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環論シンポジュームの曙 (Pioneer of Ring Symposium)

第 6回代数学シンポジューム (1964年 7月 10日‐ 14日)
北海道大学理学部（世話人：東屋五郎）
講演題目

1 森田氏の定理をめぐって (p.1-7)（東屋五郎：北大）
2 Separable algebraの Galois の理論 (神崎熙夫：大阪学芸大)

3 QF-3 algebraの dominant dimension (太刀川弘幸：京都工芸繊維大)

4 射影的加群 (I 遠藤静夫：慶応大、 II 日野原幸利：熊本大)

5 フロベニュース拡大 (I 都築俊郎：名古屋大、II 小野寺毅：北大）
6 可環環上の半単純多元環 (服部昭：東京教育大)

7 Maximal order のホモロジー的考察 (原田学：大阪市大)

8 Profinite group のコホモロジー論と整数論への応用
　 (I 河田敬義：東大、II 佐々木良雄：愛媛大）

9 Grothendieck cohomology の紹介 (山田浩：東京教育大)

10 Chen classes と projective class group (尾関英樹：名古屋大)

11 Derive category の理論の紹介 (pp.68-85) (松村英之：京大)
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Nakayama Conjecture

Nakayama Conjecture

Let A be a finite dimensional algebra over a field K and D(M) = Homk(M,K )
a dual space of a vector space M.

Tadashi Nakayama gave the following conjecture in 1958.

Conjecture (NC:Nakayama Conjecture)

Assume AA has a minimal injective resolution

0→ A→ E1 → E2 → · · · → En → · · ·

with all Ei ’s are projective, then A is self-injective.

Reference: Tadashi Nakayama
On algebras with complete homology,
Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307.
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Nakayama Conjecture

Tachikawa Conjecture

Hiroyuki Tachikawa gave the following conjecture which is equivalent to NC.

Conjecture (TC: Tachikawa Conjecture)

[T1] ExtiA(AD(A), AA) = 0 for all i > 0, then A is self-injective.

[T2] Assume A is a self-injective algebra and M is a finitely generated left A
module. If ExtiA(M,M) = 0 for all i > 0, then M is projective.

Reference: Hiroyuki Tachikawa
Quasi-Frobenius Rings and Generalizayuions, QF-3 and QF-1 Rings
Lecture Notes in Mathematics, Springer-Verlag, Inc., Berlin and New York, 1973
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Nakayama Conjecture

Tachikawa Conjecture

Remark 1.1

[T2] and hence [NC] are not true for an artinian ring in general.
We see this in Chapter 7(7)

[NC] is a typical conjecture for algebras.

What is the difference between algebras and artinian rings ?
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Nakayama Conjecture

New Nakayama Conjecture

In general, an artinian ring has not self-duality, so we give the following new
conjecture.

Conjecture (NNC: New Nakayama Conjecture)

Assume an artinian ring A has a self-duality and AA has a minimal injective
resolution

0→ A→ E1 → E2 → · · · → En → · · ·

with all Ei ’s are projective, then A is self-injective.
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Nakayama Conjecture

Artinian ring with self-duality

Typical example of an artinian ring with self-duality is an artin algebra,
which is an artinian ring finitely generated over its center.

An artin algebra was orginally defined by Emil Artin.

Reference: Maurice Auslander, Idun Reiten, Sverre O. Smalo, (1997)[1995],
Representation theory of Artin algebras,
Cambridge Studies in Advanced Mathematics, 36,
Cambridge University Press, ISBN 978− 0− 521− 59923− 8,
MR 1314422, Zbl 0834.16001
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Nakayama Conjecture

Ring with self-duality

Yoshitomo Baba’s comment for Rings with self-duality
Reference:新しいアルティン環の流れ, 数学 67(3) 2015年, 271-290ページ

The following rings are typical rings with self-duality.

(1) commuative ring
(2) Serial ring (Amdal, Ringdal,1968)

Reference: Catégories uniséraleles, C.R. Acad. Sci. Paris Sér. AcdotB, 267
(1968),A85-A87, A247-249.
(3) Harada(H) ring with homogenious socle

i.e. socR is a finite direct sum of a simple module.
(4) Homogenius type Harada ring (Kado and Oshiro, 1999)

Reference: Self-Duality and Harada Rings, J.Alg. 211,1999,384-408.

