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Introduction

Definition 1 (Hochschild cohomology)

Let A be an associative algebra over a commutative ring R.

Let M be
an A-bimodule. Assume that A is projective over R. Let
Ae := A⊗R Aop be the enveloping algebra of A. For A-bimodules A and
M, we can regard them as left Ae-modules. We define the i-th
Hochschild cohomology group H i (A,M) as ExtiAe (A,M).
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Proposition 1.1

Let R, A, and M be as above.

We can calculate H i (A,M) by taking the
cohomology groups of the bar complex (C i (A,M), d i )i∈Z which is given by

C i (A,M) :=

{
HomR(A

⊗i ,M) (i ≥ 0)
0 (i < 0)

and d i : C i (A,M)→ C i+1(A,M) (i ≥ 0) defined by

d i (f )(a1 ⊗ a2 ⊗ · · · ⊗ ai+1)

:= a1f (a2 ⊗ · · · ⊗ ai+1) +
i∑

j=1

(−1)j f (a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f (a1 ⊗ a2 ⊗ · · · ⊗ ai )ai+1

for f ∈ C i (A,M). Here the tensor products are over R.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 3 / 39



Proposition 1.1

Let R, A, and M be as above. We can calculate H i (A,M) by taking the
cohomology groups of the bar complex (C i (A,M), d i )i∈Z

which is given by

C i (A,M) :=

{
HomR(A

⊗i ,M) (i ≥ 0)
0 (i < 0)

and d i : C i (A,M)→ C i+1(A,M) (i ≥ 0) defined by

d i (f )(a1 ⊗ a2 ⊗ · · · ⊗ ai+1)

:= a1f (a2 ⊗ · · · ⊗ ai+1) +
i∑

j=1

(−1)j f (a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f (a1 ⊗ a2 ⊗ · · · ⊗ ai )ai+1

for f ∈ C i (A,M). Here the tensor products are over R.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 3 / 39



Proposition 1.1

Let R, A, and M be as above. We can calculate H i (A,M) by taking the
cohomology groups of the bar complex (C i (A,M), d i )i∈Z which is given by

C i (A,M) :=

{
HomR(A

⊗i ,M) (i ≥ 0)
0 (i < 0)

and d i : C i (A,M)→ C i+1(A,M) (i ≥ 0) defined by

d i (f )(a1 ⊗ a2 ⊗ · · · ⊗ ai+1)

:= a1f (a2 ⊗ · · · ⊗ ai+1) +
i∑

j=1

(−1)j f (a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f (a1 ⊗ a2 ⊗ · · · ⊗ ai )ai+1

for f ∈ C i (A,M). Here the tensor products are over R.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 3 / 39



For introducing the moduli of subalgebras of the full matrix ring, we define
molds on schemes.

Definition 2

Let X be a scheme. A subsheaf of OX -algebras A ⊆ Mn(OX ) is said to
be a mold of degree n on X if A and Mn(OX )/A are locally free sheaves
on X . We denote by rankA the rank of A as a locally free sheaf on X .
For a commutative ring R, we say that an R-subalgebra A ⊆ Mn(R) is
a mold of degree n over R if A is a mold of degree n on SpecR.
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Proposition 1.2

The following contravariant functor is representable by a Z-scheme
Moldn,d .

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A：rank d mold of degree n on X

}

Moreover, Moldn,d is a closed subscheme of the Grassmann scheme
Grass(d , n2).
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Example 3

In the case n = 2, we have

Mold2,1 = SpecZ,
Mold2,2 = P2

Z,

Mold2,3 = P1
Z,

Mold2,4 = SpecZ.
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Example 4

Let n = 3. If d = 1 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,6 = Flag := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},

Mold3,7 = P2
Z
⨿

P2
Z,

Mold3,8 = ∅,
Mold3,9 = SpecZ.
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Last year we talked about the following theorems.

Theorem 5 (N- and T-)

Mold3,2 ∼= P2
Z × P2

Z.

