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have to study hard to understand it.”

To graduates: “G/H is the simplest among the difficult quotients

X /G, because the relevant group-action is free.”

In any way the following is known: given an affine algebraic group
G and its closed subgroup H, there exits uniquely a scheme G/H
which is characterized by the co-equalizer diagram of schemes

GxH=G— G/H.

Question (Brundan 2006): Is this generalized to the super-context?

Answer: Yes (M-Zubkov 2011): Yes. Moreover, the structure sheaf
of the super-symmetric quotient G/H is...(M-Takahashi, this time)
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To define objects over k, such as comm. algebra, Hopf algebra H,
Lie algebra g, you need

> the tensor product ®, which is used to present their structures
soask@HiH@H,g@gug; and

> the obvious symmetry VO W - WV, vw— w®v,
which is involved in their axioms.

Those ordinary objects are thus defined based on the symmetric
tensor category (vector space) of vector spaces.

As a generalized symmetric tensor category we have the category
(super-vector space) of super-vector spaces, based on which are
defined super-objects, such as super-commutative super-algebra,
super-Hopf algebra, super-Lie algebra.
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The super-symmetry V@ W — W ® V is given by

—w®v if vand w are odd,

vawe (—1)VIvlw gy = _
w® v otherwise.

Ex. If V = Vi, then A(V) is a super-comm. super-algebra.
We have
(vector space) C (super-vector space)

so that ordinary objects A are precisely super-objects which are
purely even, A = Ag.
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Thm (Deligne 2002). In characteristic 0, the super-symmetry
mostly exhausts all possible symmetries. To be more precise,

if k is an algebraically closed field of characteristic zero, any rigid,
abelian k-linear symmetric tensor category satisfying a certain mild
assumption is realized as the category of finite-dimensional
super-modules over some affine super-algebraic group.
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super-commutative, so that A includes Ag as a central subalgebra,
and ab= —ba, a®> =0 for all a,b € A;.

A prime (resp., maximal) of A is a super-ideal of the form P @ A;,
where P is a prime (resp., maximal) of Ap.

A is said to be local if Ag is so.

Geometrical viewpoint: A local-super-ringed space is a
topological space X equipped with a structure sheaf Ox of
super-algebras such that the stalk Ox p at every point P is a local
super-algebra.

A super-scheme is a local-super-ringed space locally isomorphic to
an affine super-scheme, Spec A.

The affine super-scheme Spec A has Spec(Ap) as the underlying
topological space, and the structure sheaf Ospec 4 is such that

Ospec A(D(x)) = A®4, (Ao)xs  Ospecap = A®a, (Ao)p,

where x € Ag, D(x) = {x ¢ P € Spec(Ap)} and P & Spec(Ay).



Functorial viewpoint:



Functorial viewpoint: A k-functor is a set-valued functor
F : (super-algebra) — (set)

defined on the category of super-algebras (over k).



Functorial viewpoint: A k-functor is a set-valued functor
F : (super-algebra) — (set)

defined on the category of super-algebras (over k).
A functorial affine super-scheme is a representable k-functor,



Functorial viewpoint: A k-functor is a set-valued functor
F : (super-algebra) — (set)

defined on the category of super-algebras (over k).
A functorial affine super-scheme is a representable k-functor, which
is thus of the form

Sp A = SAlg(A, —) : R — SAlg(A, R),

where A is a super-algebra.



Functorial viewpoint: A k-functor is a set-valued functor
F : (super-algebra) — (set)

defined on the category of super-algebras (over k).
A functorial affine super-scheme is a representable k-functor, which
is thus of the form

Sp A = SAlg(A, —) : R — SAlg(A, R),

where A is a super-algebra.
A functorial super-scheme is a k-functor which is the union of
some open sub-functors that are functorial affine super-schemes.



Functorial viewpoint: A k-functor is a set-valued functor
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defined on the category of super-algebras (over k).
A functorial affine super-scheme is a representable k-functor, which
is thus of the form

Sp A = SAlg(A, —) : R — SAlg(A, R),

where A is a super-algebra.
A functorial super-scheme is a k-functor which is the union of
some open sub-functors that are functorial affine super-schemes.

Comparison Thm (M-Zubkov 2011): Spec A — Sp A extends to a
category equivalence

functorial
(super-scheme) ~ ( unctoria )

super-scheme

which assigns to X, the k-functor Mor(Spec(—), X) represented by
X.
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An advantage of the functorial viewpoint: The k-functors are so
flexible that they include sheaf-like objects which indeed behave
like sheaves with respect to some “topology” on super-algebras
that you may choose as you like. We choose the fppf topology,

to get faisceaux.