A ring R is called left H-ring if for any indecomposable projective right module
PR , there is some indecomposable projective injective right module I such that
P = I radnR for some n > 0.
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Nakayama Conjecture

Quasi-Harada ring

(5) Some Quasi-Harada(QH) rings
A ring R is called QH-ring if any projective left (right) module is quasi-injective.

Example of a ring of the theorem
Let D be a division ring and set R = D × D × D with the multiplication;

(x1, x2, x3)(y1, y2, y3) = (x1y1, x1y2 + x2y1, x1y3 + x2y2 + x3y1).

Then R is non-commutative local serial ring with loewy length 3 and
(0, 1, 0) is in (center of eRe)∩(e(radA)e − (e(radA)e)2).

Theorem 1.2

QH ring is QF-3 ring. (i.e.) There is an idempotent e ∈ R such that eR is
minimal faithful module.
If eRe is local serial and (center of eRe)∩(eradAe − (eradAe)2) is not empty,
then R has self-duality
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Nakayama Conjecture

The equivalence of [NC] and [TC]

To show the equivalence of [NC] and [TC],
it requires the following facts and notations.

Lemma 1.3

It holds for finite dimensional algebras over a field K

ExtiA(AD(A), AA) ∼= ExtiAe (A,Ae).

Here, Ae = A⊗K Aop is an enveloping algebra of A.

Proof. ExtiA(D(AA), AA) = ExtiA⊗KK (AA⊗A D(AA)K , AAK )

∼= ExtiAe (AAA,HomK (D(AA)K , AAK )).

Also,

AHomK (D(AA)K , AAK )A = AHomK (D(AA)K ,D(KD(AAK )))A
∼= AHomK (D(AA)⊗K D(AAK ), KK )A
∼= D(D(AA⊗K AA))
∼= AA⊗K AA.

. Masahisa Sato (University of Yamanashi) On Nakayama Conjecture and related conjectures-Review October 7-10, 2017 12 / 56



Nakayama Conjecture

The equivalence of [NC] and [TC]

Definition 1

1 (left dominant dimension)
We denote ℓ.dom.dimA ≥ n when A has a minimal injective resolution

0→ A→ E1 → E2 → · · · → En → · · ·

with projective modules E1, . . . ,En.

2 (left QF-3 ring)
A is called left QF-3 if it satisfies the one of the following equivalent
conditions;

1 E (A) ⊂
∏

A.
Here, E(A) is an injective envelop of AA.

2 A has a mininaml faithful module AM.
(i.e.) AM is faithful and for any faithful module AN, it holds N⊕ > M.

3 There is an idempotent f = f 2 ∈ A such that Af is faithful injective.

A is called QF-3 if A is left and right QF-3.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Lemma 1.4 (LNM351, p.p.97)

Let A be a QF-3 ring with minimal faithful modules Ae and fA.
Assume ℓ.dom.dim A ≥ 2 and the first n images of the minimal injective
resolution of fAf fA are finitely cogenerated by fAf fAe, then the the following
conditions are equivalent.

1 ℓ.dom.dim A ≥ n + 2.

2 ExtifAf (fA, fA) = 0 for i = 1, 2, . . . , n.

3 ExtieAe(Ae,Ae) = 0 for i = 1, 2, . . . , n.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Theorem 1.5

[NC] ⇐⇒ [TC]

Proof.

Assume [NC]. We first prove [T1].
We set R = EndA(A⊕D(A)) and f and e projections to A and D(A), respectively.
Then it holds

fRf = A, fR = fRf ⊕ fRe = A⊕ D(A)
as left A-module. Since

ExtifRf (fR, fR) = ExtiA(A⊕ D(A),A⊕ D(A))

= ExtiA(D(A),A),

we have ExtifRf (fR , fR) = 0 from [T1].
From Lemma 1.4, we know ℓ.dom.dim.R =∞.
So R is self-injective by [NC].
Thus A is also self-injective.(See Lemma 1.6 below .)
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Proof.

(Continuous)
Next we prove [T2]. Assume A is self-injective and M is finitely generated.
We set R = EndA(A⊕M) and f and e projections to A and M, respectively.
By the same argument in the proof of [T1], it holds
ExtifRf (fR , fR) = ExtiA(M,M) = 0 and R is self-injective.

