BRICKS OVER PREPROJECTIVE ALGEBRAS

SOTA ASAI (BH HK)

ABSTRACT. The representation theory of preprojective algebras is strongly related to
the corresponding Coxeter groups. For a Dynkin diagram A, there is a bijection S from
the Coxeter group of type A to the set of semibricks in the module category of the
preprojective algebra of type A. In this paper, we give a combinatorial way to construct
the semibrick S(w) in the case A = A,,.
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NOTATION

Throughout this paper, K is a field and A is a finite-dimensional K-algebra. The cat-
egory of finite-dimensional left A-modules is denoted by mod A. Unless otherwise stated,
algebras and modules are finite-dimensional, and subcategories are full subcategories.

1. LATTICES

In this paper, we deal with several lattices. We first recall the definition of lattices and
join-irreducible elements.

Definition 1. Let (L, <) be a poset, and z,y € L.

(1) An element z € L is called the meet of  and y if z is the maximum element
satisfying z < z and z < y. In this case, we define x Ay := z.

(2) An element z € L is called the join of x and y if z is the minimum element
satisfying z > x and z > y. In this case, we define z V y := z.

(3) The poset (L, <) is called a lattice if the meet x Ay and the join x V y are defined
for any x,y € L.

(4) The poset (L, <) is called a finite lattice if (L, <) is a finite poset and a lattice.

Definition 2. Let (L, <) a lattice, and = € L. Then, x is said to be join-irreducible if
x # min L and there exist no y, z € L satisfying x =y V z, y # x, 2 # x. We write j-irr L
for the set of join-irreducible elements in L.

The detailed version of this paper will be submitted for publication elsewhere.
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2. BRICKS AND TORSION-FREE CLASSES

We recall some basic properties of bricks and semibricks in the point of view of 7-tilting
theory from [2].

A full subcategory F C mod A is called a torsion-free class if F is closed under submod-
ules and extensions. We define torf A as the set of torsion-free classes in mod A. Then,
torf A is a poset with inclusion relations C. Moreover, the poset (torf A, C) is a lattice.

In the rest, we assume that torf A is a finite set. This is equivalent to that A is 7-tilting
finite [6].

Now, we define bricks and semibricks as follows.

Definition 3. Let S be an A-module in mod A.

(1) The module S is called a brick if the endomorphism algebra End4(.S) is a division
K-algebra. We write brick A for the set of bricks in mod A.

(2) The module S is called a semibrick if S = @, S; with each S; € brick A and
Hom4(S;, S;) =0 (i # j). We write sbrick A for the set of semibricks in mod A.

For a semibrick S, we define F(S) as the smallest torsion-free class containing S. Then,
there are the following bijections.

Proposition 4. [1, 2] The operation F induces bijections sbrick A — torf A and brick A —
j-irr(torf A).

3. CANONICAL JOIN REPRESENTATIONS

The result in the previous section leads to the following question:

let S € sbrick A and S = @, S; be a decomposition into bricks. Then,
how are the torsion-free class F(S) and the join-irreducible torsion-free

classes F(S1),...,F(S,,) related?

The answer is given by the notion of canonical join representations introduced by Read-
ing [10].

Definition 5. Let L be a lattice, x € L, and U C j-irr L. Then, U is called a canonical
join representation of z if the following conditions hold.

(a) The join \/ ., u coincides with w.

(b) For any proper subset U’ C U, the join \/ .., u' does not coincide with w.

(c) Let V' C j-irr L satisfy the conditions (a) and (b). Then, for any u € U, there
exists some v € V such that v < wv.

For an element z € L, if x admits a canonical join representation, then it is unique.
The existence of a canonical join representation is not guaranteed, but the lattice torf A
always admits a canonical join representation.

Theorem 6. Let S € sbrick A and S = @)", S; be a decomposition into bricks. Then
F(S) = V- F(S:) is the canonical join representation.

We remark that this theorem is generalized in [3, Proposition 3.2.5].
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4. COXETER GROUPS AND PREPROJECTIVE ALGEBRAS

Now, we start to deal with Coxeter groups and preprojective algebras. We define the
following symbols.
e Let A be a simply-laced Dynkin diagram with the vertices set A,.
e Define W as the Coxeter group associated to A with its canonical generators s;
(i € Ay).
e We consider the right weak order < on W. Then (W, <) is a lattice [4].
e Define II as the preprojective K-algebra associated to A.
e For i € Ay, we set e¢; as the idempotent for the vertex 7, and I; as the ideal
Under this preparation, we can define the ideal I(w) for each w € W, which was firstly
considered in [8, 5].

Definition 7. Let w € W and w = s;,s;, - -+ s;, be a reduced expression. Then, we set

I(w) =1 I;,---I;, C II, and J(w) := II/I(w).

