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Abstract. There exist 26 equivalence classes of k-subalgebras of M3(k) for any alge-
braically closed field k. We introduce the moduli of subalgebras of the full matrix ring of
degree 3, in other words, the moduli of molds. We describe the moduli of rank d molds
of degree 3 for d = 2, 3.
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1. Introduction

In this paper, we discuss the moduli of subalgebras of the full matrix ring of degree 3.
For investigating R-subalgebras A of Mn(R) over a commutative ring R, or subsheaves A
of OX-algebras of Mn(OX) on a scheme X, it is a good way to investigate the moduli of
subalgebras of the full matrix ring, in other words, the moduli of molds. For constructing
the moduli, we need to introduce the notion of molds. A mold A ⊂ Mn(OX) of degree n
on a scheme X is a subsheaf of OX-algebras of Mn(OX) such that A and Mn(OX)/A are
locally free sheaves. This definition allows us to construct the moduli Moldn,d of rank d
molds of degree n as a closed subscheme of the Grassmann scheme Grass(d, n2). By the
description of the moduli of molds of degree 3, we obtain rich results on R-subalgebras of
M3(R) over arbitrary commutative ring R. Furthermore, we can obtain a hint to construct
the moduli of representations for each mold of degree 3 as in the degree 2 case ([5]).

Another reason why we investigate the moduli of molds is that it is closely related to
the moduli of algebras in the sense of Gabriel ([1]). There exists a canonical morphism
from the moduli of algebras to the moduli of molds. Moreover, we can deal with the
moduli of molds functorially, since it represents a certain contravariant functor and there
is a universal family of subalgebras on the moduli of molds. The relation between the
moduli of molds and the moduli of algebras will be discussed in another paper.

We begin with the following definition.

Definition 1. Let k be an algebraically closed field. Let A,B be k-subalgebras of Mn(k).
We say that A and B are equivalent if there exists P ∈ GLn(k) such that P−1AP = B.

Let us classify the equivalence classes of k-subalgebras of M3(k) over an algebraically
closed field k.

Theorem 2 ([6]). There exist 26 equivalence classes of k-subalgebras of M3(k) for any
algebraically closed field k.

The detailed version of this paper will be submitted for publication elsewhere.

–1–



(1) M3(k)

(2) P2,1(k) :=


 ∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

 ∈ M3(k)


(3) P1,2(k) :=


 ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

 ∈ M3(k)


(4) B3(k) :=


 ∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 ∈ M3(k)


(5) C3(k) :=


 a 0 0

0 a 0
0 0 a

 a ∈ k


(6) D3(k) :=


 ∗ 0 0

0 ∗ 0
0 0 ∗

 ∈ M3(k)


(7) (C2 ×D1)(k) :=


 a 0 0

0 a 0
0 0 b

 a, b ∈ k


(8) (N2 ×D1)(k) :=


 a c 0

0 a 0
0 0 b

 a, b, c ∈ k


(9) (B2 ×D1)(k) :=


 ∗ ∗ 0

0 ∗ 0
0 0 ∗

 ∈ M3(k)


(10) (M2 ×D1)(k) :=


 ∗ ∗ 0

∗ ∗ 0
0 0 ∗

 ∈ M3(k)