　

Theorem 6 (N- and T-)

The moduli Mold3,3 has the following irreducible decomposition:

Mold3,3 = Moldreg3,3 ∪MoldS23,3 ∪MoldS33,3.
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Today’s talk

We talk about an application of Hochschild cohomology to the moduli of
subalgebras of the full matrix ring.
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Zariski tangent space

Let A be the universal mold on Moldn,d .

For a point x ∈ Moldn,d , let
A(x) ⊆ Mn(k(x)) be the corresponding mold to x , where k(x) is the
residue field of x .

Let A be a k-subalgebra of Mn(k) over a field k. We define
Derk(A,Mn(k)/A) by

Derk(A,Mn(k)/A)

:= {f ∈ Homk(A,Mn(k)/A) | f (ab) = af (b) + f (a)b for a, b ∈ A}.
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Zariski tangent space

Proposition 1.3

Let TxMoldn,d be the Zariski tangent space of Moldn,d at x. There exists
an isomorphism

TxMoldn,d ∼= Derk(x)(A(x),Mn(k(x))/A(x)).

Proof. The Zariski tangent space TxMoldn,d consists of
k(x)[ϵ]/(ϵ2)-valued points of Moldn,d mapping the closed point to x . We
can easily check the statement. □
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Zariski tangent space

For a k-subalgebra A of Mn(k), let us define
d : Mn(k)→ Derk(A,Mn(k)/A) by

d(X )(a) := [X , a] = Xa− aX mod A

for X ∈ Mn(k) and for a ∈ A. It is easy to check that
d(X ) ∈ Derk(A,Mn(k)/A).

Proposition 1.4

There exists an isomorphism

H1(A,Mn(k)/A) ∼= Derk(A,Mn(k)/A)/Im d .
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Zariski tangent space

We define d : Mn(k)→ Derk(A,Mn(k)/A) by

d(X )(a) := [X , a] = Xa− aX mod A.

Proposition 1.5

There exists an isomorphism

H1(A,Mn(k)/A) ∼= Derk(A,Mn(k)/A)/Im d .

Proof. Let us consider the bar complex

0→ C 0(A,Mn(k)/A)
d0

→ C 1(A,Mn(k)/A)
d1

→ C 2(A,Mn(k)/A)→ · · · .

Note that Ker d1 = Derk(A,Mn(k)/A) ⊇ Im d0 = Im d . Hence we have
H1(A,Mn(k)/A) ∼= Derk(A,Mn(k)/A)/Im d . □
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Zariski tangent space

Let N(A) := {X ∈ Mn(k) | [X , a] ∈ A for any a ∈ A}.

The k-linear map d : Mn(k)→ Derk(A,Mn(k)/A) induces a k-linear map
d : Mn(k)/A→ Derk(A,Mn(k)/A).

Corollary 7

There exists the following exact sequence

0→ N(A)/A→ Mn(k)/A
d→ Derk(A,Mn(k)/A)→ H1(A,Mn(k)/A)→ 0.

In particular,

dimk(x) TxMoldn,d

= dimk(x)H
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x)N(A(x))

for x ∈ Moldn,d .
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Smoothness

Let (R̃, m̃, k) be an Artin local ring.

Let I be an ideal of R̃ such that
m̃I = 0. Set R := R̃/I and m := m̃/I . Then (R,m, k) is also an Artin
local ring. Denote by π : R̃ → R the canonical projection. Let s : R → R̃
be a set theoretical section of π.

Let A ⊆ Mn(R) be a rank d mold. In other words, A is an R-subalgebra of
Mn(R) such that Mn(R)/A is projective and rankRA = d .

Question: Is there a lift Ã ∈ Moldn,d(R̃) of A?

In other words, is there an R̃-subalgebra Ã ⊆ Mn(R̃) such that Mn(R̃)/Ã
is R̃-projective and Ã⊗

R̃
R = A?