On the other hand, since A⊕M is finitely generated generator (co-generator),
it is well known that this satisfies double centralizer property. i.e.
EndR(A⊕M) = A.
Hence A⊕M is a projectice A-module. (See Lemma 1.6.)
Thus M is a projective
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Lemma 1.6

(1) Assume AM is finitely generated and Ext1A(M,M) = 0.
If R = EndA(M) is right self-injective, then M is a projective
EndR(MR)-module.

(2) Assume R = EndA(A⊕ D(A)) is self-injective, then Ext1A(D(A),A) = 0 iff A
is self-injective.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Proof.

(1) We take a short exact sequence of left A-modules;

0→ N → ⊕A→ M → 0.

We apply HomA(−,M) to the above exact sequence,
we have the split short exact sequence of right R-modules

0← HomA(N,M)← HomA(⊕A,M)← HomA(M,M) = R ← 0

from the assumptions Ext1A(M,M) = 0 and R is right self-injective.
We apply HomR(−,MR) to the above exact sequence, we have the split exact
sequence;

0→ HomR(HomA(M,N),M)→ ⊕EndR(M)→ HomR(R,M) = M → 0.

Thus M is a projective EndR(M)-module.

(2) If part is clear, so we prove only if part. We remark A = EndR(M) since AM
is generator. We apply (1) to M = A⊕ D(A), then AD(A) is projective, that is,
AA is injective. So A is self-injective.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Lemma 1.7

Let AM be an A-module, B = EndAM and

d : A→ EndBMB

a canonical map defined by d(a)(m) = am for a ∈ A, and m ∈ M.

(1) d is monomorphism iff AM is faithful.

(2) If AM is generator, then d is an isomorphism and MB is finitely generated
projective.

(3) If AM is finitely generated projective, then MB is finitely generated generator.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Proof.

(1) is clear.
(2) Since generator is faithful, so d is monomorphism.
So we show d is an epimorphism.

Take an epimorphism
n∑
⊕M (f1,f2,··· ,fn)−−−−−−−→ A,

then there are some mi ∈ M (j = 1, · · · , n) such that

1A = f1(m1) + f2(m2) + · · ·+ fn(mn).

Also for m ∈ M, we define ϕm : AA→ AM by ϕm(a) = am for any a ∈ A.
We remark fjϕm ∈ B. For any φ ∈ EndB(MB),

φ(mj · fjϕmi ) = φ(mj) · fjϕmi = fj(φ(mj))mi ∈ Ami .

Since n∑
j=1

fj(mj)mi = (
n∑

j=1

fj(mj))mi = mi ,

we have

φ(mi ) = (
n∑

j=1

fj(φ(mj)))mi ∈ Ami .
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Proof.

We set φ(mi ) = aimi and a = a1f1(m1) + a2f2(m2) + · · ·+ anfn(mn),
then for any m ∈ M,

m = 1 ·m = f1(m1)m + f2(m2)m + · · ·+ fn(mn)m

= m1(f1φm) + · · ·+mn(fnφm)

So
φ(m) = φ(m1)f1φm + · · ·+ φ(mn)fnφm

= (a1f (m1) + · · ·+ anf (mn))m

= am

We apply HomA(−, AMB) to the above a splittable epimorphism,
then we have a splittable epimorphism

n∑
⊕HomA(M, AMB)B =

n∑
⊕BB → HomA(A, AMB)B = MB → 0.

Thus MB is finitely generated projective.
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Nakayama Conjecture

The equivalence of [NC] and [TC]

Proof.

(3) Assume AM is finitely generated projective, then we have a splittable
epimorphim

n∑
⊕AA

(f1,f2,··· ,fn)−−−−−−−→ AM → 0.

That is, there are fi (1) = mi ∈ M and gi : AM → AA (i = 1, · · · , n) such that

m = m1g1(m) +m2g2(m) + · · ·+mngn(m)

for any m. Hence m = m1(g1φm) + · · ·+mn(gnφm).
Remarking that giφi ∈ B, m1, · · · ,mn are generators of MB ,
that is, MB is finitely generated B-module.
Apply HomA(−, AMB) to the above splittable exact sequence,
we have a splittable epimorphism

n∑
⊕HomA(A, AMB) =

n∑
⊕MB → EndA(M) = BB → 0.

That is, MB is generator.
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Tachikawa Conjecture +

Tachikawa Conjecture +

In the proof of [NC]⇐⇒ [TC],
the properties of generator and co-generator are essential.
So Tachikawa gave the following conjecture equivalent to [TC] by using the notion
of generator and co-generator.

