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Introduction

Definition 1
Let k be an algebraically closed field.
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Introduction

Definition 1

Let k be an algebraically closed field. Let A, B be k-subalgebras of
Mp(k). We say that A and B are equivalent if there exists P € GL,(k)
such that P~*AP = B.
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There exist 26 equivalence classes of k-subalgebras of M3(k) for any
algebraically closed field k.
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There exist 26 equivalence classes of k-subalgebras of M3(k) for any
algebraically closed field k.

(1) Ms(k)
(2) P271(k) = {( E I ) c Mg(k)}
0 0 =
(3) P172(k) = 0 x = € M3(k)
0 =
(4) Bs(k) := 0 % * | € Ms(k)
0 0 =

(5) Cs(k) :{ (
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a b c

(11) J3(k):{ (O a b) a,b,cek}
0 0 a
a b ¢

(12) N3(k):{ (0 a d) a,b,c,dek}
0 0 a
a b o0

(13) Si(k) == { 0 a0 a,bek }
0 0 a
a 00

(14) Sa(k) = { 0 a c a,b,ceck }
0 0 b
a 0 c

(15) S3(k) := { 0 b O a,b,c €k }
0 0 b
a b c

(16) Sa(k) := { 0 a 0 a,b,cek }
0 0 a
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a 0 b

(17) Ss(k) = 0 a c a,b,cek
0 0 a
a c d

(18) Se(k) == 0 a O a,b,c,d ek
0 0 b
a 0 c

(19) S7(k) = 0 a d a,b,c,d €k
0 0 b
a c d

(20) Ss(k) := 0 b O a,b,c,d ek
0 0 b
a 0 ¢

(21) So(k) := 0 b d a,b,c,d ek
0 0 b
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a
(22) Sio(k) :{ 0
0
a
(23) Sy1(k) :{ 0
0
a
(24) Sya(k) :{ 0
0
(25) Si3(k) = { ( 0
0
(26) 514(/() = { ( 0
0

O *x¥ O O % *

O T O o O T
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Today's talk

@ Let us consider the moduli Molds 4 of d-dimensional subalgebras of
Ms.
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Today's talk

@ Let us consider the moduli Molds 4 of d-dimensional subalgebras of
Ms.

@ Molds 4 is a closed subscheme of the Grassmann scheme Grass(d,9).

@ We talk about the cases d =2 and d = 3.
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For introducing the moduli of subalgebras of the full matrix ring, we need
to define molds on schemes.
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For introducing the moduli of subalgebras of the full matrix ring, we need
to define molds on schemes.

Definition 3

Let X be a scheme. A subsheaf of Ox-algebras A C M,(Ox) is said to
be a mold of degree n on X if A and M,(Ox)/.A are locally free sheaves
on X.
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For introducing the moduli of subalgebras of the full matrix ring, we need
to define molds on schemes.

Definition 3

Let X be a scheme. A subsheaf of Ox-algebras A C M,(Ox) is said to

be a mold of degree n on X if A and M,(Ox)/.A are locally free sheaves
on X. We denote by rankA the rank of A as a locally free sheaf on X.

For a commutative ring R, we say that an R-subalgebra A C M,(R) is

a mold of degree n over R if A is a mold of degree n on SpecR.
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Proposition 1.1

The following contravariant functor is representable by a Z-scheme
Mold,, 4.

Mold, g : (Sch)® — (Sets)
X — { A| A: rank d mold of degree n on X }
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Proposition 1.1

The following contravariant functor is representable by a Z-scheme
Mold,, 4.

Mold, g : (Sch)® — (Sets)
X — { A| A: rank d mold of degree n on X }

Moreover, Mold,, 4 is a closed subscheme of the Grassmann scheme
Grass(d, n?).
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Example 4

Let n=3.Ifd=1o0rd> 6, then

Molds; = SpecZ,

Moldzs = Flag:= GL3/{(aj) € GL3 | aj; =0 for i > j},
Molds; = P3][P3

Moldzg = 0,

Moldz 9 = SpecZ.
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Molds; = SpecZ,

Moldzs = Flag:= GL3/{(aj) € GL3 | aj =0 for i > j},
Molds; = P3][P3

Moldzg = 0,

Moldz 9 = SpecZ.

