
ON QUIVER GRASSMANNIANS AND ORBIT CLOSURES
FOR GEN-FINITE MODULES

MATTHEW PRESSLAND AND JULIA SAUTER

Abstract. We call an A-module M gen-finite if there are only finitely many indecom-
posable modules generated by M . We construct desingularisations for orbit closures and
quiver Grassmannians of gen-finite modules. This generalises previous work of Crawley-
Boevey and the second author. The construction uses a tilt of the endomorphism ring
of a cogenerator containing as summand all indecomposable modules generated by M .

1. Introduction

In this article, we will only consider finite-dimensional left modules over finite-
dimensional algebras over a field K. We give a construction of two desingularisations,
one of orbit closures for gen-finite modules (i.e. modules generating only finitely many
isomorphism classes of indecomposables) and one of quiver Grassmannians of gen-finite
modules. The main idea is to use a canonical tilt of a cogenerator having as a summand all
indecomposable modules generated by the gen-finite module. For orbit closures, the first
appearance of this construction is in [4] for modules over the algebra K[T ]/T n, then at
least partly in [2] for path algebras of a Dynkin quiver, and in [3] for representation-finite
algebras. A different construction for gen-finite modules appears in Zwara.

For quiver Grassmannians, the first appearance of a special case of the desingulari-
sation is in [1] for modules over path algebras of a Dynkin quiver and then in [3] for
representation-finite algebras. Our motivation for this generalisation of [3] was that all
finiteness assumptions had been made for the algebra but the varieties (orbit closures and
quiver Grassmannians) are defined for a specific module—therefore we looked for a finite-
ness criterion on the module for which the same results can be proven. This finiteness
criterion is gen-finiteness.

2. Algebraic maps from an idempotent element

Let B be a finite-dimensional algebra, e ∈ B an idempotent element and A = eBe. We
obtain from e a diagram

(2.1) B/BeB-mod B-mod A-modi e

q=B/BeB⊗B(−)

p=HomB(B/BeB,−)

ℓ=Be⊗A−

r=HomA(eB,−)
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of six functors. Such data is known as a recollement of abelian categories, and can be
defined in abstract, but we will only consider recollements of module categories determined
by idempotents as above. Since ℓ and r are fully faithful, there is a natural transformation
ℓ → r. We define the intermediate extension functor to be c = im(ℓ → r) (cf. [5]).

Definition 2.1. For X ∈ B-mod we define full subcategories of B-mod

gen(X) = {Z | ∃ exact Xn → Z → 0},
gen1(X) = {Z | ∃ exact X1 → X0 → Z → 0, Xi ∈ addX :

HomB(X,X1) → HomB(X,X0) → HomB(X,Z) → 0 is exact}.
We define cogen(X) and cogen1(X) dually.

Lemma 2.2. In the context of the idempotent recollement (2.1), write P = Be and
I = D(eB). Then

ker q = gen(P ) ⊇ gen1(P ) = im ℓ,

ker p = cogen(I) ⊇ cogen1(I) = im r.

Moreover, the image of the intermediate extension c = im(ℓ → r) is given by

im c = ker p ∩ ker q = gen(P ) ∩ cogen(I).

In the context of (2.1), we call the elements in ker p = cogen(I) stable modules.
Now let A = KQ/I, where K is an algebraically closed field, Q is a finite quiver with n

vertices, and I is an admissible ideal of KQ. For d ∈ Zn
≥0, we denote by

RA(d) = {M ∈
∏

(i→j)∈Q1

HomK(Kdi ,Kdj) | IM = 0}

the representation space of d-dimensional A-modules. It is an affine variety and carries
a natural action of the algebraic group Gld :=

∏n
i=1Gldi . The orbits correspond to

isomorphism classes of d-dimensional A-modules.
Now assume A fits into a recollement as in (2.1). Then, choosing a complete set of

primitive orthogonal idempotents of B extending that of A, we can write the dimension
vector of a B-module X as (d, s) ∈ Zn × Zt−n, where d = dim eX and s = dim(1− e)X.
We number the components of d from 1 to n, and those of s from n + 1 to t. We have
Gl(d,s) = Gld ×Gls, so it makes sense to consider only the Gls action on RB(d, s). Now
the restriction functor e provides a regular map

e : RB(d, s) → RA(d).

