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Hochschild extension
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Hochschild extension algebras



Hochschild extension

In 2002, Ferndndes and Platzeck gave the ordinary quivers of the trivial
extension algebras for basic, connected and finite dimensional algebras.
Moreover, they give ralations for trivial extension algebra of the algebra
under the assumption that any oriented cycle in the ordinary quiver is
zere. However it seems that there is little information about the ordinary
quivers and relatoins for general Hochschild extension algebras.

Our aim is to describe the ordinary quivers and relations for Hochschild
extension algebras for self-injective Nakayama algebras.

K : an algebraically closed field.

A : a finite dimensional K-algebra.

D = Homg (—, K) : the standard duality functor.
Then D(A) = Homg (A, K) is the A-bimodule.



Hochschild extension

Definition

We define Hochschild extension over A with kernel D(A) by the exact
sequence

0— DA T2 A4A—0
such that T" is a K-algebra, p is an algebra homomorphism, & is a

T-bimodule monomorphism from ,(D(A)),. Then T is called
Hochschild extension algebra of A by D(A).

It is well known that T is a self-injective algebra.



Definition

(F'), (F') : Hochschild extensions over A with kernel D(A).

(F) and (F") are equivalent if there is an algebra isomorphism
t : T — T’ such that the following diagram is commutative.

(F) o0 D(A) T A 0
(F) o0 D(A) i A 0

The set of all equivalence classes of Hochschild extensions is denoted by
F(A, D(A)).

Definition

Hochschild extension
0— D(A) ST -2 A—0

is said to be splittable if there is an algebra monomorphism p’ : A — T
with pp’ = id 4.




Hochschild extension

Fact

For an Hochschild extension algebra T' = A @ D(A), there exists a
2-cocycle @ : A X A — D(A) such that the multiplication of T'
describes as follows:

(a, )(b, y) = (ab, ay + zb + a(a, b)),
where « is a k-bilinear map which satisfies the following condition:

aa(b, ¢) — a(ab, ¢) + a(a, bec) — a(a, b)e =0

(a, by c e A).

Conversely, an algebra defined as above by a 2-cocycle « is a Hochschild
extension algebra. We denote the algebra by T, (A).



Hochschild extension

The Hochschild (cochain) complex of A with coefficients in D(A) is a
sequence

0 —D(A) — Homg (A, D(A))
%, Homg (A®2, D(A)) %5 Homg (A%2, D(4))

— o 2 Homg (A%", D(A)) 2 ...

6'(8)(a ® b) = aB(b) — B(ab) + B(a)b,
ZM(@®b®c)=ay(b®c) —v(ab® c) +v(a ® be) — v(a ® b)c,

(B € Homg (A, D(A)), v € Homg(A®2, D(A)), a, b, c € A).

Definition

The group

H?*(A, D(A)) := Ker6?/Im ' = Z*(A, D(A))/B?*(A, D(A))

is called 2nd Hochschild cohomology group with coefficients in D(A).




Hochschild extension

Theorem (Hochschild, 1945)

We have the following one-to-one corresponding:

H?(A,D(A)) — F(A, D(A))
[a] = [Ta(A)]

The equivalence class of splittable extension corresponds to the zero
element of H?(A, D(A)).

To(A) is called the trivial extension algebra of A by D(A). The
multiplication of To(A) = A @ D(A) is defined by

(a, ) (b, y) = (ab, ay + xb).



Hochschild extension

The Hochschild (chain) complex is a sequence

On
Cy ABTH2 Ony 4@ndl L, A®3 01, 402 Yo, 4,

The differential 6, sends ap ® -+ ® an41 to

Z (—1)a0 ® - c+a;—1Q0;a;41 Q Ajp2 - Ant1

i—1
+ (-1)"*ap11a60 Qa1 Q- a
We define the 2nd Hochschild homology by
HH,(A) := Ker 61 /Im d5.
We have the following isomorphisms between complexes:
D(A®*T1) ~ Homg (A ®@ac A®*T2 K)
=~ Homy-(A®*T2, Homg (A, K))
= Hompg (A®*, D(A)).
This induces the isomorphism

D(HH,(A)) = H*(A, D(A)).