Conjecture (TC+: Tachikawa Conjecture +)

Let AM be finitely generated generator co-generator.
If ExtiA(M,M) = 0 for any i > 0, then M is projective.

Theorem 2.1

[TC] ⇐⇒ [TC+]
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Tachikawa Conjecture +

Tachikawa Conjecture +

Proof.

Assume [TC].
Since M is generator co-generator, we have a splittable epimorphism∑
⊕M → A→ 0.

That is, for some m, n > 0, it holds AA < ⊕M(n) and AD(A) < ⊕M(m).
Thus ExtiA(M,M) = 0 implies ExtiA(D(A),A) = 0.
[T1] implies A is self-injective. Hence M is projective by [T2].
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Tachikawa Conjecture +

Tachikawa Conjecture +

Proof.

Assume [TC+], then we have

0 = ExtiA(D(A),A) = ExtiA(D(A)⊕ A,D(A)⊕ A).

We show [T1]. Since D(A)⊕ A is projective., A = D(D(A)) is injective.
We show [T2] ExtiA(M,M) = 0 for i > 0 and A is self-injective implies
ExtiA(M ⊕ A,M ⊕ A) = 0,
Also D(A) = A implies D(A) is co-generator,
thus M ⊕ D(A) is finitely generated generator cogenrator.
By [TC+], AM is projective.
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture

Mauris Auslnder and Idun Reiten gave the following conjecture in 1975.

Conjecture (GNC: Generalized Nakayama Conjecture)

Let 0→ A→ E1 → E2 → · · · → En → · · · be a minimal injective resolution of AA
and S any simple module, then there is some i such that S < Ei

Reference:Maurice Auslander and Idun Reiten,
On a generalized version of the Nakayama conjecture,
Proc. Amer. Math. Soc. 52 (1975), 69-74.

Remark 3.1

[GNC] ⇐⇒ ExtiA(S ,A) ̸= 0 for some i > 0
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Conjecture (GNC+: Generalized Nakayama Conjecture+)

A generator AM satisfying ExtiA(M,M) = 0 for any i > 0 is finitely generated
projective.

Theorem 3.2

[GNC] ⇐⇒ [GNC+]

Particularly [GNC] =⇒ [NC]
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Proof.

Assume [GNC].
We set B = EndA(M). Then MB is finitely generated projective since AM is
generator .
Let

0→ AM → E1 → E2 · · ·

be a minimal injective resolution of AM.
We apply HomA(M,−), then the following sequence

0→ B = BHomA(AMB , AM)
→ BHomA(AMB ,E1)→ BHomA(AMB ,E2)→ · · ·

is exact since ExtiA(M,M) = 0 for any i > 0.
Also BHomA(AMB , AEi ) is injective since MB is projective and AEi is injective.

Thus for some m >> 0,
m∑
i=1

⊕HomA(AMB , AEi ) is co-generator by [GNC].
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Proof.

On the other hand,

AEi < ⊕
ti∑
⊕D(A) since D(A) is an injective co-generator.

So BHomA(AMB ,Ei ) < ⊕
ti∑
⊕BHomA(AMB ,D(A)) .

Since BHomA(AMB ,D(A)) ∼= BHomA(A⊗A MB ,A) = D(MB) and D(MB) is
co-generator, so MB is generator.

Thus AM is finitely generated projective.Hence [GNC+] holds.
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Proof.

We assume [GNC+].
Let

0→ AA→ E1 → E2 → · · ·

be a minimal injective resolution of AA and {S1,S2, . . .Sn} the complete set of
non-isomorphic simple modules included in some Ei .
We take f ∈ A such that f 2 = f and

AE (S1)⊕ AE (S2)⊕ · · · AE (Sn) = AD(fA).

Thus there is some mi such that Ei < ⊕AD(fA)mi .
Remarking that fA⊗A D(fA) = fD(fA) = D(fAf ) as left as fAf -module, we have
natural isomorphisms

AHomfAf (fA, fA⊗A D(fA)) ∼= AHomfAf (fA,D(fAf ))
∼= AHomK (fAf ⊗fAf fAA,K )

= AD(fAA).
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Proof.

Hence we have natural isomorphism

φi : AHomfAf (fA, fA⊗ Ei ) ∼= AEi .

