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Abstract. We introduce the notion of g-polytopes of finite dimensional algebras, which
is firstly studied by Asashiba-Mizuno-Nakashima inspired by a work of L. Hille. We
can regard it as a geometric realization of a simplicial complex of two-term presilting
complexes in Rn where n is the number of simple modules. In [2], they show that g-
polytopes of Brauer tree algebras are convex and symmetric with respect to origin. In
this paper, we generalize their results to an arbitrary Brauer graph algebras.

1. Introduction

We introduce the notion of g-polytopes of finite dimensional algebras, which is firstly
studied by [2] inspired by a work of L. Hille [3] in the study of a simplicial complex of
tilting modules over path algebras of type A. This is a lattice polytope in Rn defined by
numerical data, called g-vectors, of two-term (pre)silting complexes, where n is the number
of simple modules. We can regard it as a geometric realization of a simplicial complex
of two-term presilting complexes whose j-dimensional faces consist of all basic two-term
presilting complexes having j + 1 indecomposable direct summands (0 ≤ j ≤ n− 1).

In [2], for an algebra having only finitely many two-term silting complexes, they give a
condition for the convexity of g-polytopes in terms of silting mutation. Silting mutation
plays an important role in τ -tilting theory. As an application, they show that the g-
polytope △(A) of a Brauer tree algebra A is just the convex hull of g-vectors of all
two-term indecomposable presilting complexes. In addition, △(A) is symmetric, that is,
△(A) = −△(A).

In this paper, we generalize their results to an arbitrary Brauer graph algebra A. In
general, A has infinitely many two-term silting complexes, and △(A) is not convex nor
symmetric (Section 4). However, the claims still hold after taking the closure △(A) of
△(A) in Rn (Theorem 7). Furthermore, we give an explicit description by calculating the
fundamental domain of a natural group action on △(A) (Theorem 8). A key observation
is to determine all lattice points of △(A) by using a geometric model of a classification of
two-term tilting complexes established by Adachi-Aihara-Chan [1].

2. A simplicial complex of two-term silting complexes

Let A be a finite dimensional algebra over an algebraically closed field k. We denote
by projA the category of finitely generated right projective A-modules, by Kb(projA) the
homotopy category of bounded complexes of projA. Throughout this paper, we assume
that every complex in Kb(projA) is basic, that is, it is isomorphic to a direct sum of
indecomposable complexes which are mutually non-isomorphic, if otherwise specified.

The detailed version of this paper will be submitted for publication elsewhere.



We say that a complex M = (M i, di) ∈ Kb(projA) is two-term presilting if the following
conditions are satisfied:

• M i = 0 for all integer i ̸= −1, 0;
• HomKb(projA)(M,M [1]) = 0.

A two-term presilting complex is said to be two-term silting if it has n indecomposable
direct summands, where n is the number of simple A-modules. We denote by 2-siltA the
set of isomorphism classes of two-term silting complexes in Kb(projA).

Let M ∈ 2-siltA and X an indecomposable direct summand of M . Consider a triangle

(2.1) X
f→ M ′ → Y → X[1]

such that f is a left minimal (addM/X)-approximation of X. We say that µ−
X(M) :=

M/X ⊕ Y is a left mutation of M when it is a two-term silting complex. Notice that M ′

is not basic in general.
The g-vector of M is the corresponding element gM ∈ K0(K

b(projA)) ∼= K0(projA) ∼=
Zn in the Grothendieck group. For a given M ∈ 2-siltA, let C≤1(M) be the convex hull
of g-vectors of all indecomposable direct summands of M and 0 in Rn. We clearly obtain
the equality C≤1(M) = {

∑
aXg

X ∈ Rn | aX ≥ 0,
∑

aX ≤ 1, } where X runs over all
indecomposable direct summands of M . The g-polytope of the algebra A is defined by

△(A) :=
∪

M∈2-siltA

C≤1(M).

