RELATIVE NON-COMMUTNG GRAPH OF A FINITE RING

JUTIREKHA DUTTA AND DHIREN K. BASNET*

ABSTRACT. Let S be a subring of a finite ring R and Cr(S) ={r € R:rs=srVse S}.
The relative non-commuting graph of the subring S in R, denoted by I's g, is a simple
undirected graph whose vertex set is R\ Cr(S) and two distinct vertices a, b are adjacent
if and only if @ or b € S and ab # ba. In this paper, we discuss some properties of I'g g,
determine diameter, girth, some dominating sets and chromatic index for I's r. Also, we
derive some connections between I's r and the relative commuting probability of S in
R. Finally, we show that the relative non-commuting graphs of two relative Z-isoclinic
pairs of rings are isomorphic under some conditions.
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1. INTRODUCTION

Let R be a finite ring with subring S. Let Cr(S) = {r € R : rs = sr ¥V s € S}.
The relative non-commuting graph of the subring S in R, denoted by I'g g, is defined as
a simple undirected graph whose vertex set is R \ Cg(S) and two distinct vertices a,b
are adjacent if and only if a or b € S and ab # ba. For S = R, we have I'sp = I'g,
the non-commuting graph of R. The notion of non-commuting graph of a finite ring was
introduced by Erfanian et al. [8] in the year 2015. The study of algebraic structures by
means of graph theoretical properties became more popular during the last decade (see
(1, 2, 3, 4, 11] etc.). Motivated by the works of Erfanian et al. [12], in this paper, we
obtain some graphs that are not isomorphic to I'g g for any ring R with subring S. We
also determine diameter, girth, some dominating sets and chromatic index for I'g p and
derive some connections between I'g p and the relative commuting probability of S in R.
Recall that the relative commuting probability of a subring S in a finite ring R, denoted
by Pr(S, R), is the probability that a randomly chosen pair of elements, one from S and
the other from R commute. That is
Pr(S, R) = {(s,r) € S x R:sr=rs}

SR

This notion was introduced and studied in [7]. Note that Pr(R, R) is the commuting
probability of R, a notion introduced by MacHale [10]. In the last section, we show that
the relative non-commuting graphs of two relative Z-isoclinic pairs of rings are isomorphic
under some conditions.

For a graph G, we write V(G) and E(G) to denote the set of vertices and the set of
edges of G respectively. We write deg(v) to denote the degree of a vertex v, which is the
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number of edges incident on v. Let diam(G) and girth(G) be the diameter and girth of
a graph G respectively. Recall that diam(G) = max{d(z,y) : z,y € V(G)}, where d(x,y)
is the length of the shortest path from z to y; and girth(G) is the length of the shortest
cycle obtained in G. A graph G is called connected if there is a path between every pair of
vertices. A star graph is a tree on n vertices in which one vertex has degree n — 1 and the
others have degree 1. A bipartite graph is a graph whose vertex set can be partitioned
into two disjoint parts in such a way that the two end vertices of every edge lie in different
parts. A complete bipartite graph is a bipartite graph such that two vertices are adjacent
if and only if they lie in different parts. A complete graph is a graph in which every pair of
distinct vertices is adjacent. Throughout the paper R denotes a finite non-commutative
ring.

2. SOME PROPERTIES OF I'gp

Let S be asubring of aring R, r € Rand A C R. We write Cg(r) := {x € R: ar = rz},
Cs(r) := Cr(r)NnS and Cr(A) = {x € R: xa = axVa € A}. Note that Cg(r) and Cs(r)
are subrings of R. Also ﬂRC’R(r) := Z(R) is the center of R. We begin this section with

re

the following useful result.

Proposition 1. Let S be a non-commutative subring of a ring R. Then
(1) deg(r) = |R| — |Cr(r)| if r e V(I'sg) NS.
(2) deg(r) = |S| = |Cs(r)] if r € V(I's,r) N (R S).
(3) I's.r is connected.