Def (Grothendieck): A faisceau (or k-sheaf) is a k-functor F
which preserve finite products, and turns every equalizer diagram

R—-5=2S5®rS

associated with an fppf (= faith. flat and finitely presented) map
R — S of super-algebras into the equalizer diagram of sets

F(R) = F(S) = F(S®r S).
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Fact: Given a k-functor X there uniquely exists a faisceau X
equipped with a morphism ¢ : X — X, such that the induced map

Mor(z, Y) : Mor(X, Y) — Mor(X, Y)

is a bijection for every faisceau Y.

Appl: Let G7H be the faisceau associated with the coset functor
R+~ G(R)/H(R). If this G/H happens to be a super-scheme, that
is the quotient super-scheme G/H.
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super-schemes
affine in what follows. Thus

G = Spec A=5Sp A,
where A is finitely generated (super-comm.) super-Hopf algebra.

Ex G = GL(m|n): the k-group functor

. We omit “schemes”, and assume G to be

. . Xij  Pie
R — invertible ( g )1<_ o Xijy Ykt € Ro, pie, qij € K1
Akj  Yke 12;(J£—<mn even, odd elements

represented by the super-Hopf algebra
A =Kk[x;, yke, det(X) ™1, det(Y) ] @ A(pie, qij):;

X P X,'j Pie .
= , Xifs even, pjs, qx; odd variables
<Q Y) < QU Ve ij> Yke Pies Qkj

2(g7)=(a v)e@v) (e ¥V)=(c7)
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Alternative description of super-Lie algebras. A super-Lie algebra
may be understood as a pair (go, V) of a Lie algebra go and right
go-module V, equipped with a go-equivariant symmetric linear
map [, ]: V® V — go such that

valv,v]=0, ve V. (@)
Every super-Lie algebra g arises uniquely arises from such a pair,
g = go X V with the deformed relation [(0, v), (0, w)] = ([v, w], 0).

Analogous description of super-algebraic groups (M-Shibata 2017).
A super-algebraic group may be understood a pair (Gp, V) of an
algebraic group Gp and right Gp-module V/, equipped with a Gg-
equivariant symmetric linear map [, | : V ® V — Lie(Gp) s.t. (9).
Every super-algebraic group arises uniquely from such a pair,
deforming the semi-direct product

R~ Go(Ro) X (V® Rl)

so that (v ® a)(w ® b) = exp([v, w] ® ab)(w ® b)(v ® a).
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Example. Super-Grassmanians
Let r < m, s < n be integers > 0. Let k™" := k™ @ k[1]".
Given R € (super-algebra), let RmIn .= emin ® R=R"™® R[1]".
The super-Grassmanian Gr(r|s, m|n) is the k-functor

Gr(r|s, mn)(R) = {M <& R™" | Mp ~ R* /P & Spec(Ro) }.
This is a super-scheme, covered by affine super-schemes Fyy,
Fw(R)={M|Ma (W ®R)=Rm"},
where W C k™" are sub-super-vector spaces ~ k™~"ln—s.
Fix a sub-super-vector space U C k™" s.t. U ~k'l*. Then
GL(m|n)(R) — Gr(r|s, m|n)(R), g — g(U ® R)
gives rise to

GL(m\n)7StabGL(m‘n)(U) = Gr(r|s, m|n).
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Suppose H = Spec B is a closed sub-super-group of G, so that B
is a quotient super-Hopf algebra of A. The associated algebraic
group Ho = Spec(B/(B1)) is a closed subgroup of Go.

Classical result (Grothendieck): There exists the quotient
schNeme Go/Ho, which is Noetherian and represents the faisceau
Go/Hp. The morphism 7 : Gy — Gy/Hj is affine and fppf.

Let U C Gy/Hy be affine open, and regard 7= 1(U) (C |Go| = |G|)
as an open sub-super-scheme of G. The key is to construct a nice
H-equivariant affine super-scheme Xy together with an H-equiv.
open embedding

Xy — 7 }U) C G.
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where Z = (Lie(G)1/Lie(H)1)*. This is so nice that the faisceau
Xu/H is affine,

Xu/H = Spec( Nog () (O (1 (V) X1 2)).

Thm (M-Takahashi): The affine super-schemes Xy /H, where U
ranges over the affine open subschemes of Gy/Hp, are glued into a
Noetherian super-scheme with the underlying topological space
|Go/Hol|, whose struc. sheaf is locally isomorphic to

/\Oco/Ho (TF*OGO x Ho Z).

The resulting super-scheme is the quotient G/H, and represents

the faisceau G/H. It has additional desirable properties including:
an open subset U C |G/H| (= |Go/Ho|) is affine in G/H < it is

affine in Go/Hp.



Thanks, also to the organizers!