If it always exists, the morphism Moldn,d → Z is (formally) smooth.
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In other words, is there an R̃-subalgebra Ã ⊆ Mn(R̃) such that Mn(R̃)/Ã
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In other words, is there an R̃-subalgebra Ã ⊆ Mn(R̃) such that Mn(R̃)/Ã
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Smoothness

(R̃, m̃, k) : an Artin local ring.
I : an ideal of R̃ such that m̃I = 0.
R := R̃/I and m := m̃/I .
s : R → R̃ be a set theoretical section of π : R̃ → R.
A ⊆ Mn(R) : a rank d mold.

Let us take a basis a1, a2, . . . , an2 of Mn(R) over R such that a1, a2, . . . , ad
is a basis of A over R. For 1 ≤ i ≤ n2, choose a lift S(ai ) ∈ Mn(R̃) of ai
for 1 ≤ i ≤ n2.
Then we define S : Mn(R)→ Mn(R̃) by S(

∑n2

i=1 riai ) =
∑n2

i=1 s(ri )S(ai )

for
∑n2

i=1 riai ∈ Mn(R). Note that S : Mn(R)→ Mn(R̃) does not

necessarily coincide with the map given by applying s : R → R̃ to each
entries of matrices in Mn(R).
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R := R̃/I and m := m̃/I .
s : R → R̃ be a set theoretical section of π : R̃ → R.
A = ⟨a1, a2, . . . , ad⟩ ⊆ Mn(R) = ⊕n2

i=1Rai : a rank d mold.

S(a1),S(a2), . . . , S(an2) ∈ Mn(R̃) : lifts of a1, a2, . . . , an2 .

S : Mn(R)→ Mn(R̃) is defined by S(
∑n2

i=1 riai ) =
∑n2

i=1 s(ri )S(ai ).

Let us define an R-linear map c ′ : A⊗R A→ Mn(I ) ∼= Mn(k)⊗k I by

c ′(
∑

1≤i ,j≤d

ri ,jai ⊗ aj) =
∑

1≤i ,j≤d

s(ri ,j)(S(aiaj)− S(ai )S(aj))

for ri ,j ∈ R. Remark that I is a finite-dimensional k-vector space, since
mI = 0 and I is a finitely generated ideal of R.
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c ′ : A⊗R A→ Mn(I ) ∼= Mn(k)⊗k I is defined by

c ′(
∑

1≤i ,j≤d

ri ,jai ⊗ aj) =
∑

1≤i ,j≤d

s(ri ,j)(S(aiaj)− S(ai )S(aj)).

Let A0 := A⊗R k ⊆ Mn(k). Since A = ⊕d
i=1Rai , we can write

A0 = ⊕d
i=1kai , where ai := (ai mod m).

We denote by c ′′ the composition

A⊗R A
c ′→ Mn(k)⊗k I → (Mn(k)/A0)⊗k I .

It is easy to see that c ′′ : A⊗R A→ (Mn(k)/A0)⊗k I goes through
A0 ⊗k A0.
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c : A0 ⊗k A0 → (Mn(k)/A0)⊗k I is induced by

c ′′ : A⊗R A
c ′→ Mn(k)⊗k I → (Mn(k)/A0)⊗k I .

Then c : A0 ⊗k A0 → (Mn(k)/A0)⊗k I is a cocycle in
C 2(A0, (Mn(k)/A0)⊗k I ). Here (Mn(k)/A0)⊗k I is an A0-bimodule by
a · (X ⊗ x) · b = aXb ⊗ x for X ⊗ x ∈ (Mn(k)/A0)⊗k I and for a, b ∈ A0.
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Proposition 1.6

The cohomology class [c] ∈ H2(A0, (Mn(k)/A0)⊗k I ) is independent from
the choices of lifts s, S, and bases a1, . . . , an2 .
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Smoothness

Theorem 8

Let x ∈ Moldn,d . Let A be the universal mold on Moldn,d . Set
A(x) := A⊗OMoldn,d

k(x). If H2(A(x),Mn(k(x))/A(x)) = 0, then the

canonical morphism Moldn,d → Z is smooth at x.