Proof. The proofs of part (a) and (b) follow from the definition of I'gz. For part (c),
suppose I'g r has an isolated vertex, namely v. Then deg(v) = |R| — |Cg(v)| = 0 or |S| —
|Cs(v)] =0 forv e Sorve R\ S. Thus, in both cases v € Cg(S), a contradiction. [

In the following theorems we shall show that if G is a star graph or a complete bipartite
graph then G can not be realized by I'g i for any subring S of a ring R. Also, I'g r is not
an n-regular graph for any proper subring S of a ring R, where n is a square free odd
positive integer.

Theorem 2. Let S be a non-commutative subring of a ring R. Then I'sr is not a star
graph.

Proof. Suppose, I's i is a star graph, where S is a non-commutative subring of R. Then
all but one vertices of I's g have degree 1. Let v be a vertex of I'gz having degree 1.
Then, by Proposition 1, we have [R : Cg(v)] = |R|/(|R|—1) or [S : Cs(v)] = |S|/(|S]—1)
according as v € S or v € R\ S; which is absurd. Hence the result follows. O

Theorem 3. Let S be a proper non-commutative subring of a ring R. Then I's g is not
complete bipartite.

Proof. Let I's r be a complete bipartite graph. Then, there exist two disjoint subsets
Sy and Sy of V(I's g) such that |Si| + |S2| = |R| — |Cr(S)|. Therefore, SN S, = ¢ or
SNSy =¢. So, § C 9 or §CS;. Without loss of generality we may assume that
S C Sy. Then, for v € S; we have vs = sv for all s € S\ Cg(S). Thus, v € Cg(9), a
contradiction. Hence, the theorem follows. O]
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Theorem 4. Let S be a proper non-commutative subring of a ring R. Then I's g is not
an n-reqgular graph for any square free odd positive integer n.

Proof. Let I'g p be an n-regular graph. Suppose, n = pi1ps...pm, Where p;’s are distinct
odd primes. If v € V(I's.g) N S then, by Proposition 1, we have

n = deg(v) = [R| — |Cr(v)| = |Cr(v)[([R : Cr(v)] = 1).
Here, |Cgr(v)| # 1, as 0,v € Cg(v). Thus |[Cr(v)] = [[p and [R : Cgr(r)] — 1 =
Pi€Q
[T pj, where @ C {p1,p2,...,pm} = P. So, |[R| = [[w( I[ pj+1). Ifre R\S

P;EP\Q Pi€Q  pjEeP\Q
then, using similar argument, we have |S| = [[p( [[ p;j + 1), where T C P. So,
pi €T ijP\T
IT »( II p;j+1)divides [] p;+1, which is not possible. Hence, the theorem
pi€T—(TNQ)  p;eP\T PjEP\Q

follows. O

We conclude this section showing that a complete graph can not be realized by I's r
for a subring S of a ring R with unity.

Theorem 5. Let R be a ring with unity and S a subring of R. Then I's g is not complete.

Proof. Suppose that there exists a subring S of R with unity such that I'g r is complete.
Then, for any s € V(I's g) NS we have

deg(s) = [V(I'sg)| =1 = [R] — |Cr(S)| — 1.

By Proposition 1, we have |R| — |Cg(s)| = |R| — |Cr(S)| — 1. This gives |Cr(S)| =1
and |Cg(s)| = 2, which is not possible, since R is a ring with unity. Hence, the result
follows. 0

3. DIAMETER, GIRTH, DOMINATING SET AND CHROMATIC INDEX

In this section, we obtain diameter, girth, some dominating sets and chromatic index
of the graph I'g g.

Theorem 6. Let S be a non-commutative subring of a ring R. If Z(S) = {0} then
diam(I's g) = 2 and girth(I's ) = 3.