When d =1, A= Rl C M3(R) corresponds to the unique R-point of
Mold3 1 = SpecZ for a commutative ring R.
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When d = 6, the set of k-rational points of Moldz g = Flag coincides with
{PB3(k)P~t | P € GL3(k)} for a field k, where

B3(k) = * S M3(k)

O O *
O ¥ ¥
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When d = 6, the set of k-rational points of Moldz g = Flag coincides with
{PB3(k)P~1 | P € GL3(k)} for a field k, where

%k %
B3(k) = 0 % = S M3(k)
0 0 =

When d = 7, Molds 7 = P [ P5.
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When d = 6, the set of k-rational points of Moldz g = Flag coincides with
{PB3(k)P~1 | P € GL3(k)} for a field k, where

%k %
B3(k) = 0 % = S M3(k)
0 0 =

When d = 7, Molds 7 = P [ P5.
P

* ok
Let Pg,l(k) = * %k € M3(k) and
0 =

Pl’z(k) = S M3(k)

***O*

O O ¥

* X K
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When d = 6, the set of k-rational points of Moldz g = Flag coincides with
{PB3(k)P~1 | P € GL3(k)} for a field k, where

%k %
B3(k) = 0 % = S M3(k)
0 0 =

When d = 7, Molds 7 = P [ P5.

ko ok ok
Let Pg,l(k) = * ok %k € M3(k) and
0 0 =
* kX
Pl,z(k) = 0 x = S M3(k)
0 * =«

The set of k-rational points of Molds 7 = P2 [[P2 coincides with
{PP21(k)P™Y| P € GL3(k }H{PP1 2(k)P7L| P e GL3(k)},

where k is a field.
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Molds > and Molds 3

In this talk, we discuss
M01d372 and M01d373.
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Molds > and Molds 3

In this talk, we discuss
M01d372 and M01d373.

First we deal with Molds 5.
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Let k be an algebraically closed field. There exist two equivalence classes
of 2-dimensional k-subalgebras of M3(k):

a 00
(Cg X Dl)(k) = 0 a 0 a,bek
0 0 b
and
a b 0
Si(k) == 0 a 0 a,bek
0 0 a
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Subregular matrix

We can classify 3 x 3-matrices into three types: Regular matrices,
subregular matrices, and scalar matrices.
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Subregular matrix

We can classify 3 x 3-matrices into three types: Regular matrices,
subregular matrices, and scalar matrices.

Definition 5

Let M3 be the scheme of 3 x 3-matrices over Z.
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Subregular matrix

We can classify 3 x 3-matrices into three types: Regular matrices,
subregular matrices, and scalar matrices.

Definition 5

Let M3 be the scheme of 3 x 3-matrices over Z. In other words, M3 = A%
and we can consider a universal matrix A on Ms.
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Subregular matrix

We can classify 3 x 3-matrices into three types: Regular matrices,
subregular matrices, and scalar matrices.

Definition 5

Let M3 be the scheme of 3 x 3-matrices over Z. In other words, M3 = A%
and we can consider a universal matrix A on M3. Then M3 can be divided
into the following three subschemes:

Ms = My® [ [ g [ ] s

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer October 7, 2017 15 / 40
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Let M3 be the scheme of 3 x 3-matrices over Z. In other words, M3 = A%
and we can consider a universal matrix A on M3. Then M3 can be divided
into the following three subschemes:

Ms = My® [ [ g [ ] s

Here Mgeg is an open subscheme consisting of non-derogatory matrices (or
regular matrices),
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Definition 5

Let M3 be the scheme of 3 x 3-matrices over Z. In other words, M3 = A%
and we can consider a universal matrix A on M3. Then M3 can be divided
into the following three subschemes:

Ms = My® [ [ g [ ] s

Here M5® is an open subscheme consisting of non-derogatory matrices (or
3

regular matrices), Mg‘:alar is a closed subschemes consisting of scalar

matrices,
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Subregular matrix

We can classify 3 x 3-matrices into three types: Regular matrices,
subregular matrices, and scalar matrices.

