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Motivation: projective dimension for DG-modules

due to Yekutieli

A.Yekutieli introduced

projective dimension pdg M of
DG-modules M over a DG-algebra R
by generalizing the characterization of
projective dimension ordinary modules
by vanishing of Ext-group.

In this talk, we introduce a notion of
projective resolution of DG-modules M,
whose “length” gives pdg M.
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Projective dimension for ordinary modules

Let R be a ring and M an R-module.
Then, the projective dimension is
defined to be

pdg M := inf{length of proj. resol.}.
Basic result is
pdg M = sup{d | 3N s.t. Ext%(M, N) # 0}.

We reformulate this statement
by using the derived category D(R).
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Reformulation of projective dimension (1/3)

Recall that
Ext%(M, N) = HY(RHomg(M, N)).
Thus, introducing
D<!(Z) := {X € D(Z) | H>*(X) = 0},
we obtain
pdg M < d < RHomg(M, N) € D=%(2)
for all N € Mod R.
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Reformulation of projective dimension (2/3)

If we set F := RHomg(M, —),
then the statement that

pdg M < d & RHomg(M, N) € D="(Z)
for all N € Mod R, can be simply written
pdg M < d < F(ModR) C D=Y(Z).
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Reformulation of projective dimension (3/3)

We set
DI™I(R) := {X | H(X) = 0,c & [m, n]}.

Note DI*%(R) = ModR.
Recall F = RHomg(M, —).

Lemma 1

pdg M < d < F(DI™"(R)) c DImn+dl(7)

for any m,n € Z N {F£oc}.
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A (non-positive) DG-algebra

In this talk, DG-algebra R is

a non-positive DG-algebra, i.e.,

H>%(R) = 0.

An important example of DGA is

an ordinary ring.

A DGA R has its derived category D(R)
and the same definition of DI™"(R) works.
In the case R is an ordinary ring,

these coincide with the previous categories.
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A non-positive DG-algebra and a silting object

If an algebra A has a silting object S

in D(A), then the DG-endomorphism
algebra R = REnd S is a non-positive DGA
and D(A) ~ D(R).

Thus, at the end of this talk, we obtain
the notion of projective dimension of

M € D(A) w.r.t. a silting object S and
the global dimension of a silting object S.
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Notation

Let M € D(R). Assume M # 0.

@ supM :=sup{n € Z | H'(M) # 0}
@ infM :=inf{n € Z | H"(M) # 0}
@ ampM :=supM — inf M.
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Yekutieli's projective dimension for DG-modules (1/2)

Let R be a DG-algebra, M a DG-R-module
and F := RHomg(M, —).

@ M is said to have a projective concentration

[a,b] fora < b € Z, if
F(D[m,n](R)) C D[m—b,n—a](R)

foranym < n € Z U {£oo}.
@ A proj. conc. of M is called strict if there

exists no smaller proj. conc. of M.
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Yekutieli's projective dimension for DG-modules (2/2)

Definition 4

Let d € Z. We define pdg M := d

if M has a strict proj. conc. [a, b] such that
d=b—a.

We set pdg M = oo

if M has no projective concentration.

| A

Example 5
In the case R is an ordinary ring and M be an

ordinary R-module. Then pdg M coincide the
ordinary projective dimension.
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Observations

Let M € D(R) andd € N.

o Ifpdg M < oo, then M € D™ (R), i.e.
sup M < oo or in other words,

H'(M) =0forn >0

@ Assume M € D™ (R). Then, pdg M =d
if and only if M has a strict proj. conc.

[supM — d, sup M].
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Sup-projective (sppj) morphisms (1/3)

We set P := AddR C D(R).

This class plays a role of proj. modules.
Definition 7

Let M € D7 (R) and s := sup M.

A morphism f : P — M is called sppj

if P € P[—s] and

H*(f) : H*(P) — H*(M) is surjective.

