) := k⟨x, y⟩/(x2y − βyx2 − αxyx, xy2 − βy2x− αyxy)

deg x = m, deg y = n ∈ N+

with parameters α, β ∈ k is called a graded down-up algebra.
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Down-up algebras were originally introduced by Benkart and Roby [6] in the study of
the down and up operators on partially ordered sets. Since then, various aspects of these
algebras have been investigated. In particular, from the viewpoint of noncommutative
projective geometry, the following property is of importance.

Theorem 3 ([11]). Let A = A(α, β) be a graded down-up algebra. Then A is a noetherian
3-dimensional AS-regular algebra if and only if β ̸= 0.

Note that a graded down-up algebra has played a key role as a test case for more
complicated situations in noncommutative projective geometry.

Let A = A(α, β) be a graded down-up algebra with β ̸= 0, so that A is 3-dimensional
AS-regular. Then the Gorenstein parameter ℓ of A is equal to 2(deg x+deg y) = 2(m+n).
The Beilinson algebra of A is defined by

∇A :=


A0 A1 · · · Aℓ−1

0 A0 · · · Aℓ−2
...

...
. . .

...
0 0 · · · A0


with the multiplication (aij)(bij) =

(∑ℓ−1
k=0 akjbik

)
. We remark that the Beilinson algebra

∇A of A is a finite-dimensional k-algebra, and it can be given by a quiver with relations.
For example, if deg x = 1, deg y = 1, then ∇A is given by the quiver

1
x1 //

y1
// 2

x2 //
y2

// 3
x3 //

y3
// 4

(where the Gorenstein parameter of A is ℓ = 2(1 + 1) = 4) with relations

x1x2y3 − βy1x2x3 − αx1y2x3 = 0, x1y2y3 − βy1y2x3 − αy1x2y3 = 0.

Also, if deg x = 1, deg y = 2, then ∇A is given by the quiver

1
x1 //

y1

662
x2 //

y2

663
x3 //

y3

664
x4 //

y4

665
x5 //

6

(where the Gorenstein parameter of A is ℓ = 2(1 + 2) = 6) with relations

x1x2y3 − βy1x2x3 − αx1y2x3 = 0, x2x3y4 − βy2x4x5 − αx2y3x5 = 0,

x1y2y4 − βy1y3x5 − αy1x3y4 = 0.

Let tailsA be the quotient category of finitely generated graded right A-modules by
the Serre subcategory of finite-dimensional modules, and mod∇A the category of finitely
generated right ∇A-modules. We remark that tailsA is considered as the category of
coherent sheaves on the noncommutative projective scheme associated to A in the sense of
Artin-Zhang [2]. We write Db(tailsA) and Db(mod∇A) for the bounded derived categories
of tailsA and mod∇A, respectively.

The following result is obtained as a special case of [13, Theorem 4.14].

Theorem 4. Let A = A(α, β) be a graded down-up algebra with β ̸= 0. Then the following
statements hold.

(1) The Beilinson algebra ∇A of A is an extremely Fano algebra of gldim∇A = 2.



(2) There exists an equivalence of triangulate categories Db(tailsA) ∼= Db(mod∇A).

We note that a Fano algebra was renamed as an n-representation infinite algebra in
Herschend-Iyama-Oppermann [9] from the viewpoint of higher-dimensional Auslander-
Reiten theory. By Theorem 4, the Beilinson algebras of down-up algebras are important
not only in noncommutative projective geometry but also in representation theory of
finite-dimensional algebras.