Definition 5

Let M3 be the scheme of 3 x 3-matrices over Z. In other words, M3z = A%
and we can consider a universal matrix A on M3. Then M3 can be divided
into the following three subschemes:

M3 _ Mgcg H Mgr H Mgcalar‘

Here Mgeg is an open subscheme consisting of non-derogatory matrices (or
regular matrices), Mg‘:alar is a closed subschemes consisting of scalar
matrices, and M3" is a subscheme consisting of matrices A satisfying the
conditions that A2 can be written as a linear combination of /3 and A and

that /3 and A are linearly independent.
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Roughly speaking, if the degree of the minimal polynomial for a
3 x 3-matrix A is 3, 2, or 1, then we call A regular, subregular, or scalar,
respectively.
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Roughly speaking, if the degree of the minimal polynomial for a
3 x 3-matrix A is 3, 2, or 1, then we call A regular, subregular, or scalar,
respectively.

For describing Molds », we deal with subregular matrices.
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The normal form of subregular matrices
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The normal form of subregular matrices

Proposition 1.2

Let R be a local ring. For A € M5 (R), there exists P € GL3(R) such that

a
0
0

10
P1AP = b 0
0 b
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The normal form of subregular matrices

Proposition 1.2

Let R be a local ring. For A € M5 (R), there exists P € GL3(R) such that
a
0
0

Moreover, a,b € R are determined by only A (not by P).

10
P1AP = b 0
0 b
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The normal form of subregular matrices

Proposition 1.2

Let R be a local ring. For A € M5 (R), there exists P € GL3(R) such that

10
P1AP = b 0
0 b

O O v

Moreover, a,b € R are determined by only A (not by P).

Definition 6
We call a, b € R in Proposition 1.2 the a-invariant and the b-invariant of
A, respectively.
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The subscheme MJ' is the moduli of 3 x 3 subregular matrices. For the
universal subregular matrix A on M3", we can define the a-invariant and
the b-invariant of A on M5
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The subscheme MJ' is the moduli of 3 x 3 subregular matrices. For the
universal subregular matrix A on M, we can define the a-invariant and
the b-invariant of A on M5

Definition 7

We denote by a(A), b(A) € Ongr(M3') the a-invariant and b-invariant of
the universal matrix A on M5, respectively.
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The subscheme MJ' is the moduli of 3 x 3 subregular matrices. For the
universal subregular matrix A on M3", we can define the a-invariant and
the b-invariant of A on M5

Definition 7

We denote by a(A), b(A) € Ongr(M3') the a-invariant and b-invariant of
the universal matrix A on M%', respectively. These are PGL3-invariant,
where the group scheme PGL3 acts on M5 by A — P~LAP.
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The quotient of M5 by PGLs is isomorphic to AZ.
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The quotient of M5 by PGL; is isomorphic to A3,

Proposition 1.3
Let : M§ — A2 be the morphism defined by A+ (a(A), b(A)).
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The quotient of M5 by PGL; is isomorphic to A3,

Proposition 1.3

Let m: M§ — A2 be the morphism defined by A+ (a(A), b(A)). Then
gives a universal geometric quotient by PGLs3.
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The quotient of M5 by PGL; is isomorphic to A3,

Proposition 1.3

Let m: M§ — A2 be the morphism defined by A+ (a(A), b(A)). Then
gives a universal geometric quotient by PGL3. Moreover, M3 is a smooth
integral scheme of relative dimension 6 over Z.
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There exists a surjective morphism ¢ : M3 — Molds ».
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There exists a surjective morphism ¢ : M3 — Molds ».

The scheme Molds» is the moduli of 2-dimensional subalgebras of Ms.
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There exists a surjective morphism ¢ : M3 — Molds ».

The scheme Molds» is the moduli of 2-dimensional subalgebras of Ms.

Let (A) be the subalgebra generated by A for A € M5'. We define
¢ : M — Molds by A — (A).
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There exists a surjective morphism ¢ : M3 — Molds ».

The scheme Mold3 > is the moduli of 2-dimensional subalgebras of M3.

Let (A) be the subalgebra generated by A for A € M5'. We define
¢ : M — Molds by A — (A).

Proposition 1.4

The morphism ¢ : M3 — Molds > is smooth and surjective.
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What is 1\[01(1327
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What is Molds »?