(11) J3(k) :=


 a b c

0 a b
0 0 a

 a, b, c ∈ k


(12) N3(k) :=


 a b c

0 a d
0 0 a

 a, b, c, d ∈ k


(13) S1(k) :=


 a b 0

0 a 0
0 0 a

 a, b ∈ k


(14) S2(k) :=


 a 0 0

0 a c
0 0 b

 a, b, c ∈ k


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(15) S3(k) :=


 a 0 c

0 b 0
0 0 b

 a, b, c ∈ k


(16) S4(k) :=


 a b c

0 a 0
0 0 a

 a, b, c ∈ k


(17) S5(k) :=


 a 0 b

0 a c
0 0 a

 a, b, c ∈ k


(18) S6(k) :=


 a c d

0 a 0
0 0 b

 a, b, c, d ∈ k


(19) S7(k) :=


 a 0 c

0 a d
0 0 b

 a, b, c, d ∈ k


(20) S8(k) :=


 a c d

0 b 0
0 0 b

 a, b, c, d ∈ k


(21) S9(k) :=


 a 0 c

0 b d
0 0 b

 a, b, c, d ∈ k


(22) S10(k) :=


 a b c

0 a d
0 0 e

 a, b, c, d, e ∈ k


(23) S11(k) :=


 a b c

0 e d
0 0 a

 a, b, c, d, e ∈ k


(24) S12(k) :=


 a b c

0 e d
0 0 e

 a, b, c, d, e ∈ k


(25) S13(k) :=


 ∗ ∗ ∗

0 ∗ 0
0 0 ∗

 ∈ M3(k)


(26) S14(k) :=


 ∗ 0 ∗

0 ∗ ∗
0 0 ∗

 ∈ M3(k)


For a long proof of Theorem 2, see [6]. It is interesting to investigate how 26 types of

subalgebras are contained in the moduli Mold3,d of molds (d = 1, 2, . . . , 9).

The organization of this paper is as follows. In Section 2, we define the moduli of molds.
We describe Mold3,d for d = 1, 6, 7, 8, 9. In Section 3, we describe Mold3,2. In Section 4,
we describe Mold3,3. In Section 5, we deal with the degree 2 case as an appendix.
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2. Preliminaries

In this section, we define the moduli of subalgebras of the full matrix ring, in other
words, the moduli of molds. We describe the moduli of rank d molds of degree 3 for
d = 1, 6, 7, 8, 9.

For introducing the moduli of subalgebras of the full matrix ring, we define molds on
schemes.

Definition 3 ([4, Definition 1.1]). Let X be a scheme. A subsheaf of OX-algebras A ⊆
Mn(OX) is said to be a mold of degree n on X if A and Mn(OX)/A are locally free sheaves
on X. We denote by rankA the rank of A as a locally free sheaf on X. For a commutative
ring R, we say that an R-subalgebra A ⊆ Mn(R) is a mold of degree n over R if A is a
mold of degree n on SpecR.

Remark 4. A mold A ⊂ Mn(R) over a commutative ring R is an R-subalgebra A of Mn(R)
satisfying that A and Mn(R)/A are projective R-modules. In particular, A℘ is a free R℘-
module for ℘ ∈ SpecR. We assume that rankR℘A℘ is constant for ℘ ∈ SpecR. Then
A ⊂ Mn(R) determines an R-valued point of Grass(d, n2), where d = rankA. Here the
Grassmann scheme Grass(m,n) is the scheme over Z parameterizing rank m subbundles
of the trivial rank n vector bundle (For example, see [2, Lecture 5]).

We define the moduli of molds.

Proposition 5 ([4, Definition and Proposition 1.1]). The following contravariant functor
is representable by a Z-scheme Moldn,d.

Moldn,d : (Sch)op → (Sets)
X 7→

{
A rank d mold of degree n on X

}
Moreover, Moldn,d is a closed subscheme of the Grassmann scheme Grass(d, n2).

Proof. Let E be the universal rank d subbundle of the trivial rank n2 vector bundle
on Grass(d, n2). We regard the trivial rank n2 vector bundle as Mn(OGrass(d,n2)). Let
p ∈ Grass(d, n2). Let A1, . . . , An2 be an OUp-basis of Mn(OUp) such that A1, . . . , Ad is

an OUp-basis of E |Up on a neighborhood Up of p. We can write In =
∑n2

k=1 akAk and

AiAj =
∑n2

k=1 c
k
ijAk for i, j = 1, 2, . . . d, where ak, c

k
ij ∈ OGrass(d,n2)(Up). The condition

ak = 0 for k = d+1, . . . , n2 and that ckij = 0 for 1 ≤ i, j ≤ d and k = d+1, . . . , n2 defines a

closed subscheme of Up. By gluing such closed subschemes of Up for each p ∈ Grass(d, n2),
we can obtain a closed subscheme Moldn,d of Grass(d, n2). It is easy to check that Moldn,d

represents the contravariant functor in the statement. □

Remark 6. There exists the universal mold An,d ⊂ Mn(OMoldn,d
) on the moduli Moldn,d.

