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Abstract. The representation theory of preprojective algebras is strongly related to
the corresponding Coxeter groups. For a Dynkin diagram ∆, there is a bijection S from
the Coxeter group of type ∆ to the set of semibricks in the module category of the
preprojective algebra of type ∆. In this paper, we give a combinatorial way to construct
the semibrick S(w) in the case ∆ = An.
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Notation

Throughout this paper, K is a field and A is a finite-dimensional K-algebra. The cat-
egory of finite-dimensional left A-modules is denoted by modA. Unless otherwise stated,
algebras and modules are finite-dimensional, and subcategories are full subcategories.

1. Lattices

In this paper, we deal with several lattices. We first recall the definition of lattices and
join-irreducible elements.

Definition 1. Let (L,≤) be a poset, and x, y ∈ L.

(1) An element z ∈ L is called the meet of x and y if z is the maximum element
satisfying z ≤ x and z ≤ y. In this case, we define x ∧ y := z.

(2) An element z ∈ L is called the join of x and y if z is the minimum element
satisfying z ≥ x and z ≥ y. In this case, we define x ∨ y := z.

(3) The poset (L,≤) is called a lattice if the meet x∧ y and the join x∨ y are defined
for any x, y ∈ L.

(4) The poset (L,≤) is called a finite lattice if (L,≤) is a finite poset and a lattice.

Definition 2. Let (L,≤) a lattice, and x ∈ L. Then, x is said to be join-irreducible if
x ̸= minL and there exist no y, z ∈ L satisfying x = y ∨ z, y ̸= x, z ̸= x. We write j-irrL
for the set of join-irreducible elements in L.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Bricks and torsion-free classes

We recall some basic properties of bricks and semibricks in the point of view of τ -tilting
theory from [2].

A full subcategory F ⊂ modA is called a torsion-free class if F is closed under submod-
ules and extensions. We define torf A as the set of torsion-free classes in modA. Then,
torf A is a poset with inclusion relations ⊂. Moreover, the poset (torf A,⊂) is a lattice.

In the rest, we assume that torf A is a finite set. This is equivalent to that A is τ -tilting
finite [6].

Now, we define bricks and semibricks as follows.

Definition 3. Let S be an A-module in modA.

(1) The module S is called a brick if the endomorphism algebra EndA(S) is a division
K-algebra. We write brickA for the set of bricks in modA.

(2) The module S is called a semibrick if S =
⊕m

i=1 Si with each Si ∈ brickA and
HomA(Si, Sj) = 0 (i ̸= j). We write sbrickA for the set of semibricks in modA.

For a semibrick S, we define F(S) as the smallest torsion-free class containing S. Then,
there are the following bijections.

Proposition 4. [1, 2] The operation F induces bijections sbrickA→ torf A and brickA→
j-irr(torf A).

3. Canonical join representations

The result in the previous section leads to the following question:

let S ∈ sbrickA and S =
⊕m

i=1 Si be a decomposition into bricks. Then,
how are the torsion-free class F(S) and the join-irreducible torsion-free
classes F(S1), . . . , F(Sm) related?

The answer is given by the notion of canonical join representations introduced by Read-
ing [10].

Definition 5. Let L be a lattice, x ∈ L, and U ⊂ j-irrL. Then, U is called a canonical
join representation of x if the following conditions hold.

(a) The join
∨

u∈U u coincides with x.
(b) For any proper subset U ′ ⊊ U , the join

∨
u′∈U ′ u′ does not coincide with x.

(c) Let V ⊂ j-irrL satisfy the conditions (a) and (b). Then, for any u ∈ U , there
exists some v ∈ V such that u ≤ v.

For an element x ∈ L, if x admits a canonical join representation, then it is unique.
The existence of a canonical join representation is not guaranteed, but the lattice torf A
always admits a canonical join representation.

Theorem 6. Let S ∈ sbrickA and S =
⊕m

i=1 Si be a decomposition into bricks. Then
F(S) =

∨m
i=1 F(Si) is the canonical join representation.

We remark that this theorem is generalized in [3, Proposition 3.2.5].
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4. Coxeter groups and preprojective algebras

Now, we start to deal with Coxeter groups and preprojective algebras. We define the
following symbols.

• Let ∆ be a simply-laced Dynkin diagram with the vertices set ∆0.
• Define W as the Coxeter group associated to ∆ with its canonical generators si
(i ∈ ∆0).
• We consider the right weak order ≤ on W . Then (W,≤) is a lattice [4].
• Define Π as the preprojective K-algebra associated to ∆.
• For i ∈ ∆0, we set ei as the idempotent for the vertex i, and Ii as the ideal
Π(1− ei)Π.

Under this preparation, we can define the ideal I(w) for each w ∈ W , which was firstly
considered in [8, 5].

Definition 7. Let w ∈ W and w = si1si2 · · · sil be a reduced expression. Then, we set
I(w) := Ii1Ii2 · · · Iil ⊂ Π, and J(w) := Π/I(w).

We remark that there may be several reduced expressions for an element w ∈ W , but
that I(w) does not depend on the choice of a reduced expression.

Mizuno gave the following remarkable bijection, which motivated our study.

Proposition 8. [9, Theorem 2.30] There exists an isomorphism (W,≤)→ (torf Π,⊂) of
finite lattices given by w 7→ Sub J(w).