Quiver of trivial extension
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The ordinary quiver of a trivial extension



Quiver of trivial extension

A : a basic, connected and finite dimensional K-algebra
Aa=((Aa)o, (Aa)1, s, t) : The ordinary quiver of A
We consider the Hochschild extension

0— DA =T -2 A —o0.
If we identify D(A) with Ker p, D(A) is a two-sided ideal of T' and
D(A)? = 0. T/D(A) is isomorphic to A as algebras by p.
The complete set of primitive orthogonal idempotent {e1,...,e;} of A
can be lifted {e1,...,e;} of T. Therefor, we have

(Aa)o = (Ar)o

Theorem(Fernandez and Platzeck, 2002)

A : a basic, connected and finite dimensional K-algebra
The ordinary quiver A, (a) of trivial extension Tp(A) is given by

@ (Ar,a))o = (Aa)o

@ (Arya)1 = (Aa)1 U{Bpys---:Bp.}
where {p1,...,pt} is a K-basis of socs-(A) and
Bp : t(pi) — s(ps).




Quiver of trivial extension

Example 1 A : the following quiver.

KA : the path algebra
R7 : the two-sided ideal of KA generated by the paths of length n

A:= KA/R} B := KA/R3

A basis of socae(A) is A basis of socge(B) is
{531532133, L2L3L1, CB3€B1€C2}- {wlfﬂza TL2IL3, 533131}-
And Ar,(a) is given by And Ar,(B) is given by

O ’

x3 Ty

1
T2
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The projective resolution by Skoldberg and one by
Cibils



Resolution by Skéldberg and one by Cibils

Theorem(Skoldberg, 1999)

A := KA/RY : atruncated quiver algebra.
A; : the set of paths of length ¢ and
We have the projective resolution (P, d.) of A as a left A-module:

P,:--- —AQka, KA,+1 Qrxa, A
A @xa, KAn @Ka, A
2,4 Rra, KA1 Qrxa, A
DA Rk, A2 A —0.

n—1

(T@Y1 Yn®2) = > TQuy1- Y ®Yj41 @ Yj42- " Ynz
=0

A3 RUY1  Ynt1 RV 2) = Y1 QY2+ Ynt1 @ 2
_x®y1"'yn®yn+1za

forx, z€ Aandy; € A (1 <i<n+1).




Resolution by Skéldberg and one by Cibils

AR®ae P =ARa (AQKka, KA1 ®ka, A)
= A®a- A° Qrag KA1
= AQkag KA.

We define the degree q(&€ N) part of A ® ae P1 by

(A Rae Pl)q = (A ®KA8 KAl)q

= @ K(arae@ag).
a; €A1 (1<i<q)
st. t(ag—1) = s(aq),
t(ag)=s(a1)



Resolution by Skéldberg and one by Cibils

Similarly,

(A ®Aae P2)q - (A ®KA8 KAn)q

= @ K(al...aq_n®aq_n+1...aq),
a;€A; (1<i<q)
st t(ag—n) = s(@g—mn+1),
t(ag)=s(a1)

(A®ae P3)g = (AQ@kas KAnyii1)g

= @ K(ai1+ - ag—n—1®aq_n---agq).
a;€A; (1<i<q)
s.t. t(aqfnfl) = S(aqfn)y
t(ag)=s(a1)

Also, this grading is compatible with differential, so
complex(A ® ge P, id ® d.) is N-graded.



Resolution by Skéldberg and one by Cibils

Theorem(Skoldberg, 1999)

A := KA/RY : atruncated quiver algebra.
Then HH3(A) = @;2, HH>, 4(A), where

HH>, 4(A)
K@% ifn4+1<qg<2n-1,
= Dyg KBt @ Ker( o5+ K = K)) if g=n,
0 otherwise.

Here we set aq := card(A¢/Cy) and b, := card(AP/C;).




Resolution by Skéldberg and one by Cibils

Let A be the following cyclic quiver:

1

SJ/’]\Z

A:= KA/RY (n > 2). A basic and connected self-injective
Nakayama algebra is isomorphic to a truncated quiver algebra of a cyclic
quiver.

Theorem(Skdldberg, 1999)
A = KA/R}. Then we have

HH, 4,(A)
K ifsjgandn+1<qg<2n-—1,
= K '@Ker(-2: K — K) ifs|gand ¢ =n,
0 otherwise.




