HOW TO CAPTURE (-STRUCTURES BY SILTING THEORY
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ABSTRACT. In this note, we study a relationship between silting objects and ¢-structures.
We introduce the notion of ST-pairs of thick subcategories of a given triangulated cate-
gory, a prototypical example of which is the pair of the bounded homotopy category and
the bounded derived category of a finite-dimensional algebra. For an ST-pair (C, D), we
construct an injective map from silting objects in C to bounded t-structures on D, and
show that the map is bijective if and only if C is silting-discrete. Moreover, using cluster
tilting theory, we give a new class of silting-discrete triangulated categories.

This is based on a joint work with Dong Yang [3].

Throughout this note, K is a field and T is a K-linear Hom-finite Krull-Schmidt tri-
angulated category with shift functor [1].

Our aim of this note is to give a construction of bounded ¢-structures by silting objects.
First we recall the notion of ¢-structures, which was introduced by Beilinson—Bernstein—
Deligne [§].

Definition 1. A t-structure on T is a pair (T=?, T=2Y) of strictly full subcategories of T
such that

(1) T=1 > T=% and T2° D> T=1

(2) Homt(X,Y)=0forall X e TS and Y € T=},

(3) for each Z € T, there is a triangle X — Z — Y — X[1] in T with X € T=" and
Y e T=2L

Here, for any integer n, let T=" = T<0[—n| and T=" = T=9[—n)].

Let (T<Y, T=2%) be a t-structure on T. Then the heart T := T=0 N T2 is an abelian
category. We call (T=0 T=Y%) a bounded t-structure if

T=JT =T

neL nez

or equivalently, T = thick T°. We denote by t-stryy T the set of bounded t-structures on T.
We give an example of bounded ¢-structures.

Example 2. Let A be a finite-dimensional algebra and D := D”(modA) the bounded
derived category. We define two full subcategories as follows:

D=:={X €D | H"X =0 for all integers n > 0},
D=:={X €D | H"X =0 for all integers n < 0}.
Then it is well-known that (D=°,D=Y) is a bounded ¢-structure on D.

The detailed version of this note will be submitted for publication elsewhere.
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Next we recall the definition of silting objects, which was introduced by Keller—Vossieck
[17]. For details, we refer to [5].

Definition 3. An object M of T is said to be silting if Hom (M, M[n]) = 0 for all integers
n > 0 and T = thick M. We denote by silt T the set of isomorphism classes of basic silting
objects of T.

We give a typical example of a silting object.

Example 4. Let A be a finite-dimensional algebra. Then A is a silting object of the
bounded homotopy category KP(projA).

We introduce the notion of ST-pairs, which plays a central role in this note. For an
object M of T, we define full subcategories of T as follows:
T3 = {X € T | Homr(M, X[n]) = 0 for all integers n > 0},
T7 = {X € T | Homr(M, X[n]) = 0 for all integers n < 0},
T =T3/ NT5/.
Definition 5. Let C and D be thick subcategories of T. The pair (C,D) is called an
ST-pair inside T if there exists a silting object M of C such that
(ST1) (T3, T3)) is a t-structure on T,
(ST2) T3/ €D,
(ST3) D = thickTY,.
When there is a need to emphasise the silting object M, we call the triple (C,D, M) an
ST-triple.
The following two examples are our motivating examples.
Example 6. Let A be a finite-dimensional algebra and T := D”(modA). Then we have
T ={X € T| H"X =0 for all integers n > 0},
T ={X € T| H"X = 0 for all integers n < 0}.
We obtain that A is a silting object of C := KP(projA) and (T3%, T3°) is a (bounded)
t-structure on T. Thus (C = K"(projA),D := T = D*(modA)) is an ST-pair inside T.
Example 7. Let ' be a dg algebra satisfying the following conditions:

(1) H™(I') = 0 for each integer n > 0,

(2) H°(T) is finite-dimensional,

(3) Da(T") C per(I'), where per(I') is the perfect derived category of I' and Dgy(I")
is the full subcategory of the derived category D(I') consisting of dg I'-modules
whose total cohomology is finite-dimensional.

Let T := per(T'). Then T is Hom-finite Krull-Schmidt by [14, Proposition 2.5], (T5°, TZ")
is a t-structure on T and TZ? C thick T (see [7, Proposition 2.7] and [14, Propositions 2.5

and 2.1(c)]). Since I is a non-positive dg algebra, I' is a silting object of T. Moreover, we
have Dg(T) = thickT%. Thus (C:= T = per(T'),D := D(I")) is an ST-pair inside T.
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Fix an ST-pair (C,D). For a silting object M of C, we define full subcategories of D as
follows:
D3 := T3/ ND = {X € D | Hom7(M, X[n]) = 0 for all integers n > 0},
Dy =T3/ ND=T3/,
DY, := D3, ND7,.
The following proposition implies that the conditions (ST1-3) are satisfied for all silting

objects of C, which allows us to define a well-defined map from silting objects in C to
bounded t-structures on D.