Using B, e, and the associated intermediate extension functor c, we give constructions of
candidate desingularisations as follows.

Orbit closures: Pick a d-dimensional A-module M and write OM ⊂ RA(d) for its

Gld-orbit closure. Set (d, s) = dim c(M) and let Ost

c(M) ⊂ RB(d, s) be the set of stable

points in the orbit closure Oc(M) (this is a Zariski-open subset). On this open subset
the Gls-operation is free, therefore the geometric quotient exists. Our candidate for the
desingularisation of an orbit closure is then the map

π : Ost

c(M)/Gls → OM
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induced by e. Since we will use GIT methods to show that this is a projective map, we
will add the extra assumption that char(K) = 0 in this case.

Quiver Grassmannians: Now, let M be an A-module and d ∈ Zn
≥0 be any dimension

vector. The quiver Grassmannian of d-dimensional A-submodules is defined as

GrA
(
M
d

)
= {U ⊂ M | U an A-submodule of M, dimU = d}.

This is a projective variety (we will only consider the reduced scheme structure on it).
Instead of orbits, for N ∈ A-mod we define the following locally closed subsets

E [N ] := {U ∈ GrA
(
M
d

)
| M/U ∼= N}.

This is a locally closed irreducible subset of GrA
(
M
d

)
, it is non-empty if and only if there is

an epimorphism M → N , and in this case it is smooth of dimension dimK HomA(M,N)−
dimK EndA(N). Assuming that there are only finitely many of these strata, then there

are modules N1, . . . , Nt such that GrA
(
M
d

)
=

∪t
i=1 E

[Ni]
is a decomposition into irreducible

components.
Now write (d, si) = dim c(M)− dim c(Ni), and consider the algebraic map

GrB
(
c(M)
d,si

)
→ GrA

(
M
d

)
induced by e. This is a projective map since it is an algebraic map between projective
varieties, and it restricts to a projective map

pi : E
[c(Ni)] → E [Ni]

.

Combining the various maps pi, we obtain a dominant projective map

p =
t⊔

i=1

pi :
t⊔

i=1

E [c(Ni)] → GrA
(
M
d

)
.

This is our candidate for the desingularisation of the quiver Grassmannian. The rest of
this article will explain the following: given a gen-finite module M , then we can find B
and e such that π and p are desingularisations.

3. A tilting module on endomorphism rings of cogenerators

Let E ∈ A-mod be a basic module with E = DA ⊕ X for some module X (i.e. E is
a basic cogenerator). Let Γ = EndA(E)op. We remark that for every faithful projective
module P there exists a classical (i.e. of projective dimension at most 1) tilting module
TP such that gen(P ) = gen(TP ). This follows since gen(P ) is a faithful torsion class.

Lemma 3.1. The module P = HomA(E,DA) is a faithful projective (left) Γ-module.

We write TP for the basic classical tilting Γ-module with gen(TP ) = gen(P ) and observe
that TP = P⊕Y for some module Y . We write B = EndΓ(TP )

op for the tilted algebra and
e ∈ B denote the projection onto the summand P of TP . Then C := DTP is a classical
cotilting (left) B-module. We observe A = EndA(A)

op ∼= EndΓ(P )op = eBe.

Theorem 3.2. With the notation of the preceding paragraph, the intermediate extension
functor c associated to e satisfies

c(DA) = D(eB), c(E) = C.
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The key step in the proof is that B is the endomorphism ring of

(E → I(E))⊕ (0 → DA),

viewed as a 2-term complex in the homotopy category of A, where E → I(E) denotes a
minimal injective envelope of E.

We will refer to the algebra B as the cogenerator-tilted algebra (for the cogenerator E)
and call e the special idempotent.