Giving a rank d mold A ⊂ Mn(R) over a commutative ring R is equivalent to giving a
morphism SpecR → Moldn,d. By the morphism ϕ : SpecR → Moldn,d corresponding to
A ⊂ Mn(R), we obtain A = ϕ∗(An,d) := An,d ⊗OMoldn,d

R.
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Example 7 ([6]). Let n = 3. If d = 1 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,6 = Flag := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},
Mold3,7 = P2

Z

⨿
P2
Z,

Mold3,8 = ∅,
Mold3,9 = SpecZ.

Let us explain Example 7. When d = 1, A = RI3 ⊂ M3(R) is the unique rank 1 mold
over a commutative ring R. Then Mold3,1 is isomorphic to SpecZ, which is the final object
in the category of schemes. When d = 9, A = M3(R) is the unique rank 9 mold over a
commutative ring R. Then Mold3,9 is also isomorphic to SpecZ. When d = 8, there exists
no rank 8 mold A ⊂ M3(R) over any commutative ring R. Hence Mold3,8 = ∅.

When d = 6, the set of k-rational points of Mold3,6 = Flag coincides with {PB3(k)P
−1 |

P ∈ GL3(k)} for a field k, where

B3(k) :=


 ∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 ∈ M3(k)

 .

When d = 7, Mold3,7 = P2
Z
⨿

P2
Z.

Let P2,1(k) :=


 ∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

 ∈ M3(k)

 and P1,2(k) :=


 ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

 ∈ M3(k)

.

The set of k-rational points of Mold3,7 = P2
Z
⨿

P2
Z coincides with

{PP2,1(k)P
−1 | P ∈ GL3(k)}

⨿
{PP1,2(k)P

−1 | P ∈ GL3(k)},

where k is a field.

In the following sections, we discuss Mold3,2 and Mold3,3.

3. The moduli Mold3,2

In this section, we deal with Mold3,2. Let k be an algebraically closed field. There exist
two equivalence classes of 2-dimensional k-subalgebras of M3(k):

(C2 ×D1)(k) :=


 a 0 0

0 a 0
0 0 b

 a, b ∈ k


and

S1(k) :=


 a b 0

0 a 0
0 0 a

 a, b ∈ k

 .

We can classify 3× 3-matrices into three types: Regular matrices, subregular matrices,
and scalar matrices.
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Definition 8 ([6]). Let M3 be the scheme of 3 × 3-matrices over Z. In other words,
M3

∼= A9
Z and we can consider the universal matrix A on M3. We define the open

subscheme Mreg
3 consisting of non-derogatory matrices (or regular matrices) by

Mreg
3 := {x ∈ M3 | I3, A,A2 are linearly independent in M3(k(x))},

where k(x) is the residue field of x. We denote by Mscalar
3 the closed subschemes consisting

of scalar matrices. We also define the subscheme Msr
3 of M3 by

Msr
3 :=

{
x ∈ M3

I3, A are linearly independent in M3(k(x)) and A
2 = c1A+ c0I3

on a neighborhood Ux of x for some c1, c0 ∈ OM3(Ux)

}
.

Then M3 can be divided into the following three subschemes:

M3 = Mreg
3

⨿
Msr

3

⨿
Mscalar

3 .

Roughly speaking, if the degree of the minimal polynomial for a 3 × 3-matrix A is 3,
2, or 1, then we call A regular, subregular, or scalar, respectively. We denote by Msr

3 (R)
the set of subregular matrices of M3(R) over a commutative ring R. (This is compatible
with the notation of the set of R-valued points of the scheme Msr

3 .)