Proof. Suppose, v1 and vy are two vertices of I's g such that they are not adjacent. So,
there exist vertices s1, s, € S such that vis; # syv; and v9sy # sove. If vy is adjacent
to s; or vy is adjacent to so, then d(vy,vy) = 2. Suppose that both are not adjacent,
that is v1s2 = sov; and vys; = syve. Then s; + s9 is adjacent to vy and ve, which give
d(vi,vy) = 2. Therefore, diam(I's ) = 2.

In order to determine girth(I's z), suppose that v,s € V(I'sg) where s € S and v, s
are adjacent. So, there exist vy, vy € V(I's g) such that v and s are adjacent to vy and vy
respectively. If v, vy or s, v, are adjacent then {v, s, v2} or {v, s,v;} is a cycle of length 3 in
I's g. If both are not adjacent then vy + w5 is adjacent to v and s. Therefore, {v, s, v; + v}
is a cycle of length 3 in I'g . Hence, girth(I's g) = 3. O
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Let G be a graph and D a subset of V(G) such that every vertex not in D is adjacent
to at least one member of D then D is called the dominating set for G. It is obvious that
V(G) is a dominating set for G. Again, it is easy to see that for any non-commutative
subring S of R, the set S\ Z(5) is a dominating set for I's . Let A and B be two
subsets of R. We define A+ B := {a+b:a € Ab € B}. Then it can be seen that
(S + Cgr(S)) \ Cr(S) is a dominating set for I's g if S is a non-commutative subring of a
finite ring R. The following propositions also give dominating sets for I'g .

Proposition 7. Let S be a subring of a ring R and A C V(I's gr). Then A is a dominating
set for I's g if and only if Cr(A) C AU Cg(S).

Proof. Suppose, A is a dominating set for I's g and v € V(I's g) such that v € Cg(A). If
v ¢ A then there exists an element a € A such that va # av, a contradiction.
Conversely, we suppose that Cr(A) C AU Cg(S). Let v € V(I'gg) such that v ¢ A.
Suppose that va = av for all a € A. Then v € Cg(A) and so v € AUCE(S). Thus, v € A,
a contradiction. Hence, A is a dominating set for I'g g. O

Proposition 8. Let R be a ring with unity and S a subring of R. If L = {s1,82,...,8,}
is a generating set for S and L N Cr(S) = {Smt1,---,Sn} then K = {s1,89,...,5n} U
{s1 + Sm+1, 51 + Sm+2s .-+, S1 + Sp} is a dominating set for I's .

Proof. Clearly, K C V(I'sg). Let v € V(I's g) such that v ¢ L. If v € S then there exists
an element s = ;5159 ... 54", where 5; € Z, oyj; € N U{0} and s; € L such that
vs # sv. Therefore, vs; # s;v for some 1 < i < m and so, v is adjacent to s;.

If v € R\ S then there exists an element u = ;51 59%% ... 5,7, where v; € Z, ay; € N
U{0} and s; € L such that vu # wv. If vs; # s;v for some 1 < i < m then v is adjacent
to s;. Otherwise, vs; = s;v for all 1 < i < m. So, there exists an element s; for some
m+ 1 < [ < n such that vs; # s;v. Therefore, v is adjacent to s; + s;. Hence, the
proposition. 0

An edge coloring of a graph G is an assignment of “colors” to the edges of the graph so
that no two adjacent edges have the same color. The chromatic index of a graph denoted
by x'(G) and is defined as the minimum number of colours needed for a colouring of G.
Let A be the maximum vertex degree of G, then Vizing’s theorem [6] gives x'(G) =A
or A +1. Thus, Vizing’s theorem divides the graphs into two classes according to their
chromatic index. Graphs satisfying x'(G) =A are called graphs of class 1 and those with
X'(G) =A +1 are called graphs of class 2. Following theorem shows that I'g g is of class
2.

Theorem 9. Let R be a ring. Then the non-commuting graph I'r g is of class 2.

Proof. Clearly, A< |R| — |Z(R)| — 1. If X'(I's.g) =A then X' (I'sr) < |R| — |Z(R)| — 1,
a b

which is not true for the ring R = 0 0

ca,be Zz}. Hence, I'p g is class of 2. [

We conclude this section with the following conjecture.