Make an exact commutative diagram form an exact sequence 0→ AA→ E1 → E2,

0 −−−−−−→ AA −−−−−−→ E1 −−−−−−→ E2yφ1

yφ2

0 −−−−−−→ AHomfAf (fA, fA ⊗A A) −−−−−−→ AHomfAf (fA, fA ⊗A E1) −−−−−−→ AHomfAf (fA, fA ⊗A E2).

Thus AA ∼= EndfAf (fA).

On the other hand, fA⊗A D(fA) = D(fAf ) is ab injective fAf -module, so is
fA⊗A Ei .

Hence we have an injective resolution of fAf fA = fAf fA⊗A A

0→ fA⊗A A→ fA⊗A E1 → fA⊗A E2 → · · · .
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Generalized Nakayama Conjecture

Generalized Nakayama Conjecture+

Proof.

From the above two facts, we have ExtifAf (fA, fA) = 0.
Hence fAf fA is finitely generated projective by [GNC+],
so fA is a generator as left EndfAf (fA)(= A)-module,
that is, fAA is a finitely generated projective generator.
Thus AD(fA) is co-generator, which means {S1, S2, . . .Sn} is the complete set of
all non-isomorphic simple modules.
Hence [GNC] holds.
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Strong Nakayama Conjecture

Strong Nakayama Conjecture

Robert R. Colby and Kent R. Fuller gave the following conjecture in 1990.

Conjecture (SNC: Strong Nakayama Conjecture)

For any finitely generated module AM, there is some i ≥ 0 such that
ExtiA(M,A) ̸= 0.

Reference: Robert R. Colby and Kent R. Fuller,
A NOTE ON THE NAKAYAMA CONJECTURES,
TSUKUBA J. MATH. Vol. 14 No. 2 (1990), 343―352

Remark 4.1

[SNC] =⇒ [GNC] is clear.
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Finitistic Dimension Conjecture

Finitistic Dimension Conjecture

The finitistic dimension of an algebra A is defined by

f.gl.dimA = sup{p.d(M) <∞}

Here, p.d(M) is a projective dimension of AM.

Conjecture (FDC: Finitistic Dimension Conjecture)

f.gl.dimA <∞

Theorem 5.1

[FDC] =⇒ [SNC]
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Finitistic Dimension Conjecture

Finitistic Dimension Conjecture

Proof.

Assume n = f.gl.dimA <∞.
Take AM such that ExtiA(M,A) = 0 for all i ≥ 0.
Let

· · · f1−−−−→ P1
f0−−−−→ P0

f0−−−−→ M → 0

be a projective resolution of AM.
Then by assumption, we have an exact sequence

· · · ← HomA(P1,A)A
HomA(f1,A)←−−−−−−− HomA(P0,A)A

HomA(f0,A)←−−−−−−− HomA(M,A)A = 0.
So we have the projective resolution of ImHomA(fn+2,A)

0← ImHomA(fn+2,A)
HomA(fn+2,A)←−−−−−−−− HomA(Pn+1,A)A ← · · ·

← HomA(P1,A)A
HomA(f1,A)←−−−−−−− HomA(P0,A)A

HomA(f0,A)←−−−−−−− HomA(M,A)A = 0.
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Finitistic Dimension Conjecture

Finitistic Dimension Conjecture

Proof.

Since p.d ImHomA(fn+2,A) ≤ n, we have a splittable epimorphism

0← HomA(P1,A)A
HomA(f1,A)←−−−−−−− HomA(P0,A)A.

Thus we have a commutative diagram

HomA(HomA(P1,A)A,AA)
g−−−−→ HomA(HomA(P0,A)A,AA) −−−−→ 0

∼=
y ∼=

y
P1

f1−−−−→ P0 −−−−→ 0.
Here g = HomA(HomA(f1AA).
Thus f1 is splittable epimorphism, which means M = 0.

Masahisa Sato (University of Yamanashi) On Nakayama Conjecture and related conjectures-Review October 7-10, 2017 36 / 56



Tilting version of Generalized Nakayama Conjecture

Tilting version of Generalized Nakayama Conjecture

Takayashi Wakamatsu gave the following conjecture.

Conjecture (TGNC: Tilting version of Generalied Nakayama Conjecture)

Assume TA is a tilting module and let

0→ A→ T1 → T2 → · · · → Tn → · · ·

be a minimal dominant resolution,
then for any indecomposable direct summand T ′ < ⊕T,
there is some i such that T ′ < ⊕Ti .

