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Background

Background

Theorem (Auslander correspondence)

There exists a bijection between

1 Finite abelian categories.

2 Finite dimensional algebras with gl. dim ≤ 2 ≤ dom. dim.

A relationship between categorical and homological properties.

Aim

Give a triangulated analogue.

=Give a homological characterization of ‘finite’ triangulated categories.
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Background

Notations and setup

k : field.

‘category’=k-linear, Hom-finite, Krull-Schmidt category.

a category C is finite if ] ind C <∞
for a finite category C = addM,
EndC(M): the Auslander algebra of C.

Finiteness for triangulated categories

1 Finite.

2 ‘[1]-finite’.
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Finite case

Finite case

A homological characterization of Auslander algerbras of finite triangulated
categories:

Theorem 1

k: perfect field. The following are equivalent for a basic finite dimensional
k-algebra A:

1 A is the basic Auslander algebra of a finite triangulated category.

2 A is self-injective and Ω3 ' (−)α on modA for some automorphism α
of A.

Remark

Saying nothing about the triangle structures.
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Finite case

Proof of (1) ⇒ (2)

A is self-injective since T is.

Each triangle
X // Y // Z //

in T yields an exact sequence

(−,Z [−1]) //

��

(−,X ) // (−,Y ) // (−,Z ) //

��

(−,X [1])

M[−1]

??

M

??

in mod T ' modA, so Ω3M ' M[−1] in modA.

[1] can induce an automorphism of A since it is basic.
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Finite case

Sketch of (2) ⇒ (1)

We want to show that projA admits a structure of a triangulated category.

Proposition (Amiot)

Let A be a k-linear category such that modA is naturally Frobenius. Let
S be an automorphism of A and extend this to modA → modA (by
M 7→ M ◦ S−1 ). Assume there exists an exact sequence

0 // 1 // X 0 // X 1 // X 2 // S // 0

of exact functors from modA to modA such that the X i ’s values in A.
Then, A has a structure of a triangulated category with suspension S.

The triangles are given by X 0M → X 1M → X 2M → SX 0M with
M ∈ modA.
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Finite case

Sketch of (2) ⇒ (1)

Such an exact sequence of functors can be obtained by considering
bimodules as functors.

Proposition (a variant of Green-Snashall-Solberg)

Let A be a ring-indecomposable non-semisimple finite dimensional k-alebra
such that A/JA is separable over k and n > 0. Then, the following are
equivalent.

1 Ωn(A/JA) ' A/JA.

2 A is self-injective and Ωn ' (−)α on modA for some automorphism α
of A.

3 There exists an automorphism of α of A such that Ωn
Ae (A) ' 1Aα.
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Finite case

Sketch of (2) ⇒ (1)

Assume A is self-injective and Ω3 ' (−)α. Then, Ω3
Ae (A) ' 1Aσ for some

automorphism σ, so there exists an exact sequence

0 // A // P0 // P1 // P2 //
1Aσ−1 // 0

in modAe with P i ∈ projAe , which gives a desired exact sequence of
functors.
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[1]-finite case

[1]-finite triangulated categories

Another finiteness for triangulated categories:

Definition

A triangulated category T is [1]-finite if

1 There exists M ∈ T such that T = add{M[i ] | i ∈ Z}.
2 For any X ,Y ∈ T , HomT (X ,Y [i ]) = 0 for almost all i ∈ Z.

In this case, we say M is a [1]-additive generator for T .

Example

Λ: representation-finite hereditary algebra with mod Λ = addM.
⇒ Db(mod Λ) is [1]-finite, M is a [1]-additive generator for Db(mod Λ).
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[1]-finite case

Known results

By the results of Xiao-Zhu and Riedtmann’s ‘knitting’ argument, we know

Proposition

T : [1]-finite triangulated category over an algebraically closed field.

1 The AR-quiver of T is ZQ for some Dynkin quiver Q.

2 T is standard, hence T ' k(ZQ) as k-linear categories.
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ZQ for type A3
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[1]-finite case

Graded projectivization

How to build the ‘Auslander algebras’ for [1]-finite triangulated categories?