Conjecture 10. Let S be a proper non-commutative subring of R. Then the relative
non-commuting graph I's g is of class 1.
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4. RELATIVE NON-COMMUTING GRAPHS AND Pr(S, R)

In this section, we give some connections between I's p and Pr(S, R), where S is a
subring of a finite ring R. We start with the following result.

Theorem 11. Let S be a subring of a ring R. Then the number of edges of I'g p is
[E(Ts.p)| = ISIIRI(L = Pr(S. R)) — (1 = Px(S)).

Proof. Let I = {(r1,72) € S X R : rry # ror1} and J = {(r1,r2) € R xS : rmry #
ror1}. Therefore, we have |I| = |S||R| — [{(r1,72) € S X R : riry = ror1}| = |S||R| —
|S||R| Pr(S,R) = |J] and so [I N J| = [{(a,b) € S xS :ab # ba}| = |S[* — |S|*Pr(S9).
Thus, the result follows from the fact that |E(Igg)| = 37U J|. O

The above theorem shows that lower or upper bounds for Pr(S) and Pr(S,R) will
give lower or upper bounds for |E(I'g g)| and vice-versa. More bounds for |E(I's g)| are
obtained in the next few results.

Proposition 12. Let S be a subring of a ring R. Then
1 1 1 1 1
IB(Ts) 2 5ISIIR| = 7ISP = {IZ(S)IRI = FISIICA(S)] + 71Z(S)IIS].

Proof. Let A=V (sg)NS and B =V (Tsg)N(R\S). Therefore, |[A| = |S| — |Z(5)]
and |B| = |R| — |S| — |Cr(S)| + |Z(5)]. So, we have

2E(Tsp)| = Y deg(v)=> deg(v)+ ) deg(v)

veV (s r) vEA veB
=D (BRI 1Cr(r)) + Y _(IS] - |Cs(r)
vEA veEB
[AlIR] |S11Bl
> |A||R| — —— — |B||S| — ——.
> (4R - A s - P
Thus, putting the values of |A| and |B|, we get the required result. O

We conclude this section with some consequences of Theorem 11.
Proposition 13. Let S be a non-commutative subring of a ring R and p the smallest
prime dividing |R|. Then
351

[E(Ts,p)l < ISR = =&

—p) = Z(R) N S|(IR] = p)

Proof. By [7, Theorem 2.5], we have

[Z(R) N S| | p(IS] = [Z(R) N S)
B |S1|B]

Now, using (4.1) and the fact that Pr(S) < 2 in Theorem 11 we get the required result. [

(4.1) Pr(S, R).

Proposition 14. Let S be a non-commutative subring of a ring R. Then
31817 | 3ISIIR|
16 8
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Proof. Using [7, Theorem 2.2], we have that Pr(S,R) < Pr(S) < 2. Therefore, 1 —

Pr(S,R) > 1 — Pr(S) > 2. Hence, putting these results in Theorem 11, we get the

required proposition. 0]

Proposition 15. Let S be a non-commutative subring of a ring R. If |Cr(S)| =1 then

R
9|R| Pr(S, R) — | S| Pr(S) # 2||?|| + gy 2RI 15]

Proof. Suppose there exists a finite ring R with non-commutative subring S such that
|Cr(S)| =1 and

R 4
2|R| Pr(S, R) — |S|Pr(S) = —2||?|| + m + 2|R| —|S].

Then the above equation, in view of Theorem 11, gives
|[E(Ls,r)| = |R] = |Cr(S)| =1 = |[V(T'sr)| — L.