For describing Mold3,2, we deal with subregular matrices.

Proposition 9 ([6]). Let R be a local ring. For A ∈ Msr
3 (R), there exists P ∈ GL3(R)

such that

P−1AP =

 a 1 0
0 b 0
0 0 b

 .

Moreover, a, b ∈ R are determined by only A (not by P ).

Remark 10. Proposition 9 implies that A ∈ Msr
3 (R) has eigenvalues a, b, b over arbitrary

commutative ring R. In particular, even if a field k is not algebraically closed, then
A ∈ Msr

3 (k) has eigenvalues a, b, b over k.

Definition 11 ([6]). We call a, b ∈ R in Proposition 9 the a-invariant and the b-invariant
of A, respectively.

The subscheme Msr
3 is the moduli of 3 × 3 subregular matrices. For the universal

subregular matrix A on Msr
3 , we can define the a-invariant and the b-invariant of A on

Msr
3 .

Definition 12 ([6]). We denote by a(A), b(A) ∈ OMsr
3
(Msr

3 ) the a-invariant and b-invariant
of the universal matrix A on Msr

3 , respectively. These are PGL3-invariant, where the group
scheme PGL3 acts on Msr

3 by A 7→ P−1AP .

Here we introduce (universal) geometric quotients ([3]).

Definition 13 ([3, Definitions 0.6 and 0.7]). Let X be a scheme over a scheme S. Let G
be a group scheme over S. For a given group action σ : G×SX → X over S, a pair (Y, ϕ)
consisting of a scheme Y over S and an S-morphism ϕ : X → Y is called a geometric
quotient of X by G if

(1) ϕ ◦ σ = ϕ ◦ p2, where p2 : G×S X → X is the second projection.
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(2) ϕ is surjective, and the image of G×S X
(σ,p2)→ X ×S X coincides with X ×Y X.

(3) ϕ is submersive. In other words, U ⊂ Y is open if and only if ϕ−1(U) ⊂ X is open.
(4) OY = ϕ∗(OX)

G, where ϕ∗(OX)
G is the subsheaf of ϕ∗(OX) consisting of G-

invariant functions. In other words, for an open set U of Y and for f ∈ ϕ∗(OX)(U),
f ∈ ϕ∗(OX)

G(U) if and only if f induces the following commutative diagram:

G× ϕ−1(U)
σ→ ϕ−1(U)

p2 ↓ ↓ F
ϕ−1(U)

F→ A1
S.

Here F is the morphism defined by f .

We say that (Y, ϕ) is a universal geometric quotient of X by G if (Y ′, ϕ′) is a geometric
quotient for any S-morphism Y ′ → Y , where ϕ′ : X ′ := X ×S Y

′ → Y ′ is induced by ϕ.

We also introduce the following definition.

Definition 14 ([7]). Let f : X → S be a morphism of schemes. Assume that f is locally
of finite type. We say that f is of relative dimension d if all non-empty fibers f−1(s) of f
are equidimensional of dimension d.

Proposition 15 ([6]). Let π : Msr
3 → A2

Z be the morphism defined by A 7→ (a(A), b(A)).
Then π gives a universal geometric quotient by PGL3. Moreover, Msr

3 is a smooth integral
scheme of relative dimension 6 over Z.

The scheme Mold3,2 is the moduli of 2-dimensional subalgebras of M3. Let ⟨A⟩ be the
subalgebra generated by A for A ∈ Msr

3 . We define ϕ : Msr
3 → Mold3,2 by A 7→ ⟨A⟩.

Proposition 16 ([6]). The morphism ϕ : Msr
3 → Mold3,2 is smooth and surjective.

Let us describe Mold3,2 explicitly. Let V := O⊕3
Z be a rank 3 trivial vector bundle on

SpecZ. We denote by P∗(V ) the projective plane consisting of subline bundles of V . We
also denote by P∗(V ) the projective plane consisting of rank 2 subbundles of V .