A module TA is called a tilting module if the following two conditions are satisfied;
(1) ExtiA(T ,T ) = 0 for any i > 0.
(2) There is some exact sequence

· · · → T2 → T1 → D(A)A → 0

such that Ti < ⊕(
ni∑
⊕T ) for every i and

HomA(T ,T2)→ HomA(T ,T1)→ HomA(T ,D(A))→ 0.

is exact.Masahisa Sato (University of Yamanashi) On Nakayama Conjecture and related conjectures-Review October 7-10, 2017 37 / 56



Tilting version of Generalized Nakayama Conjecture

Tilting version of Generalized Nakayama Conjecture

Takayoshi Wakamatsu gave the following conjecture in his lecture which is
equivalent to [GNC].

Theorem 6.1

[GNC] ⇐⇒ [TGNC]

Let TA be a tilting module. An exact sequence

0→ AA → T1 → T2 → · · ·

is called a dominant resolution if the following two conditions are satisfied;

(1) Ti < ⊕(
ni∑
⊕TA) for every i .

(2) 0← HomA(A,T )← HomA(T1,T )← HomA(T2,T )← · · · is exact.

Remark 6.2 (Wakamatsu)

There is a minimal dominant resolution.
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Tilting version of Generalized Nakayama Conjecture

Tilting version of Generalized Nakayama Conjecture

Proof.

Assume [TGNC]. Let (*) 0→ AA→ AI1 → AI2 → · · · be a minimal injective
resolution of AA. AD(AA) is a tilting module with a minimal dominant resolution
(*). Indecomposable direct summands of AD(AA) are injective envelops of all
simple modules. That is, any simple module is a submodule of some Ii by
[TGNC]. Hence [GNC] holds.
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Tilting version of Generalized Nakayama Conjecture

Tilting version of Generalized Nakayama Conjecture

Proof.

Next assume [GNC]. We set B = EndA(TA). We know that a tilting module has
the double centralizer property, we have A = EndB(BT ).
Let 0→ AA → T1 → T2 → · · · and 0→ BB → T ′

1 → T ′
2 → · · · be minimal

dominant resolutions of AA and BB, respectively.
We take a direct sum

∑
⊕L of non-isomorphic indecomposable direct summands

of some Ti .
Since

∑
⊕L < ⊕T , there is f ∈ B such that f 2 = f and

∑
⊕L = fT .

[TGNC] is equivalent to f = 1B , so we show f = 1B .
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Tilting version of Generalized Nakayama Conjecture

Tilting version of Generalized Nakayama Conjecture

Proof.

Also we take a direct sum
∑
⊕M of non-isomorphic indecomposable direct

summands of some T ′
i .

By the same argument as above, there is e ∈ A = End(TB) such that e2 = e and∑
⊕M = Te.

We know that
(1) fAf fTeeAe , BBffBf , eAeeAA are tilting modules.
(2) BTA

∼= BBf ⊗fBf fTe ⊗eAe eA.
(3) BTA is a tilting module iff AHomK (T ,K )B = D(T ) is a co-tilting module.
Since BBffBf is a tilting module, there is an exact sequence

· · · →
∑
⊕Bf →

∑
⊕Bf → BD(B)→ 0.

Hence we have an exact sequence

0→ B →
∑
⊕fD(B)→

∑
⊕fD(B)→ · · · ,

hence f = 1B by [GNC].
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Related Results

Related Results

Summary:
For algebras,

[FDC] =⇒ [SNC] =⇒ [GNC] ⇐⇒ [GNC+] ⇐⇒ [TGNC]

=⇒ [NC] ⇐⇒ [TC+] ⇐⇒ [TC] ⇐⇒ [TC1] and [TC2]

[NNC] for atinian rings =⇒ [NC] for algebrs
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Related Results

Related Results

1 GEORGE V. WILSON, The Cartan Map on Categories of Graded Modules
JOURNAL OF ALGEBRA 85, 390-398 (1983)

Theorem 7.1

[GNC] is true for positive graded algebras.

2 Hiroyuki Tachikawa, LNM351, 1984

Theorem 7.2

[T2] is true for a group algebra k[G ] for a finite p-group G and a field k.

