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Abstract. The partially ordered set torsA of torsion classes in a fixed abelian length
category A is a complete lattice. For two torsion classes U ⊂ T , the interval [U , T ] in
torsA is a sublattice of torsA, and the subcategory W := U⊥ ∩ T describes the “width”
of the interval [U , T ]. Motivated by τ -tilting reduction of Jasso, we mainly deal with the
case that W is a wide subcategory of A; we call such intervals wide intervals. Our first
main result in this proceeding claims that a wide interval [U , T ] is isomorphic to torsW
of torsion classes in the abelian category W. Moreover, we give some characterizations
of wide intervals in terms of the Hasse quiver of the lattice torsA. This proceeding is
based on the joint work [3] with Calvin Pfeifer (Universität Bonn).

1. Preliminary

Throughout this proceeding, we assume that A is an (essentially small) abelian length
category. Therefore, any object X ∈ A has a composition series 0 = X0 ⊂ X1 ⊂ · · · ⊂
Xn = X with each Xi/Xi−1 (i ∈ {1, 2, . . . , n}) is a simple object in A. All subcategories
in this proceeding are supposed to be full subcategories.

We first recall the definition of torsion pairs by Dickson.

Definition 1. [6] Let T ,F ⊂ A be full subcategories. Then, the pair (T ,F) is called a
torsion pair in A if

F = T ⊥ := {X ∈ A | HomA(T , X) = 0},
T = ⊥F := {X ∈ A | HomA(X,F) = 0}.

Torsion pairs can be characterized in terms of short exact sequences as follows.

Lemma 2. Let T ,F ⊂ A be full subcategories. Then, the pair (T ,F) is a torsion pair
in A if and only if HomA(T ,F) = 0 and every X ∈ A admits a short exact sequence
0 → X ′ → X → X ′′ → 0 with X ′ ∈ T and X ′′ ∈ F .

In this proceeding, we mainly focus on subcategories T which can be completed to a
torsion pair (T ,F).

Definition 3. A full subcategory T ⊂ A is called a torsion class in A if there exists a
torsion pair (T ,F) in A. We write torsA for the set of torsion classes in A.

We regard the set torsA = (torsA,⊂) of torsion classes as a partially ordered set by
inclusion. We give some fundamental observations for this proceeding.

Lemma 4. We have the following properties.
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(1) Let T ⊂ A be a full subcategory. Then, T is a torsion class if and only if T is
closed under factor objects and extensions.

(2) For any X ⊂ A, there exists a smallest torsion class containing X , which is
denoted by T(X ).

(3) The partially ordered set torsA is a complete lattice with the join and the meet for
each S ⊂ torsA is given by∨

T ∈S

T = T

(∪
T ∈S

T

)
,

∧
T ∈S

T =
∩
T ∈S

T .

2. Wide intervals

For two torsion classes U ⊂ T , we can naturally consider the interval

[U , T ] := {V ∈ torsA | U ⊂ V ⊂ T }.

in torsA. The “width” of this interval is described by the full subcategory U⊥ ∩ T ⊂ A.
In this proceeding, we mainly deal with the following nice intervals.

Definition 5. [3, Definition 4.1] An interval [U , T ] in torsA is called a wide interval if
the full subcategory U⊥ ∩ T is a wide subcategory of A.

Here, we say that a full subcategory W ⊂ A is wide if W is closed under taking factor
objects, subobjects, and extensions; or equivalently, W is an abelian subcategory of A
closed under extensions. In particular, we can consider the complete lattice torsW of
torsion classes in the abelian category W . The set of isoclasses of simple objects of a
wide subcategory W is a semibrick, that is, a set of pairwise Hom-orthogonal isoclasses
of bricks. Conversely, for each semibrick S, the filtration closure FiltS in A is a wide
subcategory of A. The wide subcategories of A bijectively correspond to the semibricks
in A in this way [10, 1.2].

In particular, for any T ∈ torsA, [T , T ] is a wide interval, since T ⊥ ∩ T = {0} is a
wide subcategory, whose corresponding semibrick is the emptyset.

Later in this section, we will state our reduction theorem of wide intervals, which is
an extension of results on τ -tilting reduction by Jasso [8] and Demonet–Iyama–Reading–
Reiten–Thomas [5] to arbitrary wide intervals.