Let us define a morphism ξ : P∗(V )× P∗(V ) → Mold3,2 as follows. Let X be a scheme,
and let (L,W ) be an X-valued point of P∗(V )×P∗(V ). In other words, let L and W be a
rank 1 subbundle and a rank 2 subbundle of V ⊗Z OX , respectively. Set VX := V ⊗Z OX .
We can regard f ∈ HomOX

(VX/W,L) as an element of EndOX
(VX) by

VX
proj.→ VX/W

f→ L ↪→ VX .

We denote by ξ(L,W ) the subsheaf of OX-algebras of EndOX
(VX) generated by {f ∈

HomOX
(VX/W,L)} and idVX

. Since rankHomOX
(VX/W,L) = 1, we see that ξ(L,W ) is

a rank 2 mold on X. We define a morphism ξ : P∗(V ) × P∗(V ) → Mold3,2 by (L,W ) 7→
ξ(L,W ).

Theorem 17 ([6]). The morphism ξ : P∗(V )× P∗(V ) → Mold3,2 is an isomorphism.
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Remark 18. For simplicity, let us consider the discussion above over a field k. Let V be
a 3-dimensional vector space over k. Let (L,W ) ∈ P∗(V )× P∗(V ). In other words, let L
and W be a 1-dimensional subspace and a 2-dimensional subspace of V , respectively. We
can regard f ∈ Homk(V/W,L) as an element of Endk(V ) by

V
proj.→ V/W

f→ L ↪→ V.

We denote by ξ(L,W ) the k-subalgebra of Endk(V ) generated by {f ∈ Homk(V/W,L)}
and idV . Since dimHomk(V/W,L) = 1, we see that ξ(L,W ) is a 2-dimensional k-
subalgebra. Theorem 17 shows that any 2-dimensional k-subalgebra A of M3(k) can
be obtained as ξ(L,W ) for some (L,W ). Such (L,W ) is uniquely determined by A.

Recall the following two types of 2-dimensional k-subalgebras of M3(k) over an alge-
braically closed field k:

(C2 ×D1)(k) =


 a 0 0

0 a 0
0 0 b

 a, b ∈ k

 ,

S1(k) =


 a b 0

0 a 0
0 0 a

 a, b ∈ k

 .

Definition 19 ([6]). We define an open subscheme MC2×D1
3 of Msr

3 by

MC2×D1
3 := {A ∈ Msr

3 | a(A)− b(A) ̸= 0}.
We also define a closed subscheme MS1

3 of Msr
3 by

MS1
3 := {A ∈ Msr

3 | a(A)− b(A) = 0}.
Similarly, we define subschemes MoldC2×D1

3,2 and MoldS1
3,2 of Mold3,2. Geometric points of

MoldC2×D1
3,2 and MoldS1

3,2 correspond to subalgebras which are equivalent to C2 × D1 and
S1, respectively.

Set Flag := {(L,W ) ∈ P∗(V )× P∗(V ) | L ⊂ W} ⊂ P∗(V )× P∗(V ).

Theorem 20 ([6]). The isomorphism ξ : P∗(V )×P∗(V ) → Mold3,2 induces MoldC2×D1
3,2

∼=
P∗(V )× P∗(V ) \ Flag and MoldS1

3,2
∼= Flag. In particular, MoldC2×D1

3,2 is a smooth integral

scheme of relative dimension 4 over Z, and MoldS1
3,2 is a smooth integral scheme of relative

dimension 3 over Z.

Corollary 21 ([6]). For the finite field Fq,

♯{A | 2-dimensional subalgebra of M3(Fq)} = ♯
(
P2(Fq)× P2(Fq)

)
= (q2 + q + 1)2.