4. Desingularisation of orbit closures

We first realise arbitrary rank varieties of A as affine quotient varieties, using B and e as
constructed above. The description of B in terms of the homotopy category of A provides
us with a connection between the representation space of B and rank varieties in the
representation space RA(d) of A-modules with dimension vector d. For finite-dimensional
A-modules X and Y , write [X, Y ] = dimHomA(X, Y ). Write Q0 = {1, . . . , n} and ei
for the primitive idempotent corresponding to i ∈ Q0. Let dimM = (dim eiM)1≤i≤n be
the dimension vector of an A-module M . Given two A-modules M and N , we write
dimM ≤ dimN if this inequality holds componentwise.

Let E =
⊕t

i=1Ei for Ei ∈ A-mod indecomposable, and let m = (m1, . . . ,mt) ∈ Zt
≥0.

We define the rank variety as

CE
m := {N ∈ RA(d) | [N,Ei] ≥ mi, 1 ≤ i ≤ t}.

Since the map RA(d) → Z≥0 defined by N 7→ [N,X] is upper-semicontinuous for every
module X, the subset CE

m is Zariski-closed in RA(d). For any fixed module M ∈ RA(d),
we write CE

M := CE
m where mi = [M,Ei] .

Let B be the cogenerator-tilted algebra of E, and let e be its special idempotent.
Since A ∼= eBe, we may choose a complete set of primitive orthogonal idempotents of B
extending that of A, and thus write the dimension vector of a B-module X as (d, s) ∈ Zn×
Zt−n as before. The map e : RB(d, s) → RA(d) induces by [3, Lem. 6.3] an isomorphism
of varieties

RB(d, s)//Gls
∼−→ im e.

Furthermore, im e = {N ∈ RA(d) | dim c(N) ≤ (d, s)} is a closed subset of RA(d)
[3, Lem. 7.2]. For any injective A-module I and any dimension vector d, let

[d, I] := [N, I]

where N ∈ RA(d) is arbitrary, noting that [N, I] depends only on dimN = d by injectivity
of I. Since this quantity also only depends on I up to isomorphism, for any X ∈ A-mod
we get a well-defined integer [d, I(X)], where X → I(X) is a minimal injective envelope.

Proposition 4.1. Assume K has characteristic zero. Let E = DA ⊕ En+1 ⊕ · · · ⊕ Et

be a cogenerating A-module, with indecomposable non-injective summands Ej, and B
its cogenerator-tilted algebra. Let d ∈ Zn

≥0 be a dimension vector for A, and let m =

(mn+1, . . . ,mt) ∈ Zn−t
≥0 .

(1) If CE
m ̸= ∅, then [d, I(Ej)] ≥ mj for all j.
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(2) In this case, we may extend d to a dimension vector (d, s) ∈ Zt
≥0 for B by defining

sj := [d, I(Ej)]−mj for n+ 1 ≤ j ≤ t, and the special idempotent e of B induces
an isomorphism

RB(d, s)//Gls
∼−→ CE

m.

Definition 4.2. Let M be a finite-dimensional A-module. We say M is gen-finite if there
is a finite-dimensional A-module E such that gen(M) = addE.

The module A is gen-finite if and only if A is representation-finite. Thus we see gen-
finiteness as a module-theoretic generalisation of the notion of representation-finiteness
for algebras. For gen-finite modules, Zwara found the following explicit description of
orbit closures as rank varieties.

Theorem 4.3 (cf. [6, Thm. 1.2(4)]). Let M ∈ RA(d). If gen(M) = addE, then we have
OM = CE

M .

The main step in our argument that the map π from Section 2 is a desingularisation
is the following theorem, characterising the stable (d, s)-dimensional B-modules in Oc(M)

and giving a sufficient condition for them to be smooth points of this variety.

Theorem 4.4. Let A and B be (any) basic algebras with A ∼= eBe for some idempotent

e and let c be the intermediate extension functor associated to e. Let Ñ ∈ RB(d, s) and

write N = eÑ ∈ RA(d). Then the following are equivalent:

(1) Ñ ∈ Ost

c(M), and
(2) there is an exact sequence

0 N M ⊕ Z Z 0
p

such that Ñ ∼= ker c(p).