2. Hochschild cohomology groups of Beilinson algebras of graded
down-up algebras

The aim of this report is to investigate the Hochschild cohomology groups HHi(∇A) of
∇A of a graded down-up algebra A = A(α, β) with β ̸= 0. The i-th Hochschild cohomology
group HHi(∇A) of ∇A is defined by

HHi(∇A) := Exti(∇A)e(∇A,∇A) (i ≥ 0),

where (∇A)e := (∇A)op⊗∇A is the enveloping algebra of∇A. The family of right (∇A)e-
modules is one-to-one corresponding to the family of∇A-bimodules. The low-dimensional
Hochschild cohomology groups are described as follows:

• HH0(∇A) is the center Z(∇A) of ∇A.
• HH1(∇A) is the space of derivations modulo the inner derivation. A derivations is
a k-linear map f : ∇A → ∇A such that f(ab) = af(b) + f(a)b for all a, b ∈ ∇A.
A derivation f : ∇A → ∇A is an inner derivation if there is some x ∈ ∇A such
that f(a) = ax− xa for all a ∈ ∇A.

• HH2(∇A) measures the infinitesimal deformations of the algebra ∇A.

It is known that the Hochschild cohomology of the Beilinson algebra of an AS-regular
algebra A is closely related to the Hochschild cohomology of tailsA and the infinitesimal
deformation theory of tailsA (see [12]).

If deg x = deg y = 1, then a description of HHi(∇A) has been obtained by Belmans,
using a geometric technique.

Theorem 5 ([3, Table 2]). Let A = A(α, β) be a graded down-up algebra with deg x =
deg y = 1 and β ̸= 0, and ∇A the Beilinson algebra of A. Then the dimension formula
of HHi(∇A) is as follows:

• dimkHH
0(∇A) = 1;

• dimkHH
1(∇A) =


6 if α = 0,

3 if α ̸= 0 and α2 + 4β = 0,

1 if α ̸= 0 and α2 + 4β ̸= 0;

• dimkHH
2(∇A) =


9 if α = 0,

6 if α ̸= 0 and α2 + 4β = 0,

4 if α ̸= 0 and α2 + 4β ̸= 0;

• dimkHH
i(∇A) = 0 for i ≥ 3.



In this report, for deg x = 1, deg y = n ≥ 2, we give the dimension formula of HHi(∇A).
In this case, the Beilinson algebra ∇A is given by the following quiver with relations:

Q := 1
x1

//

y1

772
x2

//

y2

66· · ·
xn−1

// n
xn

//

yn

88n+ 1
xn+1

//

yn+1

77n+ 2
xn+2

//

yn+2

66· · ·
x2n

// 2n+ 1
x2n+1

// 2n+ 2 ,

fi := xixi+1yi+2 − βyixi+nxi+n+1 − αxiyi+1xi+n+1 = 0 (1 ≤ i ≤ n),

g := x1y2yn+2 − βy1yn+1x2n+1 − αy1xn+1yn+2 = 0.

The main result of this report is the following theorem.

Theorem 6 ([10, Theorem 1.4]). Let A = A(α, β) be a graded down-up algebra with
deg x = 1, deg y = n ≥ 2, and β ̸= 0. We define

δn :=
(
1 0

)(α 1
β 0

)n(
1
0

)
∈ k

(e.g. δ2 = α2 + β, δ3 = α3 + 2αβ, δ4 = α4 + 3α2β + β2, δ5 = α5 + 4α3β + 3αβ2). Then the
dimension formula of HHi(∇A) is as follows:

• dimkHH
0(∇A) = 1;

• dimkHH
1(∇A) =


4 if n is odd and α = 0 (in this case δn = 0),

3 if n is odd, α ̸= 0, and δn = 0, or if n is even and δn = 0,

2 if α2 + 4β = 0 (in this case δn ̸= 0),

1 if δn ̸= 0 and α2 + 4β ̸= 0;

• dimkHH
2(∇A) =



8 if n = 2 and δ2 = 0,

7 if n = 2 and α2 + 4β = 0 (in this case δ2 ̸= 0),

6 if n = 2, δ2 ̸= 0, and α2 + 4β ̸= 0,

n+ 5 if n is odd and α = 0 (in this case δn = 0),

n+ 4 if n is odd, α ̸= 0, and δn = 0, or if n ≥ 4 is even and δn = 0,

n+ 3 if n ≥ 3 and α2 + 4β = 0 (in this case δn ̸= 0),

n+ 2 if n ≥ 3, δn ̸= 0, and α2 + 4β ̸= 0;

• dimkHH
i(∇A) = 0 for i ≥ 3.