It is known that two distinct regions C≤1(M) and C≤1(N) intersect only at their boundary
given by C≤1(U), where U is a maximal common direct summand of M and N . There-
fore, △(A) can be regarded as a geometric realization of a simplicial complex of two-term
presilting complexes in Kb(projA), whose j-dimensional faces consist of all two-term pre-
silting complexes having j + 1 indecomposable direct summands.

Now, we discuss the convexity of g-polytopes. The following observation is important.

Proposition 1. [2, Proposition 2.23] Assume that M,N ∈ 2-siltA and N is a left muta-
tion of M given by the triangle (2.1). Then the following conditions are equivalent

(1) C≤1(M) ∪ C≤1(N) is convex;
(2) the number of indecomposable direct summands of M ′ is at most 2.

We say that the algebra A is locally convex if one of equivalent conditions in Proposition
1 is satisfied for all left mutation in 2-siltA.

The following is one of main results in [2].

Theorem 2. [2, Proposition 2.26] Assume that 2-siltA is finite. Then the following
conditions are equivalent:

(1) A is locally convex;
(2) △(A) is convex.

In this case, △(A) is the convex hull of g-vectors of all two-term indecomposable presilting
complexes in Kb(projA).



3. g-polytopes of Brauer graph algebras and main results

In this section, we study g-polytopes of Brauer graph algebras. In particular, we discuss
the convexity and symmetry. Here, we say that a subset X of Rn is symmetric if X = −X.
We will give several examples in the next section (Section 4).

Brauer graph algebras are also known as symmetric special biserial algebras. They are
defined by combinatorial data called ribbon graphs, which are finite undirected graphs
embedded in the oriented surface. For details, we refer to [4, Section 2]. We denote by
AG the Brauer graph algebra associated to a ribbon graph G. Notice that, since AG is
symmetric, any silting complex in Kb(projAG) is tilting.

A remarkable result in [1] is that every two-term tilting complex (and its g-vector) over
AG admits a combinatorial description as a certain collection of walks on G. From this
description, one can show that the endomorphism algebra of a two-term tilting complex
is again a Brauer graph algebra and is derived equivalent to AG.

We begin with the following observation.

Proposition 3. Brauer graph algebras are locally convex.

Proof. Firstly, we show that every left mutation of AG admits at most two indecomposable
direct summands in the middle term of the associated mutation triangle. Remember that
there is a one-to-one correspondence between indecomposable projective AG-modules Pe

and edges e of G. It is known that a left mutation µ−
Pe
(AG) of A is given by a triangle

Pe → Pi ⊕ Pj → P ′
e → Pe[1],

where i and j are edges of G appearing in a flip of G at e (See Figure 3), and the
endomorphism algebra of µ−

Pe
(AG) is isomorphic to a Brauer graph algebra Aµ−

e (G). In
particular, the middle term is a direct sum of at most two indecomposable modules.

Since endomorphism algebras of two-term tilting complexes over AG is a Brauer graph
algebra, we get the assertion by Proposition 1 and the previous discussion. □
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e (G)

e j

i

µ−
e e j

i

Figure 1. A flip of a ribbon graph G at e

We are interested in Brauer graph algebras having only finitely many two-term tilting
complexes. Such algebras are completely determined by their ribbon graphs.

Proposition 4. [1, Theorem 1.1(2)] For a ribbon graph G, the following conditions are
equivalent:

(1) 2-tiltAG is finite;
(2) G contains at most one cycle of odd length, and no cycle of even length.



An aim of [2] is to study g-polytopes of Brauer graph algebras AG of the tree (=a graph
without cycles). In this case, △(AG) is convex by Theorem 2, Proposition 3 and 4. More
strongly, they give an explicit description by using convex polytopes associated to root
systems. Here, root polytopes of type A and C of dimension n are the convex hull of

{ei − ej; 1 ≤ i, j ≤ n+ 1} and {±2ei; 1 ≤ i ≤ n,±ei ± ej; 1 ≤ i ̸= j ≤ n}

respectively. Let PAn (resp., PCn) be the image in Rn with canonical basis αi := ei − ei+1

for 1 ≤ i ≤ n (resp., βi := ei − ei+1 for 1 ≤ i ≤ n− 1 and βn := 2en).