Sppj morphisms play roles of a surj. hom.
f: P —- M with P projective.
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Sup-projective (sppj) morphisms (2/3)

Let M € D7(R) and f : P — M be

a sppj morphism with the co-cone N.

N— P M= N[ (exact).

(1) If pdg M > 1, then

@ supN < sup M.

@ pdgN =pdgM — 1 — supM + sup N.
@ pdg N < pdg M.
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Sup-projective (sppj) morphisms (3/3)

N—P -5 M— N[1] (exact).

(2) If pdg M = 0, then f is split-epi.
Thus, M € P[— sup M].

Corollary 10

pdgM =0 <— M € P[— sup M].
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Sup-projective (sppj) resolution

A sppj resolution P4 of M is a sequence {&;} of

exact triangles &; for i > 0 with My := M

f;

8; . Mi_|_1 m Pi—> Mi

such that f; is sppj. Set §; := g; o f;.

Splicing &;’s we obtain

e PP e P Pg S M
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projective dimension and sppj resolution (1/3)

Theorem 12

Let M € D™(R) \ {0} andd € N a natural

number. Then
the following conditions are equivalent:

@ pdgM =d.

@ M has a sppj resolution P4 of length e which
satisfies the following properties.
(a)d = e + sup Py — sup Pe.
(b) de is not a split-monomorphism.
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projective dimension and sppj resolution (2/3)

Theorem 12 (conti.): equivalent condition for pd M = d

@ For any sppj resolution P,,
there exists a natural number e € N

which satisfying the following properties
(a) Me € P[— sup M¢].

(b) d = e 4+ sup Py — sup M.

(c) ge is not a split-monomorphism.

In this situation, we have a sppj resolution

Me 25 Pe_y — -+ — P > Pg—> M
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projective dimension and sppj resolution (3/3)

Theorem 12 (conti.): equivalent condition for pd M = d
o Set s := supM and F = RHom(M, —).
Then

F(Mod H(R)) C DI=4=I(R)

and 3N € Mod H° such that
H'™*(F(N)) # 0.
o d is the smallest number such that

M e P[—s]*P[—s+1]x*-- -*’P[—s+d].)
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Application:DG-modules of finite proj. dim.

Let
D(R)fpa := {M € D(R) | pd M < oc}.

D(R)sq = thick P. \
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Let n € N and M(,,) := R @ R[n].
Then, de M(n) = n.
M) has a sppj resolution of length 1.

1
0 (°>
P. : R[n — 1] —+ R — M(n).
Compute the formula.

e+supPyp—supPe =14+0—(—(n—1)) =n
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We have exact triangles
)

0 0
E.: M(m—l) — REBz — M(m).

Since M(g) = R®?, splicing {E}" _, we
obtain a sppj resolution of length n

M) — R®? — ... — R®? — M(,).
Compute the formula.

e+supPyg—supPe=n+0—-0=n
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Injective dimension and injective resolution

By the same idea, Yekutieli also defined
injective dimension idg M of DG-modules.
In the same way of sppj resolution,

we can introduce the notion of inf-injective
(ifij) resolution of DG-modules and

prove results about injective dimension and
ifij resolutions similar to those of sppj
resolutions.
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The global dimension

Theorem 14

For a non-pos. DGA R, the following numbers are

the same.
sup{pdgM —ampM | M € D™ (R)}
sup{pdg M | M € Mod H}
sup{idgkM —ampM | M € DT (R)}
sup{idg M | M € Mod H}

This common number is called the (right) global
dimension of R and is denoted as gldim R.
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Finiteness is derived invariant

Let R and S be derived equivalent non-pos.
DG-algebras: D(R) ~ D(S).

Theorem 15
The following assertions hold.

@ pdgR < oco.
@ gldimS < gldimR + pdg R.
@ gldimR < oo ifand only if gldim$S < oo.
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Thank you for your browsing!

20/9/2018