We describe Molds > explicitly.
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What is 1\[01(1327

We describe Molds > explicitly.

Let V .= 0%3 be a rank 3 trivial vector bundle on SpecZ.
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What is 1\[01(1327

We describe Molds > explicitly.

Let V = 0%3 be a rank 3 trivial vector bundle on SpecZ. We denote by
P, (V) the projective plane consisting of subline bundles of V.
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What is 1\[01(1327

We describe Molds > explicitly.

Let V = 0%3 be a rank 3 trivial vector bundle on SpecZ. We denote by
P, (V) the projective plane consisting of subline bundles of V. We also
denote by P*(V) the projective plane consisting of rank 2 subbundles of V.
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What is 1\[01(1327

We describe Molds > explicitly.

Let V = 0%3 be a rank 3 trivial vector bundle on SpecZ. We denote by
P, (V) the projective plane consisting of subline bundles of V. We also
denote by P*(V) the projective plane consisting of rank 2 subbundles of V.

Let us define a morphism ¢ : P, (V) x P*(V) — Molds ».
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What is 1\[01(1327

We describe Molds > explicitly.

Let V = 0%3 be a rank 3 trivial vector bundle on SpecZ. We denote by
P, (V) the projective plane consisting of subline bundles of V. We also
denote by P*(V) the projective plane consisting of rank 2 subbundles of V.

Let us define a morphism ¢ : P, (V) x P*(V) — Molds ».

From now on, we omit scheme-theoretical proofs.
In the following discussions, we recognize vector
bundles as vector spaces over a field k, for
simplicity.
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¢ P.(V) x P*(V) — Molds.,»
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¢ P.(V) x P*(V) — Molds.,»

Let (L, W) € P.(V) x P*(V). In other words, let L and W be a
1-dimensional subspace and a 2-dimensional subspace of V/, respectively.
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¢ P.(V) x P*(V) — Molds.,»

Let (L, W) € P.(V) x P*(V). In other words, let L and W be a
1-dimensional subspace and a 2-dimensional subspace of V/, respectively.
We can regard f € Homy(V /W, L) as an element of End(V) by

v v w Lo v
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¢ P.(V) x P*(V) — Molds.,»

Let (L, W) € P.(V) x P*(V). In other words, let L and W be a
1-dimensional subspace and a 2-dimensional subspace of V/, respectively.
We can regard f € Homy(V /W, L) as an element of End(V) by

v v w Lo v

We denote by £(L, W) the k-subalgebra of Endy (V) generated by
{f € Homy(V/W,L)} and idy.
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¢ P.(V) x P*(V) — Molds.,»

Let (L, W) € P.(V) x P*(V). In other words, let L and W be a
1-dimensional subspace and a 2-dimensional subspace of V/, respectively.
We can regard f € Homy(V /W, L) as an element of End(V) by

v v w Lo v
We denote by £(L, W) the k-subalgebra of Endy (V) generated by

{f € Homy(V/W,L)} and idy. Since dim Hom,(V /W, L) =1, we see
that £(L, W) is a 2-dimensional k-subalgebra.
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¢ P.(V) x P*(V) — Molds.,»

Let (L, W) € P.(V) x P*(V). In other words, let L and W be a
1-dimensional subspace and a 2-dimensional subspace of V/, respectively.
We can regard f € Homy(V /W, L) as an element of End(V) by

v v w Lo v

We denote by £(L, W) the k-subalgebra of Endy (V) generated by

{f € Homy(V/W,L)} and idy. Since dim Hom,(V /W, L) =1, we see
that £(L, W) is a 2-dimensional k-subalgebra. We define a morphism

£ P(V) xP*(V) — Molds» by (L, W) — &(L, W).
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1\[01(13’2 = P*( V) X ]P)*( V)

Theorem 8
The morphism £ : P, (V) x P*(V) — Molds > is an isomorphism.
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Two-dimensional subalgebras (C, x D) and S;
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Two-dimensional subalgebras (C, x D) and $;

There are two types of 2-dimensional k-subalgebras of M3(k) over an
algebraically closed field k:
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Two-dimensional subalgebras (C, x D) and $;

There are two types of 2-dimensional k-subalgebras of M3(k) over an
algebraically closed field k:

a 00
(C2 x D1)(k) = 0 a 0 abek ;,
0 0 b
a b 0
Si(k) = 0 a 0 a,bek
0 0 a
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How (Cz x D1) and S; are contained in Molds,?
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How (Cz x D1) and S; are contained in Molds,?