We recall that two torsion classes U ⊂ T ∈ torsA are said to be adjacent if U ̸= T and
there exists no torsion class V ∈ torsA such that U ⊊ V ⊊ T . The adjacency relations of
torsion classes in A is expressed by the Hasse quiver of the partially ordered set torsA,
which is the quiver whose vertices are the elements of torsA and there exists an arrow
T → U if and only if U ⊂ T are adjacent.

The following property is very crucial to introduce brick labeling in the sense of Demonet–
Iyama–Reading–Reiten–Thomas [5]. This says that adjacent torsion classes give a minimal
nontrivial wide interval.

Proposition 6. [5, Theorem 3.3] For any arrow q : T → U , the interval [U , T ] is a wide
interval, and the associated wide subcategory W := U⊥ ∩ T has only one brick Sq up to
isomorphisms. Thus, we label the arrow q : T → U by the brick Sq.



We remark that, for any interval [U , T ] in torsA, we can define the Hasse quiver of
[U , T ] in the same way as before. Then, the Hasse quiver of [U , T ] is a full subquiver of
the Hasse quiver of torsA, since the interval [U , T ] is a convex subset of torsA.
To give another example of wide intervals, we recall some notions on τ -tilting theory

for finite-dimensional algebras introduced in [1].
Let A be a finite-dimensional algebra over a field K, and set A as the category modA

of finite-dimensional A-modules. For N,Q ∈ modA with Q projective, the pair (N,Q) is
a τ -rigid pair if HomA(N, τN) = 0 and HomA(Q,N) = 0. Here, τ denotes the Auslander–
Reiten translation in modA.

Then, by the following theory by Jasso [8] and Demonet–Iyama–Reading–Reiten–Thomas
[5] called τ -tilting reduction, we can construct a wide interval for each τ -rigid pair.

Theorem 7. [8, Theorems 3.8, 3.12] [5, Theorem 4.12, Proposition 4.13] For a τ -rigid
pair (N,Q) in modA, set two torsion classes U ⊂ T by

U := FacN, T := N⊥ ∩ ⊥(τN) ∩Q⊥.

Then, the following assertions hold.

(1) The interval [U , T ] is a wide interval.
(2) Set W := U⊥ ∩ T . Then, [U , T ] is isomorphic to torsW as complete lattices by

Φ: [U , T ] → torsW , V 7→ U⊥ ∩ V .
The inverse isomorphism is given by torsW ∋ X 7→ T(U ∪X ) ∈ [U , T ]. Therefore,
the Hasse quivers of [U , T ] and torsW are isomorphic.

(3) The isomorphisms in (2) preserve brick labeling of the Hasse quivers; that is,
the label of each arrow V1 → V2 in [U , T ] is the same as the label of the arrow
Φ(V1) → Φ(V2) in torsW.

Moreover, they showed that there exists a finite-dimensional K-algebra C such that
W ∼= modC, which can be constructed from the Bongartz completion of the τ -rigid pair
(N,Q).

Now, we can state our first main result, which says that the parts (2) and (3) in the
previous theorem actually hold for all wide intervals.

Theorem 8. [3, Theorem 4.2] Let [U , T ] is a wide interval in torsA and set W := U⊥∩T .
Then, the following assertions hold.

(1) The interval [U , T ] is isomorphic to torsW as complete lattices by

Φ: [U , T ] → torsW , V 7→ U⊥ ∩ V .
The inverse isomorphism is given by torsW ∋ X 7→ T(U ∪X ) ∈ [U , T ]. Therefore,
the Hasse quivers of [U , T ] and torsW are isomorphic.

(2) The isomorphisms in (1) preserve brick labeling of the Hasse quivers; that is,
the label of each arrow V1 → V2 in [U , T ] is the same as the label of the arrow
Φ(V1) → Φ(V2) in torsW.

(3) The following three sets coincide:
(a) the set of labels of the arrows from T in [U , T ];
(b) the set of labels of the arrows to U in [U , T ];
(c) the set of isoclasses of the simple objects of W.



In the following example, we give a wide interval which does not come from τ -tilting
reduction.

Example 9. [3, Example 4.3] Let A be the Kronecker quiver algebra K(1 ⇒ 2) over an
algebraically closed field K, and set A := modA. We set two torsion classes U , T ⊂ A so
that

• U is the smallest torsion class containing all the preinjective modules in modA;
and that

• T is the smallest torsion class containing all the regular modules and all the
preinjective modules in modA.