If condition (2) holds and we may choose the sequence so that c(M ⊕Z) is rigid, then Ñ

is a smooth point of Ost

c(M).

We are now ready to describe our desingularisation for the orbit closure of a gen-finite
module.

Theorem 4.5. Assume M ∈ A-mod is gen-finite. Let E be a basic cogenerator with
gen(M) ⊆ addE, and let B be the cogenerator-tilted algebra of E with special idempotent
e. For c : A-mod → B-mod the intermediate extension functor corresponding to e, write
(d, s) = dim c(M), and let π : RB(d, s)

st/Gls → im e be the projective map constructed in
[3, §6.3]. Then the restriction

π : Ost

c(M)/Gls → OM

is a desingularisation with connected fibres.

5. Desingularisation of quiver Grassmannians

The main question here is how to characterise smoothness for quiver Grassmannians.
We have the following result (which was explained to us by Andrew Hubery).
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Lemma 5.1. Let B be a finite-dimensional basic algebra and X a finite-dimensional
B-module with idX ≤ 1 and Ext1B(X,X) = 0. If d is such that GrB

(
X
d

)
̸= ∅ and

Ext1B(U,X/U) = 0 for every U ∈ GrB
(
X
d

)
, then GrB

(
X
d

)
is smooth and equidimensional.

Then, we prove the following lemma.

Lemma 5.2. Let B be a finite-dimensional basic algebra and X ∈ B-mod. Assume
C ∈ B-mod has the properties that ExtiB(C,C) = 0 for all i > 0 and X ∈ addC. Then if
U ∈ GrB

(
X
d

)
fits into a short exact sequence

0 U C0 C1 0

with Ci ∈ addC, we have ExtiB(U,X/U) = 0 for all i > 0. In particular, if every
U ∈ GrB

(
X
d

)
fits into such a sequence, then GrB

(
X
d

)
is smooth and equidimensional by

Lemma 5.1.

Using the previous lemma, we can prove the theorem.

Theorem 5.3. Let M be a gen-finite module and let E be the cogenerator given by the
direct sum of all indecomposable modules in gen(M) together with any remaining inde-
composable injectives. Let B be the cogenerator-tilted algebra of E with special idempotent
e, let c be the intermediate extension associated to e, and let (d, s) be a dimension vector

for B. Then if the Grassmannian GrB
(
c(M)
d,s

)
is non-empty, it is (scheme-theoretically)

smooth and equidimensional.

We now give the construction of our promised desingularisation for the quiver Grass-
mannian GrA

(
M
d

)
of a gen-finite A-module M . Since M is gen-finite, there is finite set of

modules N1, . . . , Nt with GrA
(
M
d

)
=

∪t
i=1 E

[Ni]
. We fix such a set of modules Ni with the

property that each E [Ni]
is an irreducible component.

As in Theorem 5.3, let E be the cogenerator given by the direct sum of indecomposables
in gen(M) together with any remaining indecomposable injectives. As usual, let B be the
cogenerator-tilted algebra of E, with special idempotent e and associated intermediate
extension c. Write (d, si) = dim c(M) − dim c(Ni), and consider the projective map

GrB
(
c(M)
d,si

)
→ GrA

(
M
d

)
induced by e. It restricts to a projective map

pi : E
[c(Ni)] → E [Ni]

.

Since E [Ni]
is an irreducible component of GrA

(
M
d

)
, each E [c(Ni)] contains a non-empty

open subset, so E [c(Ni)]
is also an irreducible component—since GrB

(
c(M)
d,si

)
is smooth by

Theorem 5.3 it is even a connected component. Furthermore, pi is an isomorphism over
an open subset of E [Ni], by dualising the argument of [3, Thm. 7.1(3)]. Combining the
various maps pi, we obtain

p =
t⊔

i=1

pi :
t⊔

i=1

E [c(Ni)] → GrA
(
M
d

)
.

By Theorem 5.3, the domain of this map is smooth. In summary, we have the following
result.
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Corollary 5.4. For every gen-finite A-module M and every dimension vector d, the map
p as constructed above is a desingularisation of GrA

(
M
d

)
.

