Finite dimensional algebras arising from dimer models and their derived equivalences

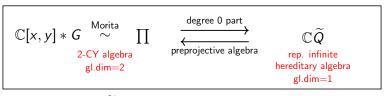
Yusuke Nakajima

Kavli IPMU, University of Tokyo

September 19th, 2018

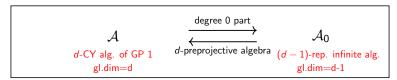
Motivations

2-dimensional case (Reiten-Van den Bergh, Bockland-Schedler-Wemyss, etc.)



where Q: extended Dynkin quiver of type ADE $G \subset SL(2, \mathbb{C})$: finite subgroup

Higher dim. case (cf. Keller, Minamoto-Mori, Herchend-Iyama-Oppermann)



Some examples are obtained by dimer models (cf. Amiot-Iyama-Reiten).

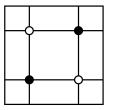
Yusuke Nakajima (Kavli IPMU)

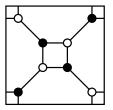
What is a dimer model ?

Definition

A dimer model (or brane tiling) is a finite bipartite graph inducing a polygonal cell decomposition of the real two-torus $T := \mathbb{R}^2/\mathbb{Z}^2$.

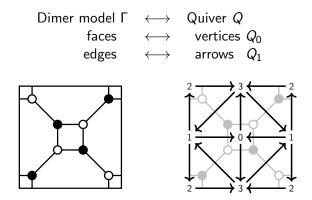
Therefore each node is colored either black or white so that each edge connects a black node to a white node.





Quivers associated with dimer models

As the dual of a dimer model Γ , we define the quiver Q associated with Γ .



The orientation of arrows is determined so that the white node is on the right of the arrow.

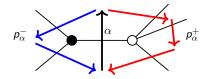
(We also define a certain "potential W_Q " from a dimer model.)

Yusuke Nakajima (Kavli IPMU)

Algebras arising from dimer models

Jacobian algebras arising from dimer models

- For the quiver *Q* associated with a dimer model, we consider the path algebra $\mathbb{C}Q$.
- For each arrow $\alpha \in Q_1$, \exists two oppositely oriented cycles (αp_{α}^+ and αp_{α}^-) containing α as a boundary.



• Define the **Jacobian algebra** of Q (or Γ) as

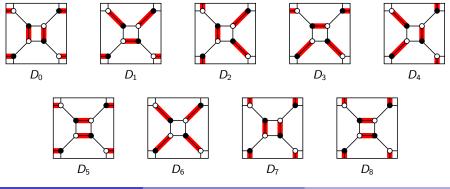
$$\mathcal{A} := \mathbb{C}Q/\langle p_{\alpha}^{+} - p_{\alpha}^{-} \mid \alpha \in Q_{1} \rangle.$$

Perfect matchings of dimer models

Definition

A **perfect matching** of a dimer model Γ is a subset D of edges such that for any node n there is a unique edge in D containing n as the end point.

For example, perfect matchings of our dimer model are



Yusuke Nakajima (Kavli IPMU)

Algebras arising from dimer models

Calabi-Yau properties on Jacobian algebras

We consider

- Q : the quiver associated with a "consistent" dimer model Γ ,
- \mathcal{A} : the Jacobian algebra of Q,
- D : a perfect matching of Γ .

We define the degree d_D on each arrow $a \in Q_1$ of Q as

$$d_D(a) = egin{cases} 1 & ext{if } a \in D \ 0 & ext{otherwise} \end{cases}$$

This makes the Jacobian algebra ${\mathcal A}$ a graded algebra.

Theorem (Broomhead, Amiot-Iyama-Reiten)

 \mathcal{A} is a **bimodule 3-Calabi-Yau algebra of Gorenstein parameter 1**, that is, $\mathcal{A} \in \text{per}\mathcal{A}^e$ and $\exists P_{\bullet}$: graded proj. resolution of \mathcal{A} as \mathcal{A}^e -mod. s.t.

$$P_{\bullet} \cong P_{\bullet}^{\vee}[3](-1)$$

where $(-)^{\vee} := \operatorname{Hom}_{\mathcal{A}^e}(-, \mathcal{A}^e)$.

2-representation infinite algebras arising from dimer models We consider

- Q : the quiver associated with a consistent dimer model Γ,
- A : the graded Jacobian algebra of Q whose grading induced by D (This is bimodule 3-CY algebra of GP 1),
- \mathcal{A}_D : the degree zero part of \mathcal{A} .

Theorem (Keller, Minamoto-Mori, Herchend-Iyama-Oppermann) We assume that A_D is finite dimensional. Then A_D is a 2-representation infinite algebra (or quasi 2-Fano algebra), that is,

$$\operatorname{gl.dim} \mathcal{A}_D \leq 2$$
 and $\nu_2^{-i}(\mathcal{A}_D) \in \operatorname{mod} \mathcal{A}_D$ for all $i \geq 0$

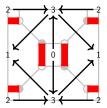
where $\nu_2^- := \nu^- \circ [2] : \mathrm{D^b}(\mathsf{mod}\mathcal{A}_D) \to \mathrm{D^b}(\mathsf{mod}\mathcal{A}_D).$

On the other hand, the "**3-preprojective algebra**" of A_D is A.