Moreover,

♯MoldC2×D1
3,2 (Fq) = q2(q2 + q + 1),

♯MoldS1
3,2(Fq) = (q2 + q + 1)(q + 1).
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4. The moduli Mold3,3

In this section, we deal with Mold3,3. There are seven types of 3-dimensional k-
subalgebras of M3(k) over an algebraically closed field k:

(1) D3(k) :=


 ∗ 0 0

0 ∗ 0
0 0 ∗

 ∈ M3(k)


(2) (N2 ×D1)(k) :=


 a c 0

0 a 0
0 0 b

 a, b, c ∈ k


(3) J3(k) :=


 a b c

0 a b
0 0 a

 a, b, c ∈ k


(4) S2(k) :=


 a 0 0

0 a c
0 0 b

 a, b, c ∈ k


(5) S3(k) :=


 a 0 c

0 b 0
0 0 b

 a, b, c ∈ k


(6) S4(k) :=


 a b c

0 a 0
0 0 a

 a, b, c ∈ k


(7) S5(k) :=


 a 0 b

0 a c
0 0 a

 a, b, c ∈ k


We define the regular part Mreg

n of Mn.

Definition 22 ([6]). Let Mn be the scheme of n × n-matrices over Z. The scheme Mn

is isomorphic to the affine space An2

Z . Let A be the universal matrix on Mn. The open
subscheme Mreg

n of Mn is defined by

Mreg
n := {x ∈ Mn | In, A,A2, . . . , An−1 : linearly independent in Mn(k(x))},

where k(x) is the residue field of x. We call Mreg
n the regular part of Mn. For a commutative

ring R, we call a matrix A ∈ Mreg
n (R) regular or non-derogatory.

Proposition 23 (cf. [6]). Let R be a local ring. Let A ∈ Mreg
n (R). There exists P ∈

GLn(R) such that

P−1AP =



0 0 0 · · · 0 −cn
1 0 0

. . . 0 −cn−1

0 1 0
. . . 0 −cn−2

0 0 1
. . . 0 −cn−3

...
. . . . . . . . . . . .

...
0 0 0 · · · 1 −c1


.
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Note that xn + c1x
n−1 + · · ·+ cn−1x+ cn is the characteristic polynomial of A.

The group scheme PGLn acts on Mreg
n by A 7→ P−1AP . We define π : Mreg

n → An
Z by

A 7→ (c1, c2, . . . , cn), where x
n + c1x

n−1 + · · ·+ cn−1x+ cn is the characteristic polynomial
of A.

Theorem 24 ([6]). The morphism π : Mreg
n → An

Z is a universal geometric quotient by
PGLn.

Let us consider Mold3,3. Let ⟨A⟩ be the subalgebra generated by A for A ∈ Mreg
3 . We

define ψ : Mreg
3 → Mold3,3 by A 7→ ⟨A⟩.

Proposition 25 ([6]). The morphism ψ : Mreg
3 → Mold3,3 is smooth and surjective.

Definition 26 ([6]). We define an open subscheme Moldreg
3,3 of Mold3,3 by Moldreg

3,3 :=
ψ(Mreg

3 ).

Remark 27. Let k be a field. For a k-rational point A of Moldreg
3,3 , there exists X ∈ M3(k)

such that A = kI3 + kX + kX2 except for the case that k = F2 and A = P−1D3(F2)P
for some P ∈ GL3(F2). Here D3(k) is the k-subalgebra of M3(k) consisting of diagonal
matrices. The F2-rational point A = P−1D3(F2)P is also contained in Moldreg

3,3 , since
A⊗F2 F4 = P−1D3(F4)P can be generated by some X ∈ Mreg

3 (F4).

The scheme Mreg
3 has the following stratification of subschemes.

Theorem 28 ([6]). The smooth integral scheme Mreg
3 over Z has a stratification of sub-

schemes
Mreg

3 = MD3
3

⨿
MN2×D1

3

⨿
M

N2×D1/F2

3

⨿
MJ3

3

⨿
M

J3/F3

3 ,

which have the following properties:

(1) MD3
3 is a smooth integral scheme of relative dimension 9 over Z.