Remark 7. In the setting of Theorem 6, A is not generated in degree 1, so the geometric
approach due to Belmans does not work naively. Our proof of Theorem 6 is purely
algebraic by using Green-Snashall’s method (see [7] for details).

Recall that Hochschild cohomology is invariant under derived equivalence. Using The-
orem 4, Theorem 5, and Theorem 6, we have the following consequence.

Corollary 8 ([10, Corollary 1.5]). Let A = A(α, β) and A′ = A(α′, β′) be graded down-up
algebras with deg x = 1, deg y = n ≥ 1, where β ̸= 0, β′ ̸= 0. If

δn =
(
1 0

)(α 1
β 0

)n (
1
0

)
= 0 and δ′n =

(
1 0

)(α′ 1
β′ 0

)n(
1
0

)
̸= 0,

then Db(tailsA) ≇ Db(tailsA′).



3. Application to the study of Grothendieck groups

In this last section, we apply our results to the study of Grothendieck groups. Let T
be a triangulated category, K0(T) the Grothendieck group of T (see [5, Section 3] for
details). If T admits a full strong exceptional sequence of length r, then K0(T) is Zr, so
rkK0(T) = r. If T has the Serre functor S in the sense of Bondal-Kapranov [4], then S
induces an automorphism s of K0(T).

Theorem 9 ([3],[5]). Let Db(cohX) be the bounded derived category of coherent sheaves
on a smooth projective variety X.

(1) ([5, Lemma 3.1]) The action of (−1)dimXs on K0(D
b(cohX)) is unipotent.

(2) ([3, Corollary 25]) If Db(cohX) admits a full strong exceptional sequence, then

χ(HH•(X)) = (−1)dimXrkK0(D
b(cohX)).

where χ(HH•(X)) :=
∑

i∈Z(−1)idimkHH
i(X).

Let A = A(α, β) be a graded down-up algebra with deg x = 1, deg y = n ≥ 1, and
β ̸= 0. Then Db(tailsA) has a full strong exceptional sequence of length 2n + 2 by [13,
Propositions 4.3, 4.4], so rkK0(D

b(tailsA)) = 2n + 2. Moreover Db(tailsA) has the Serre
functor by [14, Appendix A]. Note that gldim (tailsA) = gldim∇A = 2. If n = 1, then s
acts unipotently on K0(D

b(tailsA)) ([3, comments after Remark 26]), and it follows from
Theorem 5 that

χ(HH•(∇A)) = 4 = rkK0(D
b(tailsA))

where χ(HH•(∇A)) :=
∑

i∈Z(−1)idimkHH
i(∇A), so an analogue of Theorem 9 holds.

Using Theorem 6 and Happel’s trace formula [8, Theorem 2.2], we have the following
result.

Proposition 10 ([10, Proposition 3.2]). Let A = A(α, β) be a graded down-up algebra
with deg x = 1, deg y = n, and β ̸= 0.

(1) If n = 2, then s acts unipotently on K0(D
b(tailsA)) and

χ(HH•(∇A)) = 6 = rkK0(D
b(tailsA)).

(2) If n ≥ 3, then s does not act unipotently on K0(D
b(tailsA)) and

χ(HH•(∇A)) = n+ 2 ̸= 2n+ 2 = rkK0(D
b(tailsA)).

Remark 11. In respect of Proposition 10, when n = 2, Db(tailsA) behaves a bit like
a geometric object (a smooth projective surface), but, when n ≥ 3, Db(tailsA) is not
equivalent to the derived category of any smooth projective surface.
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