Resolution of DG-modules

Hiroyuki Minamoto

Osaka Prefecture University

20/9/2018

A. Yekutieli introduced projective dimension pd_R M of DG-modules M over a DG-algebra R by generalizing the characterization of projective dimension ordinary modules by vanishing of Ext-group. In this talk, we introduce a notion of projective resolution of DG-modules M. whose "length" gives $pd_R M$.

Let R be a ring and M an R-module. Then, the projective dimension is defined to be

$$\operatorname{pd}_{R} M := \inf\{\text{length of proj. resol.}\}.$$

Basic result is

$$\operatorname{pd}_R M = \sup \{d \mid \exists N \text{ s.t. } \operatorname{Ext}_R^d(M,N) \neq 0\}.$$

We reformulate this statement by using the derived category D(R).

Reformulation of projective dimension (1/3)

Recall that

$$\operatorname{\mathsf{Ext}}^d_\mathsf{R}(\mathsf{M},\mathsf{N}) = \mathsf{H}^d(\mathbb{R}\mathsf{Hom}_\mathsf{R}(\mathsf{M},\mathsf{N})).$$

Thus, introducing

$$D^{\leq d}(\mathbb{Z}):=\{X\in D(\mathbb{Z})\mid H^{>d}(X)=0\},$$

we obtain

$$\operatorname{pd}_R M \leq d \Leftrightarrow \mathbb{R} Hom_R(M,N) \in D^{\leq d}(\mathbb{Z})$$

for all $N \in Mod R$.

If we set
$$F:=\mathbb{R} Hom_R(M,-)$$
, then the statement that
$$\mathrm{pd}_R\, M \leq d \Leftrightarrow \mathbb{R} Hom_R(M,N) \in D^{\leq n}(\mathbb{Z})$$
 for all $N \in Mod\,R$, can be simply written
$$\mathrm{pd}_R\, M \leq d \Leftrightarrow F(Mod\,R) \subset D^{\leq d}(\mathbb{Z}).$$

Reformulation of projective dimension (3/3)

We set

$$D^{[m,n]}(R) := \{X \mid H^c(X) = 0, c \notin [m,n]\}.$$

Note $D^{[0,0]}(R) = Mod R$.

Recall $F = \mathbb{R}Hom_R(M, -)$.

Lemma 1

$$\operatorname{pd}_R \mathsf{M} \leq \mathsf{d} \Leftrightarrow \mathsf{F}(\mathsf{D}^{[\mathsf{m},\mathsf{n}]}(\mathsf{R})) \subset \mathsf{D}^{[\mathsf{m},\mathsf{n}+\mathsf{d}]}(\mathbb{Z})$$

for any $\mathbf{m}, \mathbf{n} \in \mathbb{Z} \cap \{\pm \infty\}$.

In this talk, DG-algebra R is a non-positive DG-algebra, i.e., $H^{>0}(R)=0$.

An important example of DGA is an ordinary ring.

A DGA R has its derived category D(R) and the same definition of $D^{[m,n]}(R)$ works. In the case R is an ordinary ring, these coincide with the previous categories.

If an algebra Λ has a silting object S in $D(\Lambda)$, then the DG-endomorphism algebra $R = \mathbb{R}End S$ is a non-positive DGA and $D(\Lambda) \simeq D(R)$. Thus, at the end of this talk, we obtain the notion of projective dimension of $M \in D(\Lambda)$ w.r.t. a silting object S and the global dimension of a silting object S.

Definition 2

Let $M \in D(R)$. Assume $M \neq 0$.

- $\sup M := \sup \{ n \in \mathbb{Z} \mid H^n(M) \neq 0 \}$
- inf $M := \inf\{n \in \mathbb{Z} \mid H^n(M) \neq 0\}$
- amp $M := \sup M \inf M$.

Let R be a DG-algebra, M a DG-R-module and $F := \mathbb{R}Hom_R(M, -)$.

Definition 3

• M is said to have a projective concentration [a, b] for $a \le b \in \mathbb{Z}$, if

$$\mathsf{F}(\mathsf{D}^{[m,n]}(\mathsf{R}))\subset \mathsf{D}^{[m-b,n-a]}(\mathsf{R})$$

for any $\mathbf{m} \leq \mathbf{n} \in \mathbb{Z} \cup \{\pm \infty\}$.