(2) MN2×D1
3 is a smooth integral scheme of relative dimension 8 over Z[1/2].

(3) M
N2×D1/F2

3 is a smooth variety of dimension 8 over F2.
(4) MJ3

3 is a smooth integral scheme of relative dimension 7 over Z[1/3].
(5) M

J3/F3

3 is a smooth variety of dimension 7 over F3.

The scheme Moldreg
3,3 also has the following stratification of subschemes.

Theorem 29 ([6]). The smooth integral scheme Moldreg
3,3 of relative dimension 6 over Z

has a stratification of subschemes

Moldreg
3,3 = MoldD3

3,3

⨿
MoldN2×D1

3,3

⨿
Mold

N2×D1/F2

3,3

⨿
MoldJ3

3,3

⨿
Mold

J3/F3

3,3

such that

(1) MoldD3
3,3 is a smooth integral scheme of relative dimension 6 over Z.

(2) MoldN2×D1
3,3 is a smooth integral scheme of relative dimension 5 over Z[1/2].

(3) Mold
N2×D1/F2

3,3 is a smooth variety of dimension 5 over F2.
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(4) MoldJ3
3,3 is a smooth integral scheme of relative dimension 4 over Z[1/3].

(5) Mold
J3/F3

3,3 is a smooth variety of dimension 4 over F3.

Remark 30. For the definitions of M∗
3 and Mold∗

3,3 for ∗ = D3,C2 ×D1, J3, and so on
in Theorems 28 and 29, see [6]. Geometric points of Mold∗

3,3 correspond to subalgebras
of type ∗. The smooth morphism ψ : Mreg

3 → Moldreg
3,3 induces a smooth morphism

ψ∗ : M
∗
3 → Mold∗

3,3 for each ∗.

Let V = O⊕3
Z be a free sheaf of rank 3 on Spec Z. Let us denote by P∗(V ) and P∗(V )

the projective spaces consisting of rank 1 and rank 2 subbundles of V , respectively.

Let us define φS2 : P∗(V )×P∗(V ) → Mold3,3 by (W1,W2) 7→ ⟨Hom(V/W1,W2)⟩, where
⟨Hom(V/W1,W2)⟩ is the subalgebra of Hom(V, V ) generated by Hom(V/W1,W2).

Let us define φS3 : P∗(V ) × P∗(V ) → Mold3,3 by (L1, L2) 7→ ⟨Hom(V/L1, L2)⟩, where
⟨Hom(V/L1, L2)⟩ is the subalgebra of Hom(V, V ) generated by Hom(V/L1, L2).

Here we regard f ∈ Hom(V/W1,W2) as an element of Hom(V, V ) by V
proj.→ V/W1

f→
W2 ↪→ V . We also regard f ∈ Hom(V/L1, L2) as an element of Hom(V, V ) in the same
way.

Theorem 31 ([6]). Let φ′
S2

: P∗(V )×P∗(V )\∆ → Mold3,3 and φ
′
S3

: P∗(V )×P∗(V )\∆ →
Mold3,3 be the induced morphisms by φS2 and φS3, respectively. Here we denote by ∆ the
diagonal of P∗(V )× P∗(V ) or P∗(V )× P∗(V ). Then φ′

S2
and φ′

S3
are smooth.

From the theorem above, we can define MoldS2
3,3 and MoldS3

3,3.

Definition 32 ([6]). We define open subschemes MoldS2
3,3 and MoldS3

3,3 of Mold3,3 as

MoldS2
3,3 := φS2(P∗(V )× P∗(V ) \∆) and MoldS3

3,3 := φS3(P∗(V )× P∗(V ) \∆), respectively.

Remark 33. Geometric points of MoldS2
3,3 and MoldS3

3,3 correspond to subalgebras of type

S2 and S3, respectively. Let Moldnon-comm
3,3 be the open subscheme of Mold3,3 consisting of

non-commutative subalgebras. Then Moldnon-comm
3,3 = MoldS2

3,3

⨿
MoldS3

3,3.