3 RAINER SCHULTZ, Boundedness and Periodicity of Modules over QF Rings,
JOURNAL OF ALGEBRA 101, 450-469 (1986)

Theorem 7.3

[T2] is true for a group algebra k[G ] for a finite group G and a field k.
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Related Results

Related Results

1 Edward L. Green, Birge Zimmermann-Huisgen
Finitistic dimension of artinian rings with vanishing radical cube,
Mathematische Zeitschrift 206, 505-526 (1991)

Theorem 7.4

[FDC] is true for an algebra A with vanishing radical cube (i.e. rad3A = 0).

2 Peter Dräxler, A proof of the generalized Nakayama conjecture for algebras
with J2ℓ+1 = 0 and A/Jℓ representation finite,
Journal of Pure and Applied Algebra 78(2), 161-164 (1992)

Theorem 7.5

[GNC] is true for algebras A with rad2ℓ+1A = 0 and A/radℓA representation finite.
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Related Results

Yong Wang’s Result

1 Yong Wang, A remarks on the Strong Nakayama Conjecture,1992

Theorem 7.6

[SNC] is true for artinian rings R with rad2ℓ+1R = 0 and A/radℓR representation
finite.

His proof is very smart !
He uses the fact that Z2m is a noetherian Z-module.
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Related Results

Yong Wang’s Result

Proof.

(Wang’s proof)
Assume there is finitely generated non-zero R-module RM such that
ExtiR(M,R) = 0 for all i ≥ 0.
For a projective resolution of M,

· · · → Pn+1
fn+1−−−−→ Pn → · · · → P1

f1−−−−→ P0
f0−−−−→ M → 0,

we set Ωi = Imfi and denote T ∗ = HomR(RT , RRR)R .
By assumption, we have an exact sequence

0← Ω∗
i ← P∗

i−1 ← · · · ← P∗
1

f ∗1←−−−− P∗
0 ← 0..

Thus p.d Ω∗
i ≤ i − 1 for any i ≥ 1.

Since Ω∗
i ⊂ JP∗

i , J
2ℓΩ∗

i = 0 for any i .
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Related Results

Yong Wang’s Result

Proof.

We prove Ext1R(Ω
∗
2 ,R) ̸= 0 and Ext1R(Ω

∗
i ,R) = 0 for any i ≥ 3.

Since P ∼= P∗∗ for any projective module P,
we have the following commutative diagram

· · · −−−−→ Pn+1
fn+1−−−−→ Pn −−−−→ · · · −−−−→ P1

f1−−−−→ P0

∼=
y ∼=

y ∼=
y ∼=

y ∼=
y

· · · −−−−→ P∗∗
n+1

f ∗∗n+1−−−−→ P∗∗
n −−−−→ · · · −−−−→ P∗∗

1
f1

∗∗

−−−−→ P∗∗
0 .

Thus

0 ←−−−− (Ωn+3)
∗ ←−−−− (Pn+2)

∗ ←−−−− (Pn+1)
∗ ←−−−− · · ·

is a projective resolution and

0 −−−−→ (Ωn+3)
∗∗ −−−−→ (Pn+2)

∗∗ −−−−→ (Pn+1)
∗∗

is exact, which means Ext1R((Ωn+3)
∗,R) = 0 for any n ≥ 0.Masahisa Sato (University of Yamanashi) On Nakayama Conjecture and related conjectures-Review October 7-10, 2017 47 / 56



Related Results

Yong Wang’s Result

Proof.

Consider the following commutative diagram ;

0 −−−−→ Ω∗∗
2 −−−−→ P∗∗

1

f ∗∗1−−−−→ P∗∗
0 −−−−→ Ext1R(Ω

∗
2 ,R) −−−−→ 0

∼=
y ∼=

y
P1

f1−−−−→ P0 −−−−→ M −−−−→ 0,

we know that f1 is non-splittable.
Thus Ext1R(Ω21

∗,R) ̸= 0.
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Related Results

Yong Wang’s Result

Proof.

We fix m ≥ 1. Take 0 ̸= RN such that p.d RN ≤ m, and J2ℓN = 0. We set
N1 = JℓN, N2 = N/JℓN.
Since R/Jℓ is representation finite, let {C1, . . . ,Cm} be the complete set of
non-isomorphic indecomposable modules and we have the decompositions

N1 =
m∑
j=1

⊕C aj
j , N2 =

m∑
j=1

⊕C bj
j .

. For i > m, Exti+1
R (N1,R)R ∼= ExtiR(N2,R) is finitely generated.

