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In 1840s, Hamilton discovered quaternions and Kelly, Graves independently
discovered octonions. These numbers are defined over real numbers and
contain complex numbers. Through Frobenius, Wedderburn, these
numbers have been studied by many mathematicians. We may say the
roots of our ring and representation theory began with these numbers.
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In oder to define these numbers for any ring R, we consider free right
R-modules:

C(R) = eR ® e1R,
H(R) =egRPetR® R ® 3R,
OR)=eR®etR®--- @ eR.

We define rej = ejr for Vr € R,Ve; and multiplication for {e;}; by the
following Cayley-Graves multiplication table:

X € e € e3 ey €5 € ez
€ | & €& € €3 € 6 € €
el | &1 -6 €3 -6 65 -6 -€ 6
€ | & -6 -6 & €6 € -6 -6
€3 | €3 € -€ - € -6 6 -&
€4 | &4 -6 -6 -6 -€ € € €3
€ | & €4 -€7 €& -€1 -6 -€3 €
€ | 6 € €& -6 -€ €3 -6 -€
€7 | &7 -6 6 €& -€3 -6 € -€
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Then C(R) and H(R) are rings, and O(R) is a non-associative ring. We
call C(R) a complex ring, H(R) a quaternion ring and O(R) an octonion
ring. For C(R) and H(R), we put 1 = ey, i = e1,j = €2, k = e3. Then
multiplication for {/,j, k} are usual forms:

2=2=kK=
=k, jk=1i, ki=j, ji=—k, kj =—i, ik=—j.

]

In order to study H(H(R)), we use {1,],k} instead of {/,j, k}. Namely,

H(R) = R + iR + jR + kR,
H(H(R)) = H(R) + iH(R) + jH(R) + kH(R).
(R)

Similarly, for C(H(R)), C(C(R)), H(C(R)), we use 1, J, k.
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In view of progress of quaternion rings, generalized quaternion rings were
introduced for commutative fields and these rings have been extensively
studied. For later use, we introduce generalized quaternion rings over any
ring R.

Let R be a ring and let a, b be non-zero elements of the center of R.
For a free right R-module M = R® iR & jR ® kR, we define

ri=ir, rj=jr, rk =kr YreR
and multiplication for {i,j, k} as follows:
i?=a, j2=b, ij=—ji = k.
Then we can see the following:

k> = —ab, ik = —ki = ja, jk = —kj = —ib.

By this multiplication, M is a ring. We denote M by

(%)
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For a commutative field F, (a,’_-b) is well studied as number theory. In our
talk, for a division ring D, we show certain results on (abb), from which we

know the difference between (a,’:b) and (%b). For (a;:b), three books below
are nice references.

[1] T.Y. Lam, The Algebraic Theory of Quadratic Forms, Reading:
Addison Wesley-Benjamin (1973).

[2] R. S. Pierce, Associative Algebras, Springer-Verlag, New York,
Heidelberg, Berlin (1982).

[3] S. Saito, Seisuuron, Kyoritsu Shuppan (1997). (k5 al, 8Ga, it
37 )
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Symbols

R real numbers

Ma(R) n X n matrix ring over a ring R

J(R) Jacobson radical of R

S(RR) Socle of Rg

|X| cardinality of a set X

Pi(R) complete set of orthogonal primitive idempotents of an

artinian ring R
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Now, recently, Lee-O. showed the following results (Frontiers of
Mathematics in China):

(A) If R is a Frobenius algebra, then C(R), H(R) and O(R) are
Frobenius algebras.

(B) If R is a quasi-Frobenius ring, then C(R) and H(R) are
quasi-Frobenius rings.

It follows from (B) that, for a division ring D, C(D) and H(D) are
quasi-Frobenius rings. One of main results in our talk is the following:

When 2 # 0, C(D) and H(D) are simple rings such that
@ C(D) is a division ring or |Pi(C(D))| = 2.
@ H(D) is a division ring or |Pi(C(D))| =2 or 4.
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Let R be a quasi-Frobenius ring. In order to study the structure of C(R)
and H(R), we first observe idempotents and nilpotents in these rings.
For « = a+ ib+ jc + kd € H(R), we write
o> =A+iB+jC+ kD
where a, b, c,d, A, B, C,D € R. Then, by calculation, we see
A=a>—b>—c?—d°
B=ba+ab+ cd — dc
C=ca+ac+ db— bd
D =da+ ad+ bc—cb

a’=0
<
P2-—b—-c2-d?> =0
(#) bat+ab+cd—dc = 0
catac+db—bd = 0
da+ad+bc—cb = 0
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Further,