 A proj. conc. of M is called strict if there exists no smaller proj. conc. of M.

Yekutieli's projective dimension for DG-modules (2/2)

Definition 4

Let $\mathbf{d} \in \mathbb{Z}$. We define $\mathbf{pd}_{\mathbf{R}} \mathbf{M} := \mathbf{d}$ if \mathbf{M} has a strict proj. conc. $[\mathbf{a}, \mathbf{b}]$ such that $\mathbf{d} = \mathbf{b} - \mathbf{a}$.

We set $pd_R M = \infty$ if M has no projective concentration.

Example 5

In the case \mathbf{R} is an ordinary ring and \mathbf{M} be an ordinary \mathbf{R} -module. Then $\mathbf{pd}_{\mathbf{R}}$ \mathbf{M} coincide the ordinary projective dimension.

Lemma 6

Let $M \in D(R)$ and $d \in \mathbb{N}$.

• If $\operatorname{pd}_R M < \infty$, then $M \in D^-(R)$, i.e. $\sup M < \infty$ or in other words,

$$H^n(M) = 0$$
 for $n \gg 0$

Assume M ∈ D⁻(R). Then, pd_R M = d
 if and only if M has a strict proj. conc.
 [sup M − d, sup M].

Sup-projective (sppj) morphisms (1/3)

We set $\mathcal{P} := \operatorname{Add} R \subset D(R)$. This class plays a role of proj. modules.

Definition 7

Let $M \in D^-(R)$ and $s := \sup M$.

A morphism $f : P \rightarrow M$ is called sppj

if $P \in \mathcal{P}[-s]$ and

 $H^{s}(f): H^{s}(P) \rightarrow H^{s}(M)$ is surjective.

Sppj morphisms play roles of a surj. hom. $f: P \rightarrow M$ with P projective.

Sup-projective (sppj) morphisms (2/3)

Proposition 8

Let $M \in D^-(R)$ and $f : P \to M$ be a sppj morphism with the co-cone N.

$$N \to P \xrightarrow{f} M \to N[1]$$
 (exact).

- (1) If $\operatorname{pd}_{\mathsf{R}} \mathsf{M} \geq \mathsf{1}$, then
- $\sup N \le \sup M$.

Sup-projective (sppj) morphisms (3/3)

Proposition 9

$$N \to P \xrightarrow{f} M \to N[1]$$
 (exact).

(2) If $pd_R M = 0$, then f is split-epi.

Thus, $M \in \mathcal{P}[-\sup M]$.

Corollary 10

$$\operatorname{pd}_{\mathsf{R}}\mathsf{M}=0\Longleftrightarrow\mathsf{M}\in\mathcal{P}[-\sup\mathsf{M}].$$

Sup-projective (sppj) resolution

Definition 11

A sppj resolution P_{\bullet} of M is a sequence $\{\mathcal{E}_i\}$ of exact triangles \mathcal{E}_i for $i \geq 0$ with $M_0 := M$

$$\mathcal{E}_i: \mathsf{M}_{i+1} \xrightarrow{g_{i+1}} \mathsf{P}_i \xrightarrow{f_i} \mathsf{M}_i$$

such that f_i is sppj. Set $\delta_i := g_i \circ f_i$.

Splicing \mathcal{E}_{i} 's we obtain

$$\cdots \to P_i \xrightarrow{\delta_i} P_{i-1} \to \cdots \to P_1 \to P_0 \xrightarrow{f_0} M$$

Theorem 12

Let $M \in D^-(R) \setminus \{0\}$ and $d \in \mathbb{N}$ a natural number. Then the following conditions are equivalent:

- M has a sppj resolution P_• of length e which satisfies the following properties.
 - (a) $d = e + \sup P_0 \sup P_e$
 - (b) $\delta_{\rm e}$ is not a split-monomorphism.

projective dimension and sppj resolution (2/3)

Theorem 12 (conti.): equivalent condition for pd M = d

- For any sppj resolution P_{\bullet} , there exists a natural number $e \in \mathbb{N}$ which satisfying the following properties
 - (a) $M_e \in \mathcal{P}[-\sup M_e]$.
 - (b) $d = e + \sup P_0 \sup M_e$.
 - (c) g_e is not a split-monomorphism.

