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Changing my attitude to students; G/H is ...

To junior undergraduates: “G/H is easy to understand. Unless
your are able to understand it,...”

To senior undergraduates: “G/H is difficult to understand. You
have to study hard to understand it.”

To graduates: “G/H is the simplest among the difficult quotients
X/G , because the relevant group-action is free.”

In any way the following is known: given an affine algebraic group
G and its closed subgroup H, there exits uniquely a scheme G/H
which is characterized by the co-equalizer diagram of schemes

G × H ⇒ G → G/H.

Question (Brundan 2006): Is this generalized to the super-context?

Answer: Yes (M-Zubkov 2011): Yes. Moreover, the structure sheaf
of the super-symmetric quotient G/H is...(M-Takahashi, this time)
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Super-symmetry

Everything is over a fixed field k of characteristic ̸= 2.

To define objects over k, such as comm. algebra, Hopf algebra H,
Lie algebra g, you need

▶ the tensor product ⊗, which is used to present their structures

so as k ϵ←− H
∆−→ H ⊗ H, g⊗ g

[ , ]−→ g; and

▶ the obvious symmetry V ⊗W →W ⊗ V , v ⊗ w 7→ w ⊗ v ,
which is involved in their axioms.

Those ordinary objects are thus defined based on the symmetric
tensor category (vector space) of vector spaces.
As a generalized symmetric tensor category we have the category
(super-vector space) of super-vector spaces, based on which are
defined super-objects, such as super-commutative super-algebra,
super-Hopf algebra, super-Lie algebra.
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“Super” = “graded by Z/(2) = {0, 1}”; 0 is called even, 1 odd

Super-vector space = Z/(2)-graded vector space V = V0 ⊕ V1.

The super-symmetry V ⊗W →W ⊗ V is given by

v ⊗ w 7→ (−1)|v ||w |w ⊗ v =

{
−w ⊗ v if v and w are odd,

w ⊗ v otherwise.

Ex. If V = V1, then ∧(V ) is a super-comm. super-algebra.

We have
(vector space) ⊂ (super-vector space)

so that ordinary objects A are precisely super-objects which are
purely even, A = A0.
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Thm (Deligne 2002). In characteristic 0, the super-symmetry
mostly exhausts all possible symmetries.

To be more precise,
if k is an algebraically closed field of characteristic zero, any rigid,
abelian k-linear symmetric tensor category satisfying a certain mild
assumption is realized as the category of finite-dimensional
super-modules over some affine super-algebraic group.
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Geometrical vs. functorial viewpoints–Grothendieck

In what follows a super-algebra A = A0 ⊕ A1 is assumed to be
super-commutative, so that A includes A0 as a central subalgebra,
and ab = −ba, a2 = 0 for all a, b ∈ A1.
A prime (resp., maximal) of A is a super-ideal of the form P ⊕ A1,
where P is a prime (resp., maximal) of A0.
A is said to be local if A0 is so.

Geometrical viewpoint: A local-super-ringed space is a
topological space X equipped with a structure sheaf OX of
super-algebras such that the stalk OX ,P at every point P is a local
super-algebra.
A super-scheme is a local-super-ringed space locally isomorphic to
an affine super-scheme, SpecA.
The affine super-scheme SpecA has Spec(A0) as the underlying
topological space, and the structure sheaf OSpecA is such that

OSpecA(D(x)) = A⊗A0 (A0)x , OSpecA,P = A⊗A0 (A0)P ,

where x ∈ A0, D(x) = {x /∈ P ∈ Spec(A0)} and P ∈ Spec(A0).
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Functorial viewpoint:

A k-functor is a set-valued functor

F : (super-algebra)→ (set)

defined on the category of super-algebras (over k).
A functorial affine super-scheme is a representable k-functor, which
is thus of the form

SpA = SAlg(A,−) : R 7→ SAlg(A,R),

where A is a super-algebra.
A functorial super-scheme is a k-functor which is the union of
some open sub-functors that are functorial affine super-schemes.