Remark 1.8

Even if H2(A(x),Mn(k(x))/A(x)) ̸= 0, Moldn,d → Z may be smooth at
x ∈ Moldn,d .
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Goal

Let’s calculate H i(A,Mn(R)/A)!
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Incidence algebra

Let Q be a finite quiver.

Denote by Q0 and Q1 the sets of vertices and
arrows of Q, respectively. For each oriented path α of Q, we denote by
h(α) and t(α) the head and the tail of α, respectively.

Let RQ be the path algebra over a commutative ring R. We define the
arrow ideal F as the two-sided ideal of RQ generated by the paths of
positive length of Q.

Definition 9

A two-sided ideal of I of RQ is called admissible if F n ⊂ I ⊂ F for a
positive integer n and F/I is an R-free module which has an R-basis
consisting of oriented paths.

For an admissible ideal I , set Λ = RQ/I and r = F/I . Denote by E the
R-subalgebra of Λ generated by Q0.
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Incidence algebra

Proposition 1.9 (Cibils)

Let M be a Λ-bimodule.

The Hochschild cohomology R-modules H i (Λ,M)
are the cohomology groups of the complex of E-bimodules

0→ ME δ0→ HomE e (r ,M)
δ1→ HomE e (r ⊗E r ,M)

δ2→ · · ·

· · · δ
i−1

→ HomE e (r⊗i ,M)
δi→ HomE e (r⊗i+1,M)

δi+1

→ · · · ,

　 where the tensor products are over E and

ME = {m ∈ M | sm = ms for each s ∈ Q0}
δ0(m)(x) := xm −mx for m ∈ ME and for x ∈ r ,

δi (f )(x1 ⊗ · · · ⊗ xi+1) := x1f (x2 ⊗ · · · ⊗ xi+1)

+
i∑

j=1

(−1)j f (x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi+1)

+(−1)i+1f (x1 ⊗ · · · ⊗ xi )xi+1.
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Incidence algebra

Remark 1.10

Set r⊗0 := E . Then HomE e (r⊗0,M) = ME . Hence the complex above
can be written by {HomE e (r⊗n,E ), δn}.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 26 / 39



Incidence algebra

Definition 10

Let Q be a finite quiver without oriented cycles. We say that Q is
ordered if there exists no oriented path other than α joining t(α) to
h(α) for each arrow α ∈ Q1.

Definition 11

Let Q be an ordered quiver. Let I be the two-sided ideal of RQ
generated by{

γ − δ ∈ RQ
γ and δ are oriented paths with
h(γ) = h(δ) and t(γ) = t(δ)

}
.

We call Λ = RQ/I an incidence R-algebra. Note that I is an admissible
ideal.
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Incidence algebra

For an ordered quiver Q, set n := |Q0|.

For a, b ∈ Q0, we define a ≥ b if
a = b or there exists an oriented path α such that t(α) = a and h(α) = b.
Then (Q0,≥) is a partially ordered set (i.e. poset). Let Λ := RQ/I be the
incidence algebra associated to Q. For a ≥ b, let eb,a be the equivalence
class of oriented paths from a to b in Λ. We can write Λ = ⊕a≥bReb,a. Fix
a numbering on Q0. By regarding eb,a as Eba, Λ can be considered as an
R-subalgebra of Mn(R) = ⊕a,b∈Q0REba, where Eba is the matrix unit. We
can write E = ⊕a∈Q0Rea,a and E e = E ⊗R E op = ⊕a,b∈Q0Rea,a ⊗ eb,b. We
also have r = F/I = ⊕a>bReb,a. (In the sequel, we denote Eba ∈ Mn(R)
by eb,a for simplicity.)
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Incidence algebra

Lemma 12

For i ≥ 0, HomE e (r⊗i ,Mn(R)/Λ) = 0.