32—b2—62—d2 —
ba+ ab+ cd — dc
ca+ ac+ db— bd
da+ad+bc—chb =

Il
Q0 T W

By (), we obtain

F : field, 2 # 0. Then

1 1
of =a = a=7, Z+b2+c2+d2=0
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By (), we can show the following:

Q@ J(H(D)) =0, H(D): indecomposable simple ring

@ |Pi(H(D))|=1 or 2 or 4

@ |Pi(H(D))|=1 <= H(D) : division ring

Q |Pi(H(D))| =2 = V primitive idempotent e € H(D),

.. (eH(D)e eH(D)e
H(D):(eH(D)e eH(D)e)

@ D = F : commutative field

= H(F): division ring or H(F)%<Ii i)

@ For a commutative field F, |Pi(H(F))| = 4 does not occur.
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We shall give a sketch of the proof of (1) in this theorem. We may show
the following:

Let &« € H(D). Then

o? = (ai)® = (aj)* = (ak)>=0 = a=0.

(Proof) Let a = a+ ib+ jc+ kd € H(D). By a® = 0 and (#),
a—b-?-d*=0 (1)
Since ai = —b + ia + jd — kc and (ai)? =0,
> —a*>—d> - c?=0 (2)
Similarly, by (aj)? =0 and (ak)? =0,

c—d*—a-bp=0 (3)
d>—?—b—a%=0 (4)
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By (1) + (2),

—2¢% —2d%? =0.
2+ d*=0
b? = 32
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Let D be a division ring with 2 = 0.
@ C(D) : local quasi-Frobenius ring s.t.

J(€(D)) = 5(€(D)) = eC(D)

where e =1+ 1.

@ H(D) : local quasi-Frobenius ring s.t.

J(H(D)) =(1+i)H(D) + (1 +j)H(D)
S(HD))=(1+i+j+ k)H(D)
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Example 5
D:=HR)=R®/R®jR® KR : division ring
Consider
H(D) = H(H(R)) = HR) @ iH(R) @ jH(R) @ kH(R).

Then,
|Pi(H(D))| = 4.

In fact, put
1 ce . 1 A
g1=1(1+n/+jj+]l<k), g221(1+ﬂl—jj—]l{k),
1 co . 1 A
g3 = (1 —ii—jj+kk), gn=(1—1i+ij—Lkk).

Then, {g1, 82,83, 84} are orthogonal primitive idempotents.

- |Pi(H(D))| = 4.
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Further, we obtain for a dividion ring D with 2 # 0, the following result:

Theorem 6
If H(D) is a division ring, then

SAvEvHw]
SAvEvRw]
SAvlwlw]
SAvEvlw)

In particular,

X
=
Z
Il
B E R =
B =E R =
BRE=RERB
xR =
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This example and the theorem show that the worlds of H(D) and H(F)
are different. About |Pi(H(D))| = 4, following unexpected result holds:

Let D be a division ring with 2 # 0. Following conditions are equivalent:
Q |Pi(H(D))| = 4.
Q@ 3p,q,reDst p>=—-1,g°=—1,pg=r=—qp.

a’Db) where D is a

Here we shall state about a generalized quaternion ring (
division ring with 2 # 0.
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The following results hold:

Theorem 8
Following conditions are equivalent:

© Pi((%))l = +
@ Ip,q,reDst. p*=a,g°=b,pg=r=—qp.

In these case, following {g;}; are orthogonal primitive idempotents:
g1 = %(1 + ipa~t + jgb~! + kr(ab)™1),
g = %(1 +ipa~t — jgb~" — kr(ab)™"),
g5 = (1~ ipa + jab™" — kr(ab) )

1 . C _
g = Z(l —jpa~t — jgb~* 4 kr(ab)™1).
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We skip to state the structures of H(H(D)), H(C(D)), C(C(D)) etc.
Finally we comment a classical theorem on H(F), where F is a field with

2 £ 0.

Following are equivalent:

F F
(1) H(F) = (F F>'
(2) 14 X2+ Y2+ Z? =0 has a solution.
(3) 1+ X2+ Y? =0 has a solution.
But the following condition is not equivalent to these conditions.

(4) 1+ X2 =0 has a solution.

Following conditions (2'), (3'), (4) correspond to (2), (3), (4),
respectively.

(2') Jidempotent e = 3 + iX + ;Y + kZ € H(F).

(3') Jidempotent e = % + iX + jY € H(F).

(4") Jdidempotent e = % +iX € H(F).

|. Kikumasa, K. Koike and K. Oshiro Complex Rings, Quaternion Rings and Octonion Rings



Instead of (22), we may use H(D; a, b).
Several questions arise: Structure of H(H(D; —1,1); —1, —1),
H(H(D;1,-1);1,1), H(C(D);1,1),... ?

H(H(R; -1,-1); -1,-1) =

R R
R R
R R
R R

/=B =R =
R E =
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