This shows that there is a finite non-commutative ring R with non commutative subring
S such that I's g is a star graph, which is not possible (by Theorem 2). Hence, the
proposition follows. O

5. RELATIVE NON-COMMUTING GRAPH AND RELATIVE Z-ISOCLINISM

In 1940, Hall [9] introduced the notion of isoclinism between two groups. Following Hall,
Buckley et al. [5] introduced the concept of Z-isoclinism between two rings. Recently,
Dutta et al. [7] introduced the concept of relative Z-isoclinism between two pairs of rings.
For a subring S of R, [S,R| is the subgroup of (R,+) generated by all commutators
[s,7],s € S,r € R. Let S; and Sy be two subrings of the rings R; and R respectively.
Recall that a pair of rings (S, Ry) is said to be relative Z-isoclinic to a pair of rings

(Sa, Ry) if there exist additive group isomorphisms ¢ : = R}f)lmsl — Z(R}SOSQ such that

‘b(Z(R%msl) = Z(R%HSQ and 1 : [S1, Ry| — [S2, Ra| such that ¢([s1,r1]) = [s2, r2] whenever
(b(Sl + (Z(Rl) N Sl)) = S9 + (Z(RQ) N Sg) and gb(rl + (Z(Rl) N Sl>> =T+ (Z(RQ) N S2>
where s; € S, 89 € So,71 € Ry, 73 € Rs. Such pair of mappings (¢, 1) is called a relative
Z-isoclinism from (S, Ry) to (S2, R2). In this section, we have the following main result.

Theorem 16. Let S; and Sy be two subrings of the finite rings Ry and Ry respectively. Let
the pairs (S, R1) and (S2, Ry) are relative Z-isoclinic. Then I's, r, = Us, g, if |[Z(R1) N
Si| =|Z(Ry) N Ss| and |Z(Ry)| = |Z(R2)|.

Proof. Suppose (¢, 1) is a relative Z-isoclinism between (S, R;) and (Sg, Ry). If |Z(Ry)N
Sil = 1Z(Ry) N Sa| and |Z(Ry)| = | Z(Ry)| then |Si] =[Sl [ 57351 = 15751 1Z(B1) \ S| =
|Z(R2) \ S2| and |S; \ Z(Ry1)| = |S2 \ Z(R2)|. Now, by second 1somorphlsm theo-

rem (of groups), we have & ﬁgl(Rl) = 51;5%5‘1). Let {s1,82,...,58n} be a transversal for
% So, the set {s1, s2,...,8n} can be extended to a transversal for Z(R . Suppose,
{81,582, Sm, T"ms1,---,Tn} is & transversal for Zﬁ%l)' Similarly, we can find a transversal
{s},8h,..., s;n,

Thsts - T} for g such that {s},s5,..., s}, } is a transversal for SQ;(?;??) = 52022(1%2)'
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Let ¢ be defined as ¢(s; + Z(R1)) = s, + Z(Rs), ¢(r; + Z(R1)) = 1} + Z(Ry) for
1 <i<m,m+1 < j <nand let the one-to-one correspondence 6 : Z(R;) — Z(R3) maps
elements of S} to Sy. Therefore, |Cg, (S1)| = |Cr,(S2)|. Let us define a map o : Ry — R
such that a(s; +2) = s +0(2), a(rj +2) =7, +0(z) for 1 <i <m,m+1<j <n and
z € Z(Ry). Then « is a bijection. This gives that « is also a bijection from R;\ Cg, (S1) to
Ry \ Cg,(S2). Suppose u, v are adjacent in I's, g,. Then u € Sy or v € Sy, say u € S;. So,
[u, v] # 0, therefore [s; + z, 7+ 21] # 0, where u = s;+2,v = r+ 2z for some 2,2, € Z(Ry),
7 € {51,89,y SmsTmats -,y and 1 < i < m. Thus [s} + 6(z),7 + 0(z1)] # 0, where
0(z),0(z1) € Z(Ry) and so, a(u) and a(v) are adjacent. Hence, the theorem. O

We conclude the paper with the following consequence of Theorem 16.

Corollary 17. Let R be a ring with subrings S and T such that (S, R) is relative Z-
isoclinic to (T, R). Then I's = Uy if |[Z(R)NS| = |Z(R)NT)|.
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