Proof. As E -bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi ,s0 . On the
other hand, Mn(R)/Λ ∼= ⊕a ̸≥bReb,a. Hence we have
HomE e (r⊗i ,Mn(R)/Λ) ∼= ⊕s0>s1>···>si , a ̸≥b HomE e (Resi ,s0 ,Reb,a).
Since HomE e (Resi ,s0 ,Reb,a)

∼= esi ,si (Reb,a)es0,s0 = 0,
HomE e (r⊗i ,Mn(R)/Λ) = 0. □

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 29 / 39



Incidence algebra

Lemma 12

For i ≥ 0, HomE e (r⊗i ,Mn(R)/Λ) = 0.

Proof. As E -bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi ,s0 .

On the
other hand, Mn(R)/Λ ∼= ⊕a ̸≥bReb,a. Hence we have
HomE e (r⊗i ,Mn(R)/Λ) ∼= ⊕s0>s1>···>si , a ̸≥b HomE e (Resi ,s0 ,Reb,a).
Since HomE e (Resi ,s0 ,Reb,a)

∼= esi ,si (Reb,a)es0,s0 = 0,
HomE e (r⊗i ,Mn(R)/Λ) = 0. □

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 29 / 39



Incidence algebra

Lemma 12

For i ≥ 0, HomE e (r⊗i ,Mn(R)/Λ) = 0.

Proof. As E -bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi ,s0 . On the
other hand, Mn(R)/Λ ∼= ⊕a ̸≥bReb,a.

Hence we have
HomE e (r⊗i ,Mn(R)/Λ) ∼= ⊕s0>s1>···>si , a ̸≥b HomE e (Resi ,s0 ,Reb,a).
Since HomE e (Resi ,s0 ,Reb,a)

∼= esi ,si (Reb,a)es0,s0 = 0,
HomE e (r⊗i ,Mn(R)/Λ) = 0. □

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 29 / 39



Incidence algebra

Lemma 12

For i ≥ 0, HomE e (r⊗i ,Mn(R)/Λ) = 0.

Proof. As E -bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi ,s0 . On the
other hand, Mn(R)/Λ ∼= ⊕a ̸≥bReb,a. Hence we have
HomE e (r⊗i ,Mn(R)/Λ) ∼= ⊕s0>s1>···>si , a ̸≥b HomE e (Resi ,s0 ,Reb,a).

Since HomE e (Resi ,s0 ,Reb,a)
∼= esi ,si (Reb,a)es0,s0 = 0,

HomE e (r⊗i ,Mn(R)/Λ) = 0. □

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 29 / 39



Incidence algebra

Lemma 12

For i ≥ 0, HomE e (r⊗i ,Mn(R)/Λ) = 0.

Proof. As E -bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi ,s0 . On the
other hand, Mn(R)/Λ ∼= ⊕a ̸≥bReb,a. Hence we have
HomE e (r⊗i ,Mn(R)/Λ) ∼= ⊕s0>s1>···>si , a ̸≥b HomE e (Resi ,s0 ,Reb,a).
Since HomE e (Resi ,s0 ,Reb,a)

∼= esi ,si (Reb,a)es0,s0 = 0,
HomE e (r⊗i ,Mn(R)/Λ) = 0. □

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 29 / 39



Incidence algebra

In this case, the complex {HomE e (r⊗n,E ), δn} is zero.

Summarizing the
discussion above, we have the following theorem.

Theorem 13

Let Q be an ordered quiver with n = |Q0|. Let Λ be the incidence algebra
associated to Q. Then H i (Λ,Mn(R)/Λ) = 0 for i ≥ 0.
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Incidence algebra

Example 14

Let us consider the following quiver Q

1←− 2←− 3←− · · · ←− n.

Let Λ = RQ/I be the incidence algebra associated to Q over a
commutative ring R. Then Λ = ⊕1≤i≤j≤nRei ,j . We can regard Λ as the
upper triangular matrix ring

Bn(R) := {(aij) ∈ Mn(R) | aij = 0 for i > j}.

By Theorem 13,
H i (Bn(R),Mn(R)/Bn(R)) = 0

for i ≥ 0.
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Examples

We introduce several examples without proofs.