Theorem 5. [2, Theorem 1.1] Let G be a tree. Then △(AG) is convex and symmetric.
In addition, there exists a linear transformation f : Rn → Rn such that f(△(AG)) = PAn

and | det f | = 1.

On the other hand, as an analog of Theorem 5, we prove that the remained ribbon
graphs of finite type correspond to root polytopes of type C.

Theorem 6. Let G be a ribbon graph containing precisely one cycle of odd length, and
no cycle of even length. Then △(AG) is convex and symmetric. In addition, there exists
a linear transformation f : Rn → Rn such that f(△(AG)) = PCn and | det f | = 1.

Now, we study a Brauer graph algebra AG for an arbitrary ribbon graph G. We will
see in Section 4 that △(AG) is not convex nor symmetric in general. However, we find
that the claims still hold after taking the closure. Let △(AG) be the closure of △(AG)
with respect to the natural topology on Rn.

Theorem 7. Let G be a ribbon graph.

(1) △(AG) is convex and symmetric.
(2) If a ribbon graph G′ is obtained by iterated flip from G, then the isomorphism

between Grothendieck groups K0(projAG) and K0(projAG′) induces a linear trans-
formation f : Rn → Rn such that f(△(AG)) = △(AG′) and | det f | = 1.

The following result declare the shape of the closure of g-polytopes.

Theorem 8. Let G be a ribbon graph. Then we have a decomposition

△(AG) = △(AG0)×H

where G0 is a subgraph of G containing at most one cycle of odd length and no cycle of
even length, and H is a subspace of Rn. Furthermore, △(AG0) is the fundamental domain
of a group action of the additive group H on △(AG), which is isomorphic to root polytopes
of type A or C.

In fact, the above H is determined by “cycles” of G. A key observation is to determine
all lattice points of △(AG) by using a geometric model of a classification of two-term
tilting complexes established in [1].

4. Examples

We describe g-polytopes of Brauer graph algebras AG for several ribbon graphs G.



(a) For ribbon graphs having 1 edge, they are either a tree or a loop. In both cases,
there are precisely two two-term tilting complexes AG and AG[1]. Therefore, the associated
g-polytope is just an interval [−1, 1] in R, which is of type A1.

(b) In Figure 2, we describe three ribbon graphs having 2 edges and the closure of the
associated g-polytopes by dotted areas in R2. Notice that the Brauer graph algebra of the
right is the trivial extension of a path algebra of the Kronecker quiver. In this case, there
are infinitely many two-term tilting complexes for AG. In Theorem 8, a decomposition of
△(AG) is provided by △(AG0) = {(x, y) ∈ R2 | −1 ≤ x ≤ 1, y = 0} of a subgraph G0 of
G with edge set {1}, and a 1-dimensional subspace H = {(x, y) | y = −x} ⊂ R2.
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type A2 type C2 (type A1)× (y = −x)

Figure 2. △(AG) for ribbon graphs G having 2 edges.

(c) We observe ribbon graphs having 3 edges. We give three examples in Figure 3. The
ribbon graph of the tree in center is obtained from the left one by a flip at the edge 1. In
Theorem 7(2), the induced linear transformation f : R3 → R3 is given by e′1 := −e1 + e2,
e′2 := e2 and e′3 := e3. By Proposition 5, both of them are isomorphic to a root polytope
of type A3.

For the right one, we find that △(AG) itself is not convex nor symmetric, but its closure
is. A decomposition of △(AG) is provided by a 1-dimensional subspace H := {(x, y, z) ∈
R3 | x = 0, z = −y} ⊂ R3 and a subgraph G0 of G with edge set {1, 2}. Namely, the
fundamental domain is given by the intersection of △(AG) and xy-plane and is a hexagon
of type A2 in (b).
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Figure 3. Three examples of △(AG) for ribbon graphs G having 3 edges.
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