Resolution by Skéldberg and one by Cibils

D(Tory (A, A))  Ext%.(A, D(A))

Il I
1:1

D(HH,(A)) = ,HQ(A;29@4» <« F(A, D(A))
i
D(%igfszq(AD o
R
D D(HH:, ()

q=n



Resolution by Skéldberg and one by Cibils

Theorem(Cibils, 1989)

A = KA/R : atruncated quiver algebra.
J : the Jacobson radical of A.
We have the projective resolution (Q., 0s) of A as a left A°-module:

Qi:: - — AQKa, J®%a0 Rra, A
N A QKA J®%kao Rra, A
N AQka, J Qra, A
2 A®RKa, A2 A —o0.
Ry QY2 ® 2)
=zY1 QY2®2—TRY1Y2 @ 2 + T Q Y1 Q Y22,
I(x QY1 Qyuz Vys V z)

=ry1 QU2 QY3 2z — TR y1yY2 Q Yz =
+rQRU1 QY23 @2z — QY1 @ Y2 Q ysz,

forxz, z€ Aandy; € J (1 <1< 3).




Resolution by Skéldberg and one by Cibils

Proposition(Ames, Cagliero and Tirao, 2009)

Let 1, 2 be paths in A. We set 1 = a1az - am,,

T2 = Ay +1Amy+2 * * * g +mqy Where a1, a2, ..oy @y m, € Aq.
Then there exists a map 72 : @, — P2 defined by the following
equation:

T2(a QK A, T1 KA, T2 QxAa, b)

a@KAg 01 An DKAG Ontl** * Amqy+mob if My +m2 > n,
0 otherwise,

fora, b € A.




Resolution by Skéldberg and one by Cibils

We have the following chain map:

D(A ®Ae P2) D(id®7‘r2)

D(A®a- Q)
— D(A ®Ae A®4)
— Hom4-(A%®4, D(A))

— Homg (A®2, D(A))

This map induces the following isomorphism:

o: Eé D(HH,; 4(A)) = D( Eé HH,, ,(A))
= D(HHz(A))

— H?(A, D(A))



Quiver of Hochschild extension
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The ordinary quiver of a Hochschild extension



Quiver of Hochschild extension

Lemma 1

A : finite quiver
A := KA/I for an admissible ideal I (3n > 2s.t. Ry C I C R%).
a:AXA— D(A):
2-cocycle s.t. Vi € Ay, a(e;, —) = a(—, e;) = 0.
Then, we have the chain of subquivers of A, (A):

A C Ar,a) € Agy(a)-

Lemma 2

A : finite quiver
A := KA/I for an admissible ideal I.
J(A) : the Jacobson radical of A.
a:AXA— D(A):
2-cocycle s.t. Vi € Ay, a(e;, —) = a(—, e;) =0,
TFAE
(1) a(F(A), J(A)) C J(A)D(4) + D(A)J(A).

(2) Ar,(a) = Azy(a).




Quiver of Hochschild extension

Let A be the following cyclic quiver:

1

SJ/’]\Z

Then A := KA/R} (n > 2) is a basic and connected self-injective
Nakayama algebra.

Theorem 1

© : @22 D(HH>, 4(A)) — H?(A, D(A)).
a:AXA— D(A):

2-cocycle s.t. [a] € ©@(D(HH32,4(A))) and [a] # 0.
T (A) : the Hochschild extension algebra of A defined by a.

Then, we have

A _ JARm ifn<qg<2n-2
Ta() = A ifq=2n—1.
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Quiver of Hochschild extension

Corollary 1

A:=KA/RX (n > 2).

© : .~ D(HH> (A)) — H%(A, D(A)).

a:AX A— D(A): 2-cocycle.

Then [a] = Zzn '[B4], where B, : A X A — D(A) is a 2-cocycle
t. [Bq] € @(D(HHz q(A))). The following equation holds:

_ JATa) if[Ban—1] =0,
ATa(a) = {A if [Ban_1] # O.

Corollary 2

A:=KA/R} (n > 2).

a:AXA— D(A): 2-cocycle.

If Ar,(a) = A, then T (A) is isomorphic to KA/RZ* and T, (A) is
symmetric.




Quiver of Hochschild extension

Example 2 Let A be the following quiver, and we set A := KA/RZA.