Definition 15

Let n1, n2, . . . , ns be positive integers with
∑s

i=1 ni = n. We define the
R-subalgebra Pn1,n2,...,ns (R) of Mn(R) over a commutative ring R by

Pn1,n2,...,ns (R)

= {(aij) ∈ Mn(R) | aij = 0 if
t∑

k=1

nk < i ≤
t+1∑
k=1

nk and j ≤
t∑

k=1

nk}.

Proposition 1.11

Let R be a commutative ring. Let Pn1,n2,...,ns (R) be as in Definition 15.
Then H i (Pn1,n2,...,ns (R),Mn(R)/Pn1,n2,...,ns (R)) = 0 for i ≥ 0.
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Examples

Let R be a commutative ring, and let
Dn(R) := {(aij) ∈ Mn(R) | aij = 0 for i ̸= j} ⊂ Mn(R).

In other words,
Dn(R) is the R-subalgebra of diagonal matrices in Mn(R).

Proposition 1.12

For i ≥ 0, H i (Dn(R),Mn(R)/Dn(R)) = 0.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 33 / 39



Examples

Let R be a commutative ring, and let
Dn(R) := {(aij) ∈ Mn(R) | aij = 0 for i ̸= j} ⊂ Mn(R). In other words,
Dn(R) is the R-subalgebra of diagonal matrices in Mn(R).

Proposition 1.12

For i ≥ 0, H i (Dn(R),Mn(R)/Dn(R)) = 0.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer September 21, 2018 33 / 39



Examples

Definition 16

Let R be a commutative ring. We define x ∈ Mn(R) by

x =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0
. . . 1

0 0 0 0 · · · 0


.

Let Jn(R) be the R-subalgebra of Mn(R) generated by x . Then
Jn(R) ∼= R[x ]/(xn) as R-algebras.
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Examples

Proposition 1.13

Let Jn(R) be as above. Then

H i (Jn(R),Mn(R)/Jn(R)) =

{
Rn−1 ⊕Ann(n) (i : even )
Rn−1 ⊕ R/nR (i : odd ),

where Ann(n) := {a ∈ R | an = 0}.

Corollary 17

For a field k,

H i (Jn(k),Mn(k)/Jn(k)) =

{
kn−1 (ch(k) ̸ | n)
kn (ch(k) | n).
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Examples

Remark 1.14

Although H2(Jn(k),Mn(k)/Jn(k)) ̸= 0, Moldn,n is smooth at Jn(k).

Indeed, Jn(k) is contained in Moldregn,n := MoldDn
n,n ⊆ Moldn,n and

Moldregn,n is smooth over Z.
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Examples

In the case n = 3:

S2(k) :=


 a 0 0

0 a c
0 0 b

 a, b, c ∈ k


S3(k) :=


 a 0 c

0 b 0
0 0 b

 a, b, c ∈ k

.

Proposition 1.15

For A = S2(k) or S3(k),

H i (A,M3(k)/A) =

{
k2 (i = 0)
0 (i > 0).
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Examples

Theorem 18

For the non-commutative subalgebras part in Mold3,3, we have

Moldnon−comm
3,3 = MoldS23,3

⨿
MoldS33,3

∼= ((P2
Z × P2

Z) \∆)
⨿

((P2
Z × P2

Z) \∆),

where ∆ is the diagonal of P2
Z × P2

Z.
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Examples

Corollary 19

Let (R,m, k) be a local ring. Let A ⊆ M3(R) be a rank 3 R-subalgebra of
M3(R) such that A and M3(R)/A are R-projective and A⊗R k is not
commutative. Then there exists P ∈ GL3(R) such that P−1AP = S2(R)
or S3(R).

In other words, there exist distinct subline bunldes L1, L2 of R3 or distinct
rank 2 subbundles W1,W2 of R3 such that

A = ⟨HomR(R
3/L1, L2)⟩ ⊂ EndR(R

3) = M3(R)

or
A = ⟨HomR(R

3/W1,W2)⟩ ⊂ EndR(R
3) = M3(R).
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