Note that
MoldS2

3,3 = φS2(P∗(V )× P∗(V ))

and
MoldS3

3,3 = φS3(P∗(V )× P∗(V )).

Now we can state the following theorem.

Theorem 34 ([6]). There is an irreducible decomposition

Mold3,3 = Moldreg
3,3 ∪MoldS2

3,3 ∪MoldS3
3,3,

where the relative dimensions of Moldreg
3,3 , MoldS2

3,3, and MoldS3
3,3 over Z are 6, 4, and 4,

respectively. Moreover, both MoldS5
3,3 := Moldreg

3,3∩MoldS2
3,3 and MoldS4

3,3 := Moldreg
3,3∩MoldS3

3,3

have relative dimension 2 over Z, and MoldS2
3,3 ∩MoldS3

3,3 = ∅.
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The figure below shows the relation among Mold∗
3,3 (∗ = D3,N2 ×D1, J3, and so on) in

Mold3,3. To be exact, N2 ×D1 and J3 denote MoldN2×D1
3,3 ∪ Mold

N2×D1/F2

3,3 and MoldJ3
3,3 ∪

Mold
J3/F3

3,3 , respectively. Two moduli schemes are connected with an edge if the closure

of the upper moduli contains the lower. For example, the closure of MoldJ3
3,3 ∪Mold

J3/F3

3,3

contains MoldS5
3,3 and MoldS4

3,3.

D3 =


 ∗ 0 0

0 ∗ 0
0 0 ∗


|

N2 ×D1 =


 a c 0

0 a 0
0 0 b


|

S2 =


 a 0 0

0 a c
0 0 b

 J3 =


 a b c

0 a b
0 0 a

 S3 =


 a 0 c

0 b 0
0 0 b


\ / \ /

S5 =


 a 0 b

0 a c
0 0 a

 S4 =


 a b c

0 a 0
0 0 a


The moduli schemes Mold3,4 and Mold3,5 will be discussed in [6].

5. Appendix

In this appendix, we show results in the degree 2 case.

Proposition 35 ([6]). Any subalgebras of M2(k) can be classified into one of the following
cases:

(1) M2(k)

(2) B2(k) :=

{(
∗ ∗
0 ∗

)}
(3) D2(k) :=

{(
∗ 0
0 ∗

)}
(4) N2(k) :=

{ (
a b
0 a

)
a, b ∈ k

}
(5) C2(k) :=

{ (
a 0
0 a

)
a ∈ k

}
–12–



Example 36 ([4, Example 1.1]). In the case n = 2, we have

Mold2,1 = SpecZ,
Mold2,2 = P2

Z,

Mold2,3 = P1
Z,

Mold2,4 = SpecZ.

References

[1] P. Gabriel, Finite representation type is open, Proceedings of the International Conference on Rep-
resentations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23 pp. Carleton Math.
Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

[2] D. Mumford, Lectures on curves on an algebraic surface. With a section by G. M. Bergman, Annals
of Mathematics Studies, No. 59 Princeton University Press, Princeton, N.J. 1966.

[3] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Third Enlarged Edition.
Springer-Verlag, 1993.

[4] K. Nakamoto, The moduli of representations with Borel mold, Internat. J. Math. 25 (2014), no. 7,
1450067, 31 pp.

[5] , The moduli of representations of degree 2, Kyoto J. Math. 57 (2017), no. 4, 829–902.
[6] K. Nakamoto and T. Torii, On the classification of subalgebras of the full matrix ring of degree 3, in

preparation.
[7] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.

Center for Medical Education and Sciences
Faculty of Medicine
University of Yamanashi
Chuo, Yamanashi 409-3898 JAPAN

E-mail address: nakamoto@yamanashi.ac.jp

Department of Mathematics
Okayama University
Okayama 700-8530 JAPAN

E-mail address: torii@math.okayama-u.ac.jp

–13–