Proposition 8. Let (C,D, M) be an ST-triple and let N be an arbitrary silting object of
C. Then the following statements hold.

(1) (C,D,N) is an ST-triple.

(2) T ~ mod Endt (V).

(3) (DY, DXY) is a bounded t-structure on D and D%, = T%,.

The following theorem is one of our main results in this note.

Theorem 9. Let (C,D) be an ST-pair. Then there is an injective map
v siltC — t-strbdD

given by M +— (D37, D77).

In the following, we give a characterisation of that W is bijective from the viewpoint
of silting theory. For objects M, N of T, we write M > N if Homt(M, N[n]) = 0 for all
positive integers n. Then the relation > gives a partial order on silt T by [5, Theorem
2.11]. For a basic silting object M and a positive integer n, let

ny-silt T:= {N € siltT| M > N > M[n —1]}.

We recall the notion of silting-discrete triangulated categories, which plays an important
role in this note.

Definition 10. A triangulated category T is said to be silting-discrete if, for any basic
silting object M, the set n,,-silt T is finite for any positive integer n.

By [4, Proposition 3.8], T is silting-discrete if and only if, for any fixed basic silting
object M of T, the set ny,-silt T is finite for any positive integer n. Moreover, if T is
silting-discrete, then we can obtain all basic silting objects in T from any fixed basic
silting object by a finite sequence of mutations (see [4, Corollary 3.9]). By a result of [6],
we have a criterion for silting-discreteness.

Lemma 11 ([6, Theorem 2.4]). A triangulated category T is silting-discrete if and only
if the set 25, -silt T is finite for any basic silting object M of T.

Note that 2,,-silt T corresponds bijectively to the set of isomorphism classes of basic
support 7-tilting Endy (M )-modules (see [12] and [2]).
We collect some examples of silting-discrete triangulated categories.
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Example 12. Assume that K is algebraically closed. The bounded homotopy category
KP(projA) is silting-discrete if A is one of the following finite-dimensional K-algebras:

(1) local algebras (see [5, Theorem 2.26]),

(2) representation-finite hereditary algebras (see [4, Example 3.7]),

(3) derived-discrete algebras of finite global dimension (see [9, Proposition 6.12]),

(4) representation-finite symmetric algebras (see [4, Theorem 5.6)),

(5) Brauer graph algebras whose Brauer graph contains at most one cycle of odd
length and no cycle of even length (see [1, Theorem 6.7]).

We have the following theorem which is a main result of this note.

Theorem 13. Let (C,D) be an ST-pair inside T. Then the following statements are
equivalent.

(1) The map ¥ : siltC — t-stryyD is bijective.
(2) C is silting-discrete.
(3) The heart of every bounded t-structure on D has a projective generator.

In the rest of this note, we give examples of silting-discrete triangulated categories by
cluster tilting theory. We recall the notion of Calabi-Yau pairs. Fix an integer d > 1.

Definition 14. An ST-pair (C,D) inside C is called a (d + 1)-Calabi—Yau pair if there
exists a bifunctorial isomorphism for any X € D and Y € C:

D Homc(X,Y) ~ Home(Y, X[d + 1)).

If M is a silting object of C, then (C,D, M) is a (d+ 1)-Calabi—Yau triple in the sense of
[13, Section 5.1]. Note that, for silting objects M and N, (C,D, M) is a (d+1)-Calabi-Yau
triple if and only if (C,D, N) is a (d 4+ 1)-Calabi-Yau triple.

Fix a (d + 1)-Calabi—Yau pair (C,D). Consider the triangle quotient

U:=C/D,

which is called the cluster category. Let m : C — U be the canonical projection functor.
We call T' € U a d-cluster tilting object if

add7 = {X € U | Homy(X,Ti]) =0for 1 <i<d—1}
={X eU| Homy(7, X[i]) =0for 1 <i<d-—1}.

Note that, if d = 1, then we have add7" = U. We denote by d-ctilt U the set of isomorphism
classes of basic d-cluster tilting objects of U. The following proposition is a basic result
for Calabi-Yau triples.