HHz(A) = HH2,3(A)
= ((z3 Qrag T1T2) + (1 @K Ag T2T3) + (T2 ®KAs T3T1))-

By sending the dual basis of the above basis through ®, we have the
following 2-cocycle a« : A X A — D(A):

x? ifab = Ti4+1Ti42 (Hi),

ala, b)={ ¢

0  otherwise,

where a, b are paths of length > 1and¢: =1, 2, 3
Then we have Ar, (a) = A, and To(A) = KA/R3.



Section 5

Ralations for a Hochschild extension algebra



HH>(A)= @  HHz m:(A).

n<ms<2n—1
(m21)

Notice that HH2(A) has the only degree ts part HHj s(A) if and
only if n satisfies the inequalities
t—1)s<n<ts<2n—1< (t+1)s

for some t > 1. Then we have

HHZ(A) = @ HH2,ms(A)

n<ms<2n—1
(m2>1)

_ JHH; ,(A) ift=1ie ifn<s<2n-1,
"~ | HHa2,2:(A) ift=2ie if(n/2<)(2n—-1)/3<s<n—1/2.

Casel:n+1<s<2n—-2 o (2n—-1)/3<s<n-1
Case2: s=n



Casel:n+1<s<2n—-2 o (2n-1)/3<s<n-1
_Js ifn+1<s<2n-2,
1= %25 if(en—-1)/3<s<n—1.

In this case, note that
dimKHz(A, D(A)) =dimg HH; 4(A) = 1.

Lemma 3
If we define maps a; : A X A — D(A) (¢ =1,...,s) by

C“i(al e Qmyy Amy 410 am1+m2)

(Titmitms  Titqg—1)" ifn<my+may<q
and ay = Tiye—1
forl1 <t < my+ mo,

0 otherwise,

then Y, oy is a 2-cocycle, and the cohomology class [>°7_; ;] is a
K-basis of H2(A, D(A)).




Let a =k ; , o for k € K, where oy's are the maps in Lemma 3.
Then Ar, (a)(= Ary(a)) is given by
@ (Ar,(a))o = (Aa)o
Q@ (Ar (a1 =(Aa)1U{z],..., 2L},
where ! is an arrow from t(p;) to s(p;) corresponding to
Di = XTj—ny1Ti—nt2 - Li—1 foreach i (1 < i < s).

Theorem 2
Let I’ be the ideal in K Ar,_ (4) generated by

’ 4 ’ !
Lil;q — TiTi—ntly L;L; 519
LiTit1 "  Litn—1 — km;wi—n—}-lwi—n—l—Z *cLi_nt(2n—q—1)

fori =1,2,...,s. Then I’ is admissible and I’ = Iz, (a). So T (A)
is isomorphic to K Ar,_ (a)/I’.




Ralations

Example 3 Let A be the following quiver and we set A := KA/R4A.

3

HH>(A) = HH324(A) = (Z TitaTits QKA TiTit1Tit2Tit3)-
=1

By sending the dual basis of the above basis through ®, we have the

following 2-cocycle &« : A X A — D(A):

(Titaxiys)™ if ab = z;xip 1242543 (30),

a(a b) _ 33;+5 if ab = LiLif1Li42Li4+3L544 (H’L'),
9 - . .
e:_‘_ﬁ if ab = LiLi41L342L343Li4+4Lj45 (EI’L),
0 otherwise,

where a, b are paths of length > 1and: =1, 2, 3



Then, for k € K, we have Ag, (4) = Agya):

Q ’
1

and, Tpo(A) = KAg,_ (a)/I, where
I = (T2 — T 4, TiTit1Tit2Tits — kT[T, (x})?|i=1, 2, 3).
On the other hand, To(A) = KAx,(a)/Io, where

Io = (x[®i — Ti%[ 4, TiTit1Tit2Tits, (z))?|i=1, 2, 3).



Case2: s=n
dimxg H2(A, D(A)) = dimg HH; 4(A)=s—1

Lemma 4
If we define maps a; : A X A — D(A) (¢=1,2,...,s—1) by

e;* ifmg+my=s
and @y = T;y1—1
forl <t<s,

0 otherwise,

i (@1 Qmyy Qg g1 *** Qg pmy) =

then a;'s are 2-cocycles, and the set of the cohomology classes is a
K-basis of H?2(A, D(A)).