Comparison Thm (M-Zubkov 2011): SpecA 7→ SpA extends to a
category equivalence

(super-scheme) ≈
(

functorial
super-scheme

)
which assigns to X , the k-functor Mor(Spec(−),X ) represented by
X .
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where A is a super-algebra.
A functorial super-scheme is a k-functor which is the union of
some open sub-functors that are functorial affine super-schemes.
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An advantage of the functorial viewpoint:

The k-functors are so
flexible that they include sheaf-like objects which indeed behave
like sheaves with respect to some “topology” on super-algebras
that you may choose as you like. We choose the fppf topology,
to get faisceaux.

Def (Grothendieck): A faisceau (or k-sheaf) is a k-functor F
which preserve finite products, and turns every equalizer diagram

R → S ⇒ S ⊗R S

associated with an fppf (= faith. flat and finitely presented) map
R → S of super-algebras into the equalizer diagram of sets

F (R)→ F (S) ⇒ F (S ⊗R S).
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Fact: Given a k-functor X there uniquely exists a faisceau X̃
equipped with a morphism ι : X → X̃ , such that the induced map

Mor(ι,Y ) : Mor(X̃ ,Y )→ Mor(X ,Y )

is a bijection for every faisceau Y .

Appl: Let G /̃H be the faisceau associated with the coset functor
R 7→ G (R)/H(R). If this G /̃H happens to be a super-scheme, that
is the quotient super-scheme G/H.



Geometrical side Functorial side(
affine

super-scheme

) (
functorial affine
super-schemes

)
∩ ∩

(super-scheme)

(
functorial

super-schemes

)
(faisceaux)
∩

≈ //

≈ //

Fact: Given a k-functor X there uniquely exists a faisceau X̃
equipped with a morphism ι : X → X̃ , such that the induced map

Mor(ι,Y ) : Mor(X̃ ,Y )→ Mor(X ,Y )

is a bijection for every faisceau Y .

Appl: Let G /̃H be the faisceau associated with the coset functor
R 7→ G (R)/H(R). If this G /̃H happens to be a super-scheme, that
is the quotient super-scheme G/H.



Geometrical side Functorial side(
affine

super-scheme

) (
functorial affine
super-schemes

)
∩ ∩

(super-scheme)

(
functorial

super-schemes

)
(faisceaux)
∩

≈ //

≈ //

Fact: Given a k-functor X there uniquely exists a faisceau X̃
equipped with a morphism ι : X → X̃ , such that the induced map

Mor(ι,Y ) : Mor(X̃ ,Y )→ Mor(X ,Y )

is a bijection for every faisceau Y .

Appl: Let G /̃H be the faisceau associated with the coset functor
R 7→ G (R)/H(R).

If this G /̃H happens to be a super-scheme, that
is the quotient super-scheme G/H.



Geometrical side Functorial side(
affine

super-scheme

) (
functorial affine
super-schemes

)
∩ ∩

(super-scheme)

(
functorial

super-schemes

)
(faisceaux)
∩

≈ //

≈ //

Fact: Given a k-functor X there uniquely exists a faisceau X̃
equipped with a morphism ι : X → X̃ , such that the induced map

Mor(ι,Y ) : Mor(X̃ ,Y )→ Mor(X ,Y )

is a bijection for every faisceau Y .

Appl: Let G /̃H be the faisceau associated with the coset functor
R 7→ G (R)/H(R). If this G /̃H happens to be a super-scheme, that
is the quotient super-scheme G/H.



Super-algebraic groups
Algebraic super-group (schemes) G are the group objects in(
(functorial) algebraic

super-schemes

)
.

We omit “schemes”, and assume G to be

affine in what follows. Thus

G = Spec A = Sp A,

where A is finitely generated (super-comm.) super-Hopf algebra.

Ex G = GL(m|n): the k-group functor

R 7→ invertible

(
xij piℓ
qkj ykℓ

)
1≤i ,j≤m
1≤k,ℓ≤n

, xij , ykℓ ∈ R0, piℓ, qkj ∈ R1
even, odd elements

represented by the super-Hopf algebra

A = k
[
xij , ykℓ, det(X )−1, det(Y )−1

]
⊗ ∧(piℓ, qkj);(

X P
Q Y

)
=

(
xij piℓ
qkj ykℓ

)
, xij , ykℓ even, piℓ, qkj odd variables

∆

(
X P
Q Y

)
=

(
X P
Q Y

)
⊗
(
X P
Q Y

)
, ε

(
X P
Q Y

)
=

(
I O
O I
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Alternative description of super-Lie algebras.