Then, W := U⊥ ∩ T is a wide subcategory of modA, and its simple objects are all the
quasi-simple regular modules; namely,

Mλ := K K
a //

b
// (λ = (a : b) ∈ P1(K)).

Thus, [U , T ] is a wide interval. Since Ext1A(Mλ,Mµ) = 0 if λ ̸= µ, we get

W ∼=
⊕

λ∈P1(K)

FiltMλ.

It is easy to see that tors(FiltMλ) = {FiltMλ, {0}}. Therefore, from Theorem 8, we have

[U , T ] ∼= torsW ∼=
∏

λ∈P1(K)

tors(FiltMλ) ∼= 2P
1(K)

as lattices, where the corresponding element in [U , T ] to each X ∈ 2P
1(K) is

VX := T(U ∪ {Mλ | λ ∈ X}) ∈ [U , T ].

Any arrow in the Hasse quiver of [U , T ] is of the form

VX∪{λ}
label: Mλ−−−−−→ VX (X ∈ 2P

1(K), λ ∈ P1(K) \X).

3. Characterizations of wide intervals

Next, we will characterize wide intervals in a combinatorial way. For this purpose, we
define the following notions.

Definition 10. [3, Definition 5.1] Let [U , T ] be an interval in torsA.

(1) We set

[U , T ]− := {U} ∪ {V ∈ [U , T ] | there exists an arrow V → U},
[U , T ]+ := {T } ∪ {V ∈ [U , T ] | there exists an arrow T → V}.

(2) The interval [U , T ] is called a join interval if

T =
∨

V∈[U ,T ]−

V .



(3) The interval [U , T ] is called a meet interval if

U =
∧

V∈[U ,T ]+

V .

Note that join intervals and meet intervals are purely lattice theoritical notions. We
showed that actually they coincide with wide intervals.

Theorem 11. [3, Theorem 5.2] Let [U , T ] be an interval in torsA. Then, the following
conditions are equivalent:

(a) [U , T ] is a wide interval;
(b) [U , T ] is a join interval;
(c) [U , T ] is a meet interval.

Next, we consider the following question:

Fix T ∈ torsA, then how many torsion classes U ∈ torsA satisfy that
[U , T ] are wide intervals?

To answer this, it is useful to use the subcategory

α(T ) := {X ∈ T | for all Y ∈ T and all f : Y → X, Ker f ∈ T }

associated to each T ∈ torsA. Ingalls–Thomas [7, Proposition 2.12] showed that α(T ) is a
wide subcategory, and they used this wide subcategory efficiently to study the relationship
between wide subcategories and torsion classes. In the case A = modA with A a finite-
dimensional hereditary algebra, [7, Proposition 2.14] showed that α(T(W)) = W for any
wide subcategory W ⊂ A, and [9, Proposition 3.3] extended this to the case that A is an
arbitrary finite-dimensional K-algebra. We remark that the proof of [9] works also in our
setting.

By using the operation α, we have obtained the following properties on the number of
wide intervals.

Theorem 12. [3, Proposition 6.5, Theorem 6.7] Fix T ∈ torsA, and set L as the set of
labels of the arrows from T in the Hasse quiver of torsA. Then, the following assertions
hold.

(1) The set L is a semibrick with FiltL = α(T ).
(2) There exists a bijection

2L → {U ∈ torsA | [U , T ] is a wide interval},
S 7→ T ∩ ⊥S =: US .

Moreover, (US)
⊥ ∩ T = FiltS holds for any S ∈ 2L, and it is a Serre subcategory

of α(T ).

As an application of the theorem above, we found the following criterion, which deter-
mines whether a given torsion class T ∈ torsA admits a wide subcategory W ⊂ A such
that T = T(W). We call such torsion classes widely generated torsion classes.

Corollary 13. [3, Theorem 7.2] For T ∈ torsA, set L as the set of labels of the arrows
from T . Then, the following conditions are equivalent:



(a) T is a widely generated torsion class;
(b) T = T(α(T ));
(c) T coincides with T(L);
(d) for any torsion class U ∈ torsA satisfying U ⊂ T , there exists an arrow T → U ′

such that U ⊂ U ′.

We remark that the equivalence of the conditions (a), (c), and (d) above has been al-
ready proved by Barnard–Carroll–Zhu [4, Subsection 3.2] using minimal extending mod-
ules.
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