In this situation, we have a sppj resolution

$$\mathsf{M}_{\mathrm{e}} \stackrel{\mathsf{g}_{\mathrm{e}}}{\longrightarrow} \mathsf{P}_{\mathrm{e}-1} \longrightarrow \cdots \longrightarrow \mathsf{P}_{1} \longrightarrow \mathsf{P}_{0} \longrightarrow \mathsf{M}$$

Theorem 12 (conti.): equivalent condition for pd M = d

• Set $s := \sup M$ and $F = \mathbb{R}Hom(M, -)$. Then

$$\mathsf{F}(\mathsf{Mod}\,\mathsf{H}^0(\mathsf{R}))\subset\mathsf{D}^{[-\mathsf{s},\mathsf{d}-\mathsf{s}]}(\mathsf{R})$$

and $\exists N \in Mod H^0$ such that $H^{d-s}(F(N)) \neq 0$.

d is the smallest number such that

$$\mathsf{M} \in \mathcal{P}[-s] * \mathcal{P}[-s+1] * \cdots * \mathcal{P}[-s+d].$$

Application:DG-modules of finite proj. dim.

Let

$$D(R)_{fpd} := \{M \in D(R) \mid \operatorname{pd} M < \infty\}.$$

Corollary 13

$$D(R)_{fpd} = thick \mathcal{P}.$$

Example (1/2)

Let $n \in \mathbb{N}$ and $M_{(n)} := R \oplus R[n]$.

Then, $\operatorname{pd}_R M_{(n)} = n$.

 $M_{(n)}$ has a sppj resolution of length 1.

$$P_{\bullet}: R[n-1] \xrightarrow{0} R \xrightarrow{\binom{1}{0}} M_{(n)}.$$

Compute the formula.

$$e + \sup P_0 - \sup P_e = 1 + 0 - (-(n-1)) = n$$

We have exact triangles

$$\mathsf{E}_{\mathsf{m}}:\mathsf{M}_{(\mathsf{m}-1)} o \mathsf{R}^{\oplus 2} \xrightarrow{\left(egin{smallmatrix} 1 & 0 \ 0 & 0 \end{smallmatrix}
ight)} \mathsf{M}_{(\mathsf{m})}.$$

Since $M_{(0)}=R^{\oplus 2}$, splicing $\{E_m\}_{m=1}^n$ we obtain a sppj resolution of length n

$$\mathsf{M}_{(0)} o \mathsf{R}^{\oplus 2} o \cdots o \mathsf{R}^{\oplus 2} o \mathsf{M}_{(\mathsf{n})}.$$

Compute the formula.

$$e + \sup P_0 - \sup P_e = n + 0 - 0 = n$$

By the same idea, Yekutieli also defined injective dimension id_R M of DG-modules. In the same way of sppi resolution, we can introduce the notion of inf-injective (ifij) resolution of DG-modules and prove results about injective dimension and ifii resolutions similar to those of sppi resolutions.

The global dimension

Theorem 14

For a non-pos. DGA \mathbf{R} , the following numbers are the same.

```
\begin{split} &\sup\{\operatorname{pd}_R\mathsf{M}-\mathsf{amp}\,\mathsf{M}\mid\mathsf{M}\in\mathsf{D}^-(\mathsf{R})\}\\ &\sup\{\operatorname{pd}_R\mathsf{M}\mid\mathsf{M}\in\mathsf{Mod}\,\mathsf{H}^0\}\\ &\sup\{\operatorname{id}_R\mathsf{M}-\mathsf{amp}\,\mathsf{M}\mid\mathsf{M}\in\mathsf{D}^+(\mathsf{R})\}\\ &\sup\{\operatorname{id}_R\mathsf{M}\mid\mathsf{M}\in\mathsf{Mod}\,\mathsf{H}^0\} \end{split}
```

This common number is called the (right) global dimension of **R** and is denoted as **gldim R**.

Let R and S be derived equivalent non-pos. DG-algebras: $D(R) \simeq D(S)$.

Theorem 15

The following assertions hold.

- $\mathbf{pd}_{\mathbf{S}} \, \mathbf{R} < \infty.$
- $\operatorname{gldim} S \leq \operatorname{gldim} R + \operatorname{pd}_S R$.
- $\operatorname{gldim} R < \infty$ if and only if $\operatorname{gldim} S < \infty$.

Thank you for your browsing!