6. Example for the n-subspace quiver

Let A be the path algebra of the n-subspace quiver:

1 2 · · · n− 1 n

0

When treating an A-module X as a representation of this quiver, we denote by Xi the
linear map carried by the arrow i → 0.

For both of our examples, we consider the A-module

M = DA⊕ S(0) =
( n⊕

i=0

S(i)
)
⊕Q(0),

where S(i) denotes the simple at a vertex i and Q(i) its minimal injective envelope. It
follows that M is gen-finite, and indeed we may compute gen(M) = addM .

Next, we calculate the orbit closure OM ⊆ RA( 2 2 ··· 2 2
2 ). Since gen(M) = addM it

follows from Theorem 4.3 that

OM = {N ∈ RA( 2 2 ··· 2 2
2 ) | [N, Y ] ≥ [M,Y ] for all Y ∈ addM}

= {N ∈ RA( 2 2 ··· 2 2
2 ) | [N,S(0)] ≥ [M,S(0)] = 1}

∼=
{(

ai bi
ci di

)
1≤i≤n

∈ Mat2×2(K) | rk
(
a1 b1 a2 b2 ··· an bn
c1 d1 c2 d2 ··· cn dn

)
≤ 1

}
∼= V (XiYj −XjYi, i ̸= j) ⊆ SpecK[X1, . . . , X2n, Y1, . . . , Y2n].

For the third step, note that maps Ni : K2 → K2 for 1 ≤ i ≤ n determine a mod-
ule N with [N,S(0)] ≥ 1 if and only if there is a non-zero vector (x, y) such that
(x, y)(N1, N2, . . . , Nn) = 0, this being equivalent to the rank inequality. Thus OM is

a determinantal variety. We also have OM
∼= OM̃ , where M̃ is the representation

K2n ( 1 0 1 0 ··· 1 0
0 0 0 0 ··· 0 0 )−−−−−−−−−−→ K2

of the A2-quiver, and hence OM is a normal and Cohen–Macaulay variety.
Choosing bases, we identify M as the point of RA( 2 2 ··· 2 2

2 ) given by linear maps
Mi : K2 → K2 with Mi = ( 1 0

0 0 ) for all 1 ≤ i ≤ n. Then, writing d for the dimension vector
given by 1 at every vertex, we may describe the quiver Grassmannian GrA

(
M
d

)
as

GrA
(
M
d

)
= {(L0, L1, L2, . . . , Ln) ∈ P1 × · · · × P1 | Mi(Li) ⊆ L0, 1 ≤ i ≤ n}
= {(L0, [0 : 1], . . . , [0 : 1]) | L0 ∈ P1} ∪ {([1 : 0], L1, . . . , Ln) | Li ∈ P1, 1 ≤ i ≤ n}.

Let f : (P1)n → GrA
(
M
d

)
be the regular map

f(t1, . . . , tn) = ([1 : 0], t1, . . . , tn)
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and g : P1 → GrA
(
M
d

)
the regular map

g(t) = (t, [0 : 1], . . . , [0 : 1]).

The images of these maps are closed and irreducible, cover GrA
(
M
d

)
, and neither is con-

tained in the other—therefore they are the irreducible components. If U ∈ im f , then we

calculate directly that M/U ∼= S, so im f = E [S] = E [S]
is one irreducible component, iso-

morphic to (P1)n. Similarly, M/g(t) ∼= Q for t ̸= [1 : 0], whereas M/g([1 : 0]) ∼= S. Thus

the other irreducible component is im g = E [Q] ⊔ {U0} = E [Q] ∼= P1 for U0 = g([1 : 0]), this

being the unique intersection point of E [S]
and E [Q]

. In particular, U0 is the only singular
point of GrA

(
M
d

)
.

6.1. The cogenerator-tilted algebra. For our constructions, we choose E = M , noting
that M is a cogenerator, and addM = gen(M). Then Γ = EndA(E)op ∼= KQΓ/ rad

2(QΓ)
for QΓ the quiver

1′ 2′ · · · (n− 1)′ n′

0′

♦
Here each vertex i′ corresponds to the summand Q(i) of M , noting that Q(i) = S(i) for
i ≥ 1, and ♦ corresponds to S(0).