5. Coxeter groups and semibricks

By using Propositions 4 and 8 and the results in [1, 2], we obtain the following bijections.

Proposition 9. There exists a bijection S : W → sbrickΠ given by w 7→ socEndΠ(J(w)) J(w).
Moreover, it is restricted to a bijection S : j-irrW → brickΠ.

Combining this and Theorem 6, we immediately get the following relationship between
the Coxeter group and the semibricks.

Corollary 10. Let S(w) ∈ sbrickΠ and take w1, . . . , wm ∈ j-irrW such that S(w) =⊕m
i=1 S(wi). Then, w =

∨m
i=1wi is the canonical join representation.

Therefore, we can determine the semibrick S(w) by the following two steps.

(a) We explicitly give the canonical join representation w =
∨m

i=1wi of each w ∈ W .
(b) We calculate the brick S(wi) for each i.

6. Canonical join representations in Coxeter groups

The aim of this section is to give the canonical join representation of w ∈ W in the
case An.

In the rest, let ∆ := An. We can identify W with the symmetric group Sn+1 by
si 7→ (i i+ 1). We express w ∈ W in the form (w(1), w(2), . . . , w(n+ 1)).

We define some combinatorial notions.

Definition 11. Let w ∈ W , and a, b ∈ {1, 2, . . . , n+ 1}.
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(1) A pair (a, b) is called an inversion of w if w−1(a) < w−1(b) and a > b. We write
inv(w) for the set of inversions of w.

(2) A pair (a, b) is called a cover reflection of w if w−1(a) = w−1(b)−1 and a > b. We
write cov(w) for the set of cover reflections of w.

It is well-known that inv(w) ⊂ inv(w′) is equivalent to w ≤ w′.
The join-irreducible elements in W are characterized as follows.

Lemma 12. Let w ∈ W . Then, w is join-irreducible if and only if there uniquely exists
l ∈ [1, n] such that w(l) > w(l + 1).

In the case above, we say that w is an join-irreducible element of type l, and we set
R(w) := w([l + 1, n+ 1]). The correspondence w 7→ R(w) is an injection.

Reading obtained the following characterization of canonical join representations in the
Coxeter group. This holds for any Coxeter groups of Dynkin type.

Proposition 13. [10, Theorem 10-3.9] Let w ∈ W .

(1) For any t ∈ cov(w), there exists a minimum element wt in the set {v ∈ W | v ≤
w, t ∈ inv(v)}.

(2) The canonical join representation of w is w =
∨

t∈cov(w)wt.

Thus, the semibrick S(w) has exactly # cov(w) bricks as direct summands.
Let t ∈ cov(w). We can find wt by the following observation: if v ∈ W satisfies v ≤ w

and cov(w) = {t}, then v = wt.
In the case that ∆ = An, the join-irreducible element wt is given as follows. This

coincides with [10, Theorem 10-5.6].

Theorem 14. Let w ∈ W , t = (a, b) ∈ cov(w). Then,

R(wt) = {b} ∪ {i ∈ [b+ 1, a− 1] | w−1(b) < w−1(i)} ∪ [a+ 1, n+ 1].

Example 15. Let n := 8, and w := (4, 9, 3, 6, 2, 8, 5, 1, 7). Then, the set cov(w) is
{(9, 3), (6, 2), (8, 5), (5, 1)}, and

w(9,3) = (1, 2, 4, 9, 3, 5, 6, 7, 8), w(6,2) = (1, 3, 4, 6, 2, 5, 7, 8, 9),

w(8,5) = (1, 2, 3, 4, 6, 8, 5, 7, 9), w(5,1) = (2, 3, 4, 5, 1, 6, 7, 8, 9).

7. Description of bricks

In this section, we explicitly write down the structure of the brick S(w) for w ∈ j-irrW
in the case ∆ = An. By using the result of [7] on J(w), we have the following description
of S(w).

Theorem 16. Let w ∈ j-irrW . Then the brick S(w) is given as follows.

• Take the unique (a, b) ∈ cov(w), and set V := [a, b− 1].
• The brick S(w) has a K-basis (⟨i⟩)i∈V with ⟨i⟩ ∈ eiS(w).
• Place a symbol i for each i ∈ V , which denotes the one-dimensional vector subspace
K⟨i⟩ ⊂ S(w).
• For i ∈ [a, b − 2], write an arrow i → i + 1 if i + 1 ∈ R(w) and i + 1 → i if
i+ 1 /∈ R(w)
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Example 17. Let n := 8, and w := (4, 9, 3, 6, 2, 8, 5, 1, 7) as in Example 15. Then, the
semibrick S(w) is the direct sum of the following bricks:

S(w(9,3)) = S(1, 2, 4, 9, 3, 5, 6, 7, 8) = 3← 4→ 5→ 6→ 7→ 8,

S(w(6,2)) = S(1, 3, 4, 6, 2, 5, 7, 8, 9) = 2← 3← 4→ 5 ,

S(w(8,5)) = S(1, 2, 3, 4, 6, 8, 5, 7, 9) = 5← 6→ 7 ,

S(w(5,1)) = S(2, 3, 4, 5, 1, 6, 7, 8, 9) = 1← 2← 3← 4 .
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