We set ℓ(k , j) = length ExtkR(Cj ,R)R , then
m∑
j=1

ℓ(i + 1, j) · aj =
m∑
j=1

ℓ(i , j) · bj .

Masahisa Sato (University of Yamanashi) On Nakayama Conjecture and related conjectures-Review October 7-10, 2017 49 / 56



Related Results

Yong Wang’s Result

Proof.

We denote Z-module Li (i > 0) by

{(c1, · · · , cm, d1, · · · , dm) ∈ Z2m |
m∑
j=1

ℓ(i + 1, j) · cj =
m∑
j=1

ℓ(i , j) · dj}

They are Z-submodules of the noetherian module Z2m.
So an increasing sequence L0 ⊂ L1 ⊂ · · · terminates.
That is, Lm0 = Lm0+1 = . . . . for some m0.
Take N = (Ωm0+3)

∗. Remarking that p.d (Ωm0+3)
∗ < m0 + 2,

(a1, · · · , am, b1, · · · , bm) ∈ Lm0+2,
thus (*) (a1, · · · , am, b1, · · · , bm) ∈ Lm0 = Lm0+1.
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Related Results

Yong Wang’s Result

Proof.

From the exact sequence

0→ JℓN → N → N/JℓN → 0

and the fact
Extm0+1

R ((Ωm0+3)
∗,R) ∼= Ext1R(Ω

∗
3 ,R) = 0,

we have an exact sequence

0→ Extm0+1
R (JℓN,R)→ Extm0+2

R (N/JℓN,R)→
Extm0+2

R (N,R)→ Extm0+2
R (JℓN,R)→

Extm0+3
R (N/JℓN,R)→ Extm0+3

R (N,R) = 0.
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Related Results

Yong Wang’s Result

Proof.

From (*), we have
length Extm0+1

R (JℓN,R) = length Extm0+2
R (N/JℓN,R)

length Extm0+2
R (JℓN,R) = length Extm0+3

R (N/JℓN,R)
Thus

0 = Extm0+2
R ((Ωm0+3)

∗,R) = Ext1R(Ω
∗
2 ,R) ̸= 0,

which is a contradiction.
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Related Results

RAINER SCHULTZ’s Result

1 RAINER SCHULTZ gave the following example from which we know that
[T2] is not true for artinian rings in general
by Lemma 1.7.

Thus
[NC] is not true for artinian rings in general .

Example 1

There is a self-injective artinian ring R and a finitely generated left R-module RM
such that

(i) ExtiR(M,M) = 0 for any i > 0,
(ii) MEndR (M,M) is not finitely generated EndR(M,M)-module.
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Related Results

Robert Martinez-Villa’s Result

1 Robert Martinez-Villa explored conditions in the category of functors of the
stable category which are equivalent to [NC].

Theorem 7.7

Assume ℓ.dom.dim A ≤ n.
Then Domk = {AM| ℓ.dom.dim M ≥ k} is contravariantly finite for any k ≤ n
in the stable category mod-A of the module category.

We set
F̃k = {F ∈ mod(mod-A)|F (M) = 0 for any M ∈ Domk}

T̃k = {G ∈ mod(mod-A)|G (M) = 0 for any M ∈ F̃k}

Then we know (T̃k , F̃k) is a hereditary torsion theory with a torsion radical tk .

We denote Dom =
∞∩
k=0

Domk and F̃ =
∞∩
k=0

F̃k .

Let (T̃ , F̃) be a corresponding torsion theory with a torsion radical t.
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Related Results

Robert Martinez-Villa’s Result

Robert Martinez-Villa gave the following conjecture.

Conjecture (MC: Martinez Conjecture)

For any M ∈ mod(mod-A), it holds that

(1) t(M) =
∞∩
k=0

tk(M)

(2) t(M) is finitely presented

Theorem 7.8

[MC] implies [NC].

Reference: Martinez-Villa, Roberto
Algebras of infinite dominant dimension and torsion theories
Comm. Algebra 22 (1994), no. 11, 4519–4535.
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Related Results

Cheng Chang Xi’s Result

1 Cheng Chang Xi showed that
dominant dimension is not invariant under derived equivalences.

Reference: Cheng Chang Xi
Dominant dimensions, derived equivalences and tilting modules
ISRAEL JOURNAL OF MATHEMATICS 215(2016), no1, 349-395.
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Related Results

Thank you for your attention !
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