The projective Γ-module P = HomA(E,DA) =
⊕n

i=0 P (i′) is faithful. Since
[S(♦), P (i′)] = 0 for 1 ≤ i ≤ n, a minimal left addP -approximation of S(♦) is given
by a monomorphism S(♦) → P (0′), with cokernel S(0′). This implies TP = P ⊕ S(0′)
is the P -special tilting Γ-module. Then we calculate that the cogenerator-tilted algebra
B = EndΓ(TP )

op of E is isomorphic to the path algebra KQB for QB the quiver

[1] [2] · · · [n− 1] [n]

♢

[0]

The vertex [i] corresponds to the summand P (i′) of TP , and ♢ to the summand S(0′) =
Ω−1S(♦). The special idempotent is e :=

∑n
i=0 e[i], corresponding to the summand P

of TP , and we can check that eBe ∼= A as expected. Set C := c(M), where c is the
intermediate extension corresponding to e. Since c maps simples to simples [5, §4] and
injectives to injectives we may calculate

c(M) = c(S)⊕ c(Q) =
( n⊕

i=0

S[i]
)
⊕Q[0],
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and so dim c(M) =
(

2 2 ··· 2 2
1
2

)
.

6.2. Desingularisation of the orbit closure. To desingularise OM , we are inter-

ested in the stable B-modules, which are the modules in cogen(Q̃) for Q̃ = D(eB) =⊕n
i=1 S[i] ⊕ Q[0]. These are the modules with socle supported away from ♢, or equiva-

lently, in the language of quiver representations, those for which the arrow ♢ → [0] carries
a monomorphism. It follows that

X := RB

(
2 2 ··· 2 2

1
2

)st

/Gl1 = {(N,U) ∈ RA(d)× P1 | imNi ⊆ U, 1 ≤ i ≤ n},

where, under this identification, U is the image of the monomorphism on the arrow
♢ → [0].

We can check that X is smooth and irreducible by considering the projection pr2 : X →
P1. The fibre over [1 : 0] consists of all tuples (N1, . . . , Nn) ∈ Mat2×2(K)n such that each
Ni has lower row zero, and hence this fibre is an affine space (of dimension 2n). In fact, it is
a B-representation where B ⊆ Gl2(K) denotes the upper triangular matrices operating by
conjugation. Since pr2 is a Gl2-equivariant map into the homogeneous space P1, it follows
that X is is a vector bundle over P1, and so is smooth and irreducible. In particular, since

c(M) is rigid, X = Ost

c(M). Thus the desingularisation of OM from Theorem 4.5 is

π = pr1 : {(N,U) ∈ RA(d)× P1 | imNi ⊆ U, 1 ≤ i ≤ n} → OM .

6.3. Desingularisation of the quiver Grassmannian. Now we describe our desingu-
larisation of GrA

(
M
d

)
. Let

dQ := dim c(M)− dim c(Q) =
(

1 1 ··· 1 1
0
1

)
and

dS := dim c(M)− dim c(S) =
(

1 1 ··· 1 1
1
1

)
.

Every module of dimension vector dQ is isomorphic to c(S), so the Grassmannian

GrB
(
c(M)
dQ

)
= S[c(S)] is smooth and irreducible of dimension [c(S), c(M)] − [c(S), c(S)] =

[c(S), c(Q)] = [S,Q] = 1, and hence it coincides with E [c(Q)]
. Similarly, by con-

sidering the quotients, GrB
(
c(M)
dS

)
= E [c(S)] is smooth and irreducible of dimension

[c(M), c(S)] − [c(S), c(S)] = [Q,S] = n, and so in particular E [c(S)]
= GrB

(
c(M)
dS

)
. Thus

the theoretical desingularisation given by Corollary 5.4 coincides with the näıve desingu-
larisation p : GrB

(
c(M)
dQ

)
⊔GrB

(
c(M)
dS

)
→ GrA

(
M
d

)
, given by taking the disjoint union of the

two irreducible components.
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