We remark that there may be several reduced expressions for an element w € W, but
that I(w) does not depend on the choice of a reduced expression.
Mizuno gave the following remarkable bijection, which motivated our study.

Proposition 8. [9, Theorem 2.30] There ezists an isomorphism (W, <) — (torfII, C) of
finite lattices given by w — Sub J(w).

5. COXETER GROUPS AND SEMIBRICKS

By using Propositions 4 and 8 and the results in [1, 2], we obtain the following bijections.

Proposition 9. There exists a bijection S: W — sbrick IT given by w — s0Cgndy (s (w)) J (W).
Moreover, it is restricted to a bijection S': j-irr W — brick I1.

Combining this and Theorem 6, we immediately get the following relationship between
the Coxeter group and the semibricks.

Corollary 10. Let S(w) € sbrickIl and take wyq,...,w, € jirr W such that S(w) =
B, S(w;). Then, w=\/", w; is the canonical join representation.
Therefore, we can determine the semibrick S(w) by the following two steps.

(a) We explicitly give the canonical join representation w = \/;*, w; of each w € W.
(b) We calculate the brick S(w;) for each i.

6. CANONICAL JOIN REPRESENTATIONS IN COXETER GROUPS

The aim of this section is to give the canonical join representation of w € W in the
case A,,.

In the rest, let A := A,. We can identify W with the symmetric group &, 1 by
si— (i i+ 1). We express w € W in the form (w(1),w(2),...,w(n +1)).

We define some combinatorial notions.

Definition 11. Let w € W, and a,b € {1,2,...,n+ 1}.
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(1) A pair (a,b) is called an inversion of w if w™'(a) < w™'(b) and a > b. We write
inv(w) for the set of inversions of w.

(2) A pair (a,b) is called a cover reflection of w if w™'(a) = w™(b) —1 and a > b. We
write cov(w) for the set of cover reflections of w.

It is well-known that inv(w) C inv(w’) is equivalent to w < w'.
The join-irreducible elements in W are characterized as follows.

Lemma 12. Let w € W. Then, w is join-irreducible if and only if there uniquely exists
l € [1,n] such that w(l) > w(l+1).

In the case above, we say that w is an join-irreducible element of type [, and we set
R(w) := w([l + 1,n + 1]). The correspondence w +— R(w) is an injection.

Reading obtained the following characterization of canonical join representations in the
Coxeter group. This holds for any Coxeter groups of Dynkin type.

Proposition 13. [10, Theorem 10-3.9] Let w € W.
(1) For any t € cov(w), there exists a minimum element wy in the set {v € W | v <
w, t €inv(v)}.
(2) The canonical join representation of w is w = \/ cqoy () We-

Thus, the semibrick S(w) has exactly # cov(w) bricks as direct summands.

Let ¢t € cov(w). We can find w; by the following observation: if v € W satisfies v < w
and cov(w) = {t}, then v = wy.

In the case that A = A,,, the join-irreducible element w; is given as follows. This
coincides with [10, Theorem 10-5.6].

Theorem 14. Let w € W, t = (a,b) € cov(w). Then,

Rw) ={byu{iehb+1,a—1]|w ) <w (@)} Ula+1,n+1].
Example 15. Let n := 8, and w := (4,9,3,6,2,8,5,1,7). Then, the set cov(w) is
{(9,3),(6,2),(8,5),(5,1)}, and

wes = (1,2,4,9,3,5,6,7,8), wee = (1,3,4,6,2,5,7,8,9),
wes = (1,2,3,4,6,8,5,7,9), wsy = (2,3,4,5,1,6,7,8,9).

7. DESCRIPTION OF BRICKS

In this section, we explicitly write down the structure of the brick S(w) for w € j-irr W
in the case A = A,,. By using the result of [7] on J(w), we have the following description
of S(w).

Theorem 16. Let w € j-irr W. Then the brick S(w) is given as follows.

Take the unique (a,b) € cov(w), and set V := [a,b— 1].

The brick S(w) has a K-basis ((i));cy with (i) € e;S(w).

Place a symbol i for each i € V', which denotes the one-dimensional vector subspace
K(i) C S(w).

For i € |a,b — 2|, write an arrow i — i+ 1 ifi+1 € R(w) and i + 1 — i if
i+1¢ R(w)
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Example 17. Let n := 8, and w := (4,9,3,6,2,8,5,1,7) as in Example 15. Then, the
semibrick S(w) is the direct sum of the following bricks:

S(w,s) =5(1,2,4,9,3,5,6,7,8) = 3+4—-5—-6—>7—38,
S(w(ﬁg)) S(1,3,4,6,2,5,7,8,9) = 2+3+4—5 ,
S(w )25(123468579): 5+—6—>7 ,
S(wsay) =5(2,3,4,5,1,6,7,8,9) =123+ 4
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