Proposition 15 ([13, Theorem 5.8 and Corollary 5.12]). For a (d+ 1)-Calabi-Yau triple
(C,D, M), the following statements hold.

(1) The category U is a d-Calabi—Yau triangulated category.
(2) The functor m induces an injection

dpy -silt C — d-ctilt U,
which is a bijection if d =1 or d = 2.
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Now we give a criterion for C being silting-discrete in terms of the cluster category U
as follows.

Theorem 16. For a (d + 1)-Calabi-Yau pair (C,D), the following statements hold.

(1) Assume d > 2. If d-ctilt U is a finite set, then C is silting-discrete. The converse
holds true if d = 2.

(2) Assume that d = 1 or 2 and let N be a basic silting object of C. Then C is
silting-discrete if and only if 2 -silt C is a finite set.

As an application of Theorem 16, we show that

e the perfect derived category of a derived preprojective algebra associated with a
quiver is silting-discrete if and only if the quiver is Dynkin,

e the perfect derived category of the complete Ginzburg dg algebra associated with
a quiver with a nondegenerate potential is silting-discrete if and only if the quiver
is mutation equivalent to a Dynkin quiver.

Derived preprojective algebras. Let () be a finite quiver and d > 0 an integer. Define
a graded quiver () as follows: () has the same vertices as () and three types of arrows

e the arrows of @), in degree 0,

e o : j — ¢ in degree —d + 1, for each arrow « : i — j of @,

e t; : i — 1 in degree —d, for each vertex ¢ of ().
The derived (d + 1)-preprojective algebra I' := I'q;1(Q) is the dg algebra (KQ,d), where
K@ is the graded path algebra of () and d is the unique K-linear differential which satisfies
the graded Leibniz rule

d(ab) = d(a)b+ (—1)Pad(b),

where a is homogeneous of degree p, and which takes the following values

e d(e;) = 0 for any vertex i of @), where ¢; is the trivial path at 1,

e d(a) = 0 for any arrow « of @,

e d(a*) =0 for any arrow a* of @,

o d(t;) =e; ) (aa* —a*a)e; for any vertex ¢ of (), where a runs over all arrows of

Q.
Note that if d = 1, then H°(T) is the preprojective algebra associated with @, and if
d > 2, then HY(T') is the path algebra of Q.
Since I is concentrated in non-positive degrees, I' is a silting object of per(I"). Moreover,

by [15, Theorem 6.3] and [16, Lemma 4.1], we have Dy (I') C per(I') and there is a
functorial isomorphism for X € Dg(I') and Y € D(I)

DHom(X,Y) ~ Hom(Y, X[d + 1]),
where D := Homg(—, K).

The following lemma gives an example of ST-pairs.

Lemma 17. Let Q) be a finite quiver and I' = ['y11(Q). Then the following conditions
are equivalent:

(1) per(I') is Hom-finite and Krull-Schmidt,
(2) HYT) is finite-dimensional,
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(3) d=1 and Q is Dynkin, or d > 2 and Q) has no oriented cycles.

If these conditions are satisfied, then (per(I'), Dg(T"), ') is an ST-triple inside per(I"), and
moreover, a (d 4+ 1)-Calabi—Yau triple.

Now we apply Theorem 16 to perfect derived categories of derived preprojective alge-
bras.

Corollary 18. Let Q) be a finite quiver and I' = I'y11(Q). Assume that K is algebraically
closed and HO(T') is finite-dimensional. Then per(T') is silting-discrete if and only if Q is
Dynkin.

Complete Ginzburg dg algebras. We refer to [10] for the definition and properties of
quiver mutation and mutation of quivers with potentiaAl.

Let @ be a finite quiver and W a potential. Let I' := I'(Q, W) be the complete Ginzburg
dg algebra associated with the quiver with potential (Q, W), see [11, 18]. The algebra
HOT is known as the Jacobian algebra. We say that (Q, W) is Jacobi-finite if the Jacobian
algebra is finite-dimensional.

By definition, I' is concentrated in non-positive degrees and I is a silting object of
per(I'). By [18, Theorem A.16 and A.17], we obtain that (Q,W) is Jacobi-finite if and
only if (per(I'), Du(T"),T') is a 3-Calabi—Yau triple. Now we apply Theorem 16 to perfect
derived categories of complete Ginzburg dg algebras.

Corollary 19. Let (Q,W) be a Jacobi-finite quiver with potential and I' := f(Q, w).
Assume that K is algebraically closed and W is nondegenerate (see [10]). Then per(I") is
silting-discrete if and only if Q) is related to a Dynkin quiver by a finite sequence of quiver
mutations.
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