Let a = Zf;ll k;a; for k; € K, where ;s are the 2-cocycles as in
Lemma 4. Then Ar, (a)(= Axy(a)) is given by
@ (Ar,(a)o = (Aa)o
@ (Ar, ()1 = (Aa) 1 U{z},..., 2},
where @/ is an arrow from t(p;) to s(p;) corresponding to
Di = Xj_my1Li—mt2 - Li—1 foreach i (1 < ¢ < s).

Theorem 3
Let I’ be the ideal in K Ar, (a) generated by

/ ’ !’
LiTjrr = TiTi+ly TjTjpqs Lel1scTs—1,
’
TYLL41 ** Tips—1 — KITTi4n o Tigs—1

forj =1,2,...,sandl =1,2,...,s — 1. Then I’ is admissible and
I' = It (a)- So To(A) is isomorphic to KAx, (a)/I".




Ralations

Example 4 Let A be the following quiver and we set A := KA/R3 .

HH>(A) = HH33(A) = (e1 QkAg T1T2x3, €2 QKAE T2T3L1)-
By sending the dual basis of the above basis through ®, we have the
following 2-cocycle a; : A X A — D(A):

ef ifab=x;x;1 125
ai(a, b) :{ i i 1Li42

0 otherwise,

where a, b are paths of length > 1 and ¢ =1, 2



Ralations

For any 2-cocycle @@ := ki1 + kaaa(k1, k2 € K), we have
Ar,(a) = Ay(a):

and, To,(A) = KA, (a)/I, where

I= <‘Biw;+1 — TTiy1, 33;33;4-1’
L1223 — klw'lm2:c3, L2z — kziclzwgw]_, L3L1L | 7 = 1, 2, 3).
On the other hand, To(A) = KAx,a)/Io, where

_ e oo I I ’ .
Iy = (wsz_l TiTiq1, TETG s wixi+1xi+2| i =1, 2, 3).



Outline of the proof



Lemma 1

A : finite quiver
A := KA/I for an admissible ideal I (3n > 2s.t. Ry C I C R%).
a:AXA— D(A):
2-cocycle s.t. Vi € Ay, a(e;, —) = a(—, e;) = 0.
Then, we have the chain of subquivers of A, (A):

A C Ar,a) € Agy(a)-

Lemma 2

A : finite quiver
A := KA/I for an admissible ideal I.
J(A) : the Jacobson radical of A.
a:AXA— D(A):
2-cocycle s.t. Vi € Ay, a(e;, —) = a(—, e;) =0,
TFAE
(1) a(F(A), J(A)) C J(A)D(4) + D(A)J(A).

(2) Ar,(a) = Azy(a).




Casel. n+1< qg<2n-—2,
Case 2: q = n,
Case 3: ¢ = 2n — 1.

Casel (n+1<qg<2n—2)

dimyg HH, 4(A) = 1
The 2-cocycle ax is given by a = k> ;_; a; (k € K), where

ai(al c Qg Qg1 am1+m2)

ifn<m;+ms <gq

and ay = ;441

o forl1 <t < my+ mo,
0 otherwise.

(Titma+ms *** Titg—1)"

The « satisfies the condition Lemma 2 (1). So, A, (a) = Ary(a)-
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Case 2 (g = n)
Assume char(K)|(%) (when that is not the case, we proceed similarly.)

dimKHHz,q(A) =S
The 2-cocycle a; (2 = 1,...,8) is given by

ai(ay - Qm,y, Am+1° am1+mz)
el fmi+my=mn
and ay = ;441
for1 <t <n,

0 otherwise.

a = Y, kioy satisfies the condition Lemma 2 (1). So,
Ar,(a) = Azy(a).-



Case3 (g =2n-—1)

dimg HH, 4(A) = 1

2-cocycle v is given by a = k > ;_; «;, where

ai(al **Qmyy Omy 410 am1+m2)
(Titmitms ** Titan—2)" ifn <mi+ma <2n—2
and ay = ;4411
for1 <t < my+ ma,
0 otherwise.

Explicitly, we find the following

e (Ta(A))e;
K eiJ2(Ta(A))e;

(%, j € Ao). As a result, we have Ag, (a) = A.
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