Recall

C: finite category with addM = C. Setting Γ = EndC(M), we have an
equivalence

HomC(M,−) : C '−→ proj Γ.

Γ does not depend on M up to Morita equivalence.
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[1]-finite case

Graded projectivization

Proposition

C: category with an automorphism F . Assume C = add{F iM | i ∈ Z} for
some M ∈ C. Set Γ =

⊕
i∈Z HomC(M,F iM). Then, there exists an

equivalence ⊕
i∈Z

HomC(M,F i (−)) : C

F

YY
' // projZ Γ.

(1)

WW

Γ does not depend on M up to graded Morita equivalence.
Here, Graded rings A,B are graded Morita equivalent if there exists an
equivalence

ModZ A
' //

(1)

YY ModZ B

(1)

YY .
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[1]-finite case

[1]-Auslander algebra

Apply the above proposition to triangulated categories.

Definition

T : [1]-finite triangulated category with [1]-additive generator M. We call

C =
⊕
i∈Z

HomT (M,M[i ])

the [1]-Auslander algebra of T .

Proposition

1 C is a finite dimensional algebra.

2 We have an equivalence T ' projZ C such that [1]↔ (1).

3 C is self-injective and Ω3 ' (−1) on modZ C.
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[1]-finite case

Proof of (3)

C is self-injective since T is.

Each triangle
X // Y // Z //

in T yields an exact sequence

(−,Z [−1]) //

��

(−,X ) // (−,Y ) // (−,Z ) //

��

(−,X [1])

M[−1]

??

M

??

in mod T ' modZ C , so Ω3M ' M(−1) in modZ C .
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[1]-finite case

[1]-Auslander correspondence

Theorem 2

k: algebraically closed field. There exists a bijection between

1 [1]-finite algebraic triangulated categories / triangle equivalence

2 Finite dimensional graded self-injective algebras such that Ω3 ' (−1)
/ graded Morita equivalence

3 Disjoint union of Dynkin diagrams of type A, D, and E.

The correspondences are given by

From (1) to (2): taking the [1]-Auslander algebra.

From (2) to (1): C 7→ projZ C .

From (1) to (3): taking the tree type of the AR-quiver of T .

From (3) to (1): Q 7→ k(ZQ).
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[1]-finite case

Uniqueness of triangle structures

(3) to (1) (or (2) to (1)) says:

Proposition

Q: Dynkin quiver, k(ZQ): its mesh category. Then, k(ZQ) has the
unique structure of an algebraic triangulated category up to equivalence.

On the other hand, k(ZQ) has a structure of an algebraic triangulated
category Db(mod kQ).

Corollary

Any [1]-finite algebraic triangulated category over an algebraically closed
field k is triangle equivalent to Db(mod kQ) for some Dynkin quiver Q.

Remark

The uniqueness of algebraic triangle structures (up to equivalence) holds
for Kb(proj Λ) for certain ring Λ.
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Application

Graded Iwanaga-Gorenstein algebras

A graded Noetherian algebra Λ is Iwanaga-Gorenstein if
inj. dim Λ <∞ on each side.

We have the category

CMZ Λ = {X ∈ modZ Λ | Ext>0
Λ (X ,Λ) = 0}

of graded Cohen-Macaulay Λ-modules.

CMZ Λ is naturally Frobenius, hence the stable category CMZ Λ is
algebraically triangulated.

Λ is CM-finite if CMZ Λ is finite up to degree shift.

Norihiro Hanihara Auslander correspondence 2018/09/19 22 / 23



Application

The triangle equivalence

Λ =
⊕

i≥0 Λi : positively graded Iwanaga-Gorenstein algebra such that

each Λi is finite dimensional over k .

gl. dim Λ0 <∞.

Assume Λ is CM-finite.

Theorem 3

CMZ Λ is [1]-finite, and therefore, if k is algebraically closed,

1 The AR-quiver of CMZ Λ is ZQ for some Dynkin quiver Q.

2 There exists a triangle equivalence CMZ Λ ' Db(mod kQ).

e.g.

(commutative) simple singularities

finite dimensional representation-finite self-injective algebras

representation-finite Gorenstein orders
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