A super-Lie algebra
may be understood as a pair (g0,V ) of a Lie algebra g0 and right
g0-module V , equipped with a g0-equivariant symmetric linear
map [ , ] : V ⊗ V → g0 such that

v ◁ [v , v ] = 0, v ∈ V . (♡)

Every super-Lie algebra g arises uniquely arises from such a pair,

g = g0 ⋉ V with the deformed relation [(0, v), (0,w)] = ([v ,w ], 0).

Analogous description of super-algebraic groups (M-Shibata 2017).
A super-algebraic group may be understood a pair (G0,V ) of an
algebraic group G0 and right G0-module V , equipped with a G0-
equivariant symmetric linear map [ , ] : V ⊗ V → Lie(G0) s.t. (♡).
Every super-algebraic group arises uniquely from such a pair,
deforming the semi-direct product

R 7→ G0(R0)⋉ (V ⊗ R1)

so that (v ⊗ a)(w ⊗ b) = exp([v ,w ]⊗ ab)(w ⊗ b)(v ⊗ a).
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Example. Super-Grassmanians
Let r ≤ m, s ≤ n be integers ≥ 0.

Let km|n := km ⊕ k[1]n.
Given R ∈ (super-algebra), let Rm|n := km|n ⊗ R = Rm ⊕ R[1]n.
The super-Grassmanian Gr(r |s,m|n) is the k-functor

Gr(r |s,m|n)(R) =
{
M <⊕Rm|n | MP ≃ R

r |s
P ∀P ∈ Spec(R0)

}
.

This is a super-scheme, covered by affine super-schemes FW ,

FW (R) =
{
M | M ⊕ (W ⊗ R) = Rm|n},

where W ⊂ km|n are sub-super-vector spaces ≃ km−r |n−s .

Fix a sub-super-vector space U ⊂ km|n s.t. U ≃ kr |s . Then

GL(m|n)(R)→ Gr(r |s,m|n)(R), g 7→ g(U ⊗ R)

gives rise to

GL(m|n)/̃StabGL(m|n)(U)
≃−→ Gr(r |s,m|n).
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Our construction
Let G = SpecA be a super-algebraic group.

There is associated
the (ordinary) algebraic group

G0 = Spec(A/(A1)) : (algebra) ∋ R 7→ SAlg(A,R) ∈ (group).

The underlying topological spaces coincide, |G | = |G0|.
Suppose H = SpecB is a closed sub-super-group of G , so that B
is a quotient super-Hopf algebra of A. The associated algebraic
group H0 = Spec(B/(B1)) is a closed subgroup of G0.

Classical result (Grothendieck): There exists the quotient
scheme G0/H0, which is Noetherian and represents the faisceau
G0/̃H0. The morphism π : G0 → G0/H0 is affine and fppf.

Let U ⊂ G0/H0 be affine open, and regard π−1(U) (⊂ |G0| = |G |)
as an open sub-super-scheme of G . The key is to construct a nice
H-equivariant affine super-scheme XU together with an H-equiv.
open embedding

XU
≃−→ π−1(U) ⊂ G .
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Using Hopf-algebra techniques we construct XU so as

XU = Spec
(
(OG0(π

−1(U))⊗ ∧(Z ))×H0 H
)
,

where Z = (Lie(G )1/Lie(H)1)
∗.

This is so nice that the faisceau
XU /̃H is affine,

XU /̃H = Spec
(
∧OG0/H0

(U) (OG0(π
−1(U))×H0 Z )

)
.

Thm (M-Takahashi): The affine super-schemes XU /̃H, where U
ranges over the affine open subschemes of G0/H0, are glued into a
Noetherian super-scheme with the underlying topological space
|G0/H0|, whose struc. sheaf is locally isomorphic to

∧OG0/H0
(π∗OG0 ×

H0 Z ).

The resulting super-scheme is the quotient G/H, and represents
the faisceau G /̃H. It has additional desirable properties including:
an open subset U ⊂ |G/H| (= |G0/H0|) is affine in G/H ⇔ it is
affine in G0/H0.
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Thanks, also to the organizers!


