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Motivations

2-dimensional case (Reiten-Van den Bergh, Bockland-Schedler-Wemyss, etc.)

C[x , y ] ∗ G
2-CY algebra

gl.dim=2

∼
Morita ∏

CQ̃
rep. infinite

hereditary algebra

gl.dim=1

degree 0 part

preprojective algebra

where Q̃: extended Dynkin quiver of type ADE
G ⊂ SL(2,C): finite subgroup

Higher dim. case (cf. Keller, Minamoto-Mori, Herchend-Iyama-Oppermann)

A
d-CY alg. of GP 1

gl.dim=d

A0

(d − 1)-rep. infinite alg.

gl.dim=d-1

degree 0 part

d-preprojective algebra

Some examples are obtained by dimer models (cf. Amiot-Iyama-Reiten).
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What is a dimer model ?

Definition

A dimer model (or brane tiling) is a finite bipartite graph inducing a
polygonal cell decomposition of the real two-torus T := R2/Z2.

Therefore each node is colored either black or white so that each edge
connects a black node to a white node.
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Quivers associated with dimer models
As the dual of a dimer model Γ, we define the quiver Q associated with Γ.

Dimer model Γ ←→ Quiver Q
faces ←→ vertices Q0

edges ←→ arrows Q1
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The orientation of arrows is determined so that the white node is on the
right of the arrow.

(We also define a certain “potential WQ” from a dimer model.)
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Jacobian algebras arising from dimer models

For the quiver Q associated with a dimer model, we consider the path
algebra CQ.

For each arrow α ∈ Q1,
∃ two oppositely oriented cycles (αp+α and

αp−α ) containing α as a boundary.

αp−α p+α

Define the Jacobian algebra of Q (or Γ) as

A := CQ/⟨p+α − p−α | α ∈ Q1⟩.
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Perfect matchings of dimer models

Definition

A perfect matching of a dimer model Γ is a subset D of edges such that
for any node n there is a unique edge in D containing n as the end point.

For example, perfect matchings of our dimer model are

D0 D1 D2 D3 D4

D5 D6 D7 D8
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Calabi-Yau properties on Jacobian algebras
We consider

Q : the quiver associated with a “consistent” dimer model Γ,

A : the Jacobian algebra of Q,

D : a perfect matching of Γ.

We define the degree dD on each arrow a ∈ Q1 of Q as

dD(a) =

{
1 if a ∈ D

0 otherwise

This makes the Jacobian algebra A a graded algebra.

Theorem (Broomhead, Amiot-Iyama-Reiten)

A is a bimodule 3-Calabi-Yau algebra of Gorenstein parameter 1,
that is, A ∈ perAe and ∃P•: graded proj. resolution of A as Ae-mod. s.t.

P• ∼= P∨
• [3](−1)

where (−)∨ := HomAe (−,Ae).
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2-representation infinite algebras arising from dimer models
We consider

Q : the quiver associated with a consistent dimer model Γ,

A : the graded Jacobian algebra of Q whose grading induced by D

(This is bimodule 3-CY algebra of GP 1),

AD : the degree zero part of A.

Theorem (Keller, Minamoto-Mori, Herchend-Iyama-Oppermann)

We assume that AD is finite dimensional.
Then AD is a 2-representation infinite algebra (or quasi 2-Fano
algebra), that is,

gl.dimAD ≤ 2 and ν−i
2 (AD) ∈ modAD for all i ≥ 0

where ν−2 := ν− ◦ [2] : Db(modAD)→ Db(modAD).

On the other hand, the “ 3-preprojective algebra” of AD is A.
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2-representation infinite algebras arising from dimer models

Question

When is the degree part AD finite dimensional ?
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AD0 : finite dimensional AD1 : not finite dimensional

⇒ To understand this problem, consider the perfect matching polygon.
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The perfect matching polygon

Give the orientation to each edge of Γ:

Fix a perfect matching D ′ of Γ.

For each perf. match. D, the difference D−D ′ will be a 1-cycle on T.

Consider D−D ′ as the element in [D−D ′] ∈ H1(T) ∼= Z2.

D0 D1 D2 D3 D4

[D1−D0] [D2−D0] [D3−D0] [D4−D0]

= (1, 0) = (0, 1) = (−1, 0) = (0,−1)

Remark that

[Di − D0]=(0, 0)

if i = 0, 5, · · ·, 8
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The perfect matching polygon

The perfect matching polygon of Γ:

∆Γ := conv{[D − D ′] ∈ Z2 | D is a perfect matching of Γ}

For our example, the PM polygon of our dimer model is

D1

D2

D3

D4

D0,D5,D6,D7,D8

This ∆Γ is determined uniquely up to translations.

D is called an internal perfect matching if it corresponds to an
interior lattice point of ∆Γ.

Yusuke Nakajima (Kavli IPMU) Algebras arising from dimer models September 19th, 2018 11 / 15



2-representation infinite algebras arising from dimer models

Theorem A (N., Bocklandt etc.)

Let Q be the quiver associated with a consistent dimer model Γ.
Then, the following conditions are equivalent.

(1) D is an internal perfect matching.

(2) Q − D is an acyclic quiver.

(3) AD is a finite dimensional algebra.

When this is the case, AD is a 2-representation infinite algebra.

We recall that
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D1

D2

D3

D4

D0,D5,D6,D7,D8

AD0 : fin. dim. AD1 : not fin. dim. ∆Γ: PM polygon

Is there a relationship between internal perfect matchings ?
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Mutations of perfect matchings and derived equivalences
The mutation of perfect matchings:

k k

µ+
k

µ−
k

e.g.

In particular, if k is a source (resp. sink) of Q − D,

µ+
k (D) (resp. µ−

k (D)) is a perfect matching.
k is a sink of Q − µ+

k (D) (resp. a souce of Q − µ−
k (D) ).

µ−
k (µ

+
k (D)) = D (resp. µ+

k (µ
−
k (D)) = D).

Theorem B (N.)

Let Γ be a consistent dimer model and Q be the associated quiver. Let
D,D ′ be internal perfect matchings. Then, the followings are equivalent.

(1) D and D ′ are “mutation equivalent”.

(2) D and D ′ correspond to the same interior lattice point of ∆Γ.
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Mutations of perfect matchings and derived equivalences
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Mutations of perfect matchings and derived equivalences

Corollary (Theorem B + Iyama-Oppermann)

Let Γ be a consistent dimer model and Q be the associated quiver. If
D,D ′ are internal perfect matchings corresponding to the same interior
lattice point of ∆Γ, then we have that

Db(modAD) ∼= Db(modAD′).

Note that

Iyama-Oppermann showed that if k is a source of Q − D and
µ+
k (D) = D ′, then ∃tilting AD-module Tk s.t. EndAD

(Tk) ∼= AD′ .

The converse of this corollary is not true, that is, even if
Db(modAD) ∼= Db(modAD′), D and D ′ might not correspond to
the same interior lattice point.
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