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An extension to
noncommutative rings

S-Noetherian ring and S-Noetherian module

Definition (2002, Anderson-Dumitrescu)

Let R be a commutative ring with identity, S a multiplicative
subset of R and M an R-module.

(1) An ideal I of R is S-finite if there exist an s ∈ S and a finitely
generated ideal J of R such that sI ⊆ J ⊆ I .

(2) R is an S-Noetherian ring if each ideal of R is S-finite.

(3) M is S-finite if there exist an s ∈ S and a finitely generated
R-submodule F of M such that sM ⊆ F .

(4) M is S-Noetherian if each submodule of M is S-finite.

I If S consists of units of R, then the notion of S-Noetherian
rings (resp., S-Noetherian modules) is precisely the same as
that of Noetherian rings (resp., Noetherian modules).
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Almost finitely generatedness

Definition (1995, Anderson-Kwak-Zafrullah)

Let D be an integral domain with quotient field K and I a nonzero
ideal of D[X ].

(1) I is almost finitely generated if there exist f1, . . . , fm ∈ I with
degfi > 0 and s ∈ D \ {0} such that sI ⊆ (f1, . . . , fm).

(2) D[X ] is almost Noetherian if each nonzero ideal I of D[X ]
with IK [X ] 6= K [X ] is almost finitely generated.

(3) D is agreeable if for each fractional ideal F of D[X ] with
F ⊆ K [X ], there exists an s ∈ D \ {0} with sF ⊆ D[X ].
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Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R and
M an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R
(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,
then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and an
S-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each ideal
I of R and S a multiplicative subset of R. If T is S-Noetherian,
then so is R.
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Amalgamation

Definition

Let f : A→ B be a ring homomorphism and J an ideal of B. The
subring A ./f J of A× B is defined as follows:

A ./f J = {(a, f (a) + j) | a ∈ A and j ∈ J}.

We call the ring A ./f J the amalgamation of A with B along J
with respect to f .
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Amalgamation (Continued)

In fact, A ./f J is the pullback f̂ ×
B/J

π of f̂ and π, where

π : B → B/J is the canonical projection and f̂ = π ◦ f :

A ./f J = f̂ ×
B/J

π
p
A−−−−→ A

p
B

y f̂

y
B

π−−−−→ B/J.

Also, the map ı : A→ A ./f J given by a 7−→ (a, f (a)) for all
a ∈ A is the natural embedding.
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noncommutative rings

Main result

For a multiplicative subset S of A, put S ′ := {(s, f (s)) | s ∈ S}.
Clearly, S ′ and f (S) are multiplicative subsets of A ./f J and B,
respectively.

Theorem

Let f : A→ B be a ring homomorphism, J an ideal of B, S a
multiplicative subset of A and S ′ := {(s, f (s)) | s ∈ S}.
(1) If A is an S-Noetherian ring and B is an S-finite A-module

(with the A-module structure induced by f ), then A ./f J is
an S ′-Noetherian ring.

(2) f (A) + J is an f (S)-Noetherian ring.
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Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | the
constant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | the
constant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆
E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆
E [[X1, . . . ,Xn]].
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Application 1: Composite ring extensions
(Continued)

Recall that a multiplicative subset S of a commutative ring R is
anti-Archimedean if

⋂
n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S an
anti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Recall that a multiplicative subset S of a commutative ring R is
anti-Archimedean if

⋂
n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S an
anti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Recall that a multiplicative subset S of a commutative ring R is
anti-Archimedean if

⋂
n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S an
anti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Recall that a multiplicative subset S of a commutative ring R is
anti-Archimedean if

⋂
n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S an
anti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and S
an anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and S
an anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 1: Composite ring extensions
(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} a
set of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and S
an anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,
then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is an
S-Noetherian ring.

Jung Wook Lim (jwlim@knu.ac.kr): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings



On S-Noetherian rings

Jung Wook Lim
(jwlim@knu.ac.kr)

Introduction

Some results

An extension to
noncommutative rings

Application 2: Nagata’s idealization

Let R be a commutative ring with identity and M a unitary
R-module. The idealization of M in R (or trivial extension of R
by M) is a commutative ring

R(+)M := {(r ,m) | r ∈ R and m ∈ M}

under the usual addition and the multiplication defined as
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for all
(r1,m1), (r2,m2) ∈ R(+)M.
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Application 2: Nagata’s idealization (Continued)

Basic properties

Let R be a commutative ring with identity and M a unitary
R-module. If S is a multiplicative subset of R, then S(+)M is a
multiplicative subset of R(+)M.

Theorem

Let R be a commutative ring with identity, M a unitary R-module
and S a multiplicative subset of R. Then the following statements
are equivalent.

(1) R(+)M is an S(+)M-Noetherian ring.

(2) R is an S-Noetherian ring and M is S-finite.
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An extension to noncommutative rings

I Recently, we extended the notions of S-Noetherian rings and
modules to noncommutative rings (with Baeck and Lee).

I Among other things, we studied the matrix ring extension,
the Ore extension, and the power series ring extension.
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Thank you for your attention!
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