2-representation infinite algebras arising from dimer models

Question

When is the degree part \mathcal{A}_D finite dimensional ?



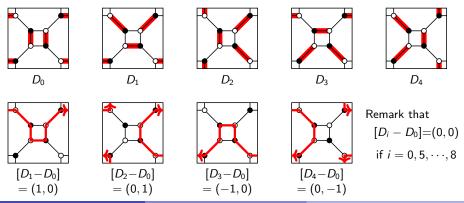
 \mathcal{A}_{D_0} : finite dimensional

 \mathcal{A}_{D_1} : not finite dimensional

 \Rightarrow To understand this problem, consider the **perfect matching polygon**.

The perfect matching polygon

- Give the orientation to each edge of $\Gamma: \bigcirc \longrightarrow \bullet$
- Fix a perfect matching D' of Γ .
- For each perf. match. D, the difference D-D' will be a 1-cycle on T.
- Consider D-D' as the element in $[D-D'] \in H_1(\mathsf{T}) \cong \mathbb{Z}^2$.



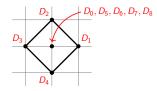
Yusuke Nakajima (Kavli IPMU)

The perfect matching polygon

• The **perfect matching polygon** of Γ:

 $\Delta_{\Gamma} := \operatorname{conv}\{[D - D'] \in \mathbb{Z}^2 \mid D \text{ is a perfect matching of } \Gamma\}$

For our example, the PM polygon of our dimer model is



- This Δ_{Γ} is determined uniquely up to translations.
- D is called an internal perfect matching if it corresponds to an interior lattice point of Δ_Γ.

2-representation infinite algebras arising from dimer models

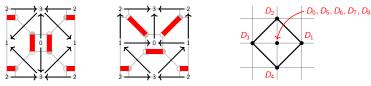
Theorem A (N., Bocklandt etc.)

Let Q be the guiver associated with a consistent dimer model Γ . Then, the following conditions are equivalent.

- (1) D is an internal perfect matching.
- (2) Q D is an acyclic quiver.
- (3) \mathcal{A}_{D} is a finite dimensional algebra.

When this is the case, \mathcal{A}_D is a 2-representation infinite algebra.

We recall that

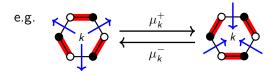


 \mathcal{A}_{D_0} : fin. dim. \mathcal{A}_{D_1} : not fin. dim. Δ_{Γ} : PM polygon

Is there a relationship between internal perfect matchings ?

Yusuke Nakajima (Kavli IPMU)

Mutations of perfect matchings and derived equivalences The **mutation of perfect matchings**:



In particular, if k is a source (resp. sink) of Q - D,

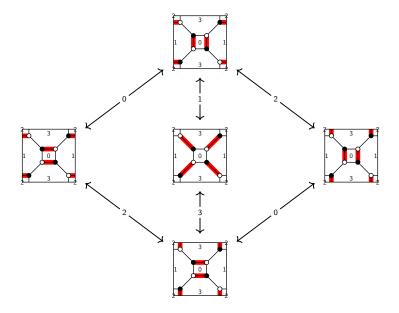
- $\mu_k^+(D)$ (resp. $\mu_k^-(D)$) is a perfect matching.
- k is a sink of $Q \mu_k^+(D)$ (resp. a souce of $Q \mu_k^-(D)$).
- $\mu_k^-(\mu_k^+(D)) = D$ (resp. $\mu_k^+(\mu_k^-(D)) = D$).

Theorem B (N.)

Let Γ be a consistent dimer model and Q be the associated quiver. Let D, D' be internal perfect matchings. Then, the followings are equivalent. (1) D and D' are "mutation equivalent".

(2) D and D' correspond to the same interior lattice point of Δ_{Γ} .

Mutations of perfect matchings and derived equivalences



Mutations of perfect matchings and derived equivalences

Corollary (Theorem B + Iyama-Oppermann)

Let Γ be a consistent dimer model and Q be the associated quiver. If D, D' are internal perfect matchings corresponding to the same interior lattice point of Δ_{Γ} , then we have that

$$\mathrm{D}^{\mathrm{b}}(\mathsf{mod}\mathcal{A}_D) \cong \mathrm{D}^{\mathrm{b}}(\mathsf{mod}\mathcal{A}_{D'}).$$

Note that

- Iyama-Oppermann showed that if k is a source of Q D and $\mu_k^+(D) = D'$, then \exists tilting \mathcal{A}_D -module T_k s.t. $\operatorname{End}_{\mathcal{A}_D}(T_k) \cong \mathcal{A}_{D'}$.
- The converse of this corollary is not true, that is, even if $D^{b}(\text{mod}\mathcal{A}_{D}) \cong D^{b}(\text{mod}\mathcal{A}_{D'})$, D and D' might not correspond to the same interior lattice point.