Definition 9

We define an open subscheme M%XDl of M5 by
MS2*P1 = (A e MY | a(A) — b(A) # 0}.
We also define a closed subscheme Mgl of M3" by

M3! := {A € M5 | a(A) — b(A) = 0}.
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How (Cz x D1) and S; are contained in Molds,?

Definition 9

We define an open subscheme M%XDl of M5 by
MS2*P1 = (A e MY | a(A) — b(A) # 0}.
We also define a closed subscheme Mgl of M3" by
M3! := {A € M5 | a(A) — b(A) = 0}.

Similarly, we define subschemes Mold%XD1 and Moldil2 of Mold3 .
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How (Cz x D1) and S; are contained in Molds,?

We define an open subscheme M%XDl of M5 by
Mgt = {A € MY | a(A) — b(A) # 0}.
We also define a closed subscheme Mgl of M3" by
M3! := {A € M5 | a(A) — b(A) = 0}.

Similarly, we define subschemes Mold%XD1 and Moldil2 of Mold3 .

Geometric points of MoldchD1 and Moldg,l2 correspond to subalgebras
which are equivalent to 02 x Dy and Sy, respectively.
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How (Cz x D1) and S; are contained in Molds,?

We define an open subscheme M%XDl of M5 by
MS2*P1 = (A e MY | a(A) — b(A) # 0}.
We also define a closed subscheme Mgl of M3" by
M3! := {A € M5 | a(A) — b(A) = 0}.

Similarly, we define subschemes Mold%XD1 and Moldil2 of Mold3 .

Geometric points of MoldchD1 and Moldg,l2 correspond to subalgebras
which are equivalent to 02 x Dy and Sy, respectively.

Set Flag := {(L, W) € P,(V) x PX(V) | L C W} C P,(V) x P*(V).
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Mold§3 P and Mold3},
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Mold$3 "t and Molds},

Theorem 10

The isomorphism & : P,(V) x P*(V) — Molds > induces
Mold§3* P = P, (V) x P*(V) \ Flag and Mold3}, = Flag.
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Mold$3 "t and Molds},

Theorem 10

The isomorphism & : P,(V) x P*(V) — Molds > induces

Moldg’z’;D1 ~ P, (V) x P*(V) \ Flag and Moldil2 = Flag. In particular,
Moldgzzx}):l is a smooth integral scheme of relative dimension 4 over Z,
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Mold$3 "t and Molds},

Theorem 10

The isomorphism & : P,(V) x P*(V) — Molds > induces

Moldg’z’;D1 ~ P, (V) x P*(V) \ Flag and Moldil2 = Flag. In particular,
Moldgzzx}):l is a smooth integral scheme of relative dimension 4 over Z,

and Moldgl2 is a smooth integral scheme of relative dimension 3 over Z.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer October 7, 2017 26 / 40



Three-dimensional subalgebras

There are seven types of 3-dimensional k-subalgebras of M3(k) over an
algebraically closed field k:
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Three-dimensional subalgebras

There are seven types of 3-dimensional k-subalgebras of M3(k) over an
algebraically closed field k:

*x 0 0
(4] D3(k) = 0 = 0 S M3(k)
0 0 =«
a c 0
@ (N2 x Dy)(k) := 0 a 0 a,b,ceck
0 0 b
a b c
Q J3(k) = 0 a b a,b,ceck
0 0 a
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Q Sy(k) =

Q S3(k):=

@ Si(k) =

Q Ss(k) =

—— N~/

O oo OO v O Ow

[« )

vt ©O Ouv T OO Oou O
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The main theorem on Molds 3
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The main theorem on Molds 3

Theorem 11

There is an irreducible decomposition

Moldz 3 = Moldreg U Mold 3 U Mold3 5,

where the relative dimensions of Moldge:f, Mold§23, and MoldS 3% over Z are
6, 4, and 4, respectively.
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The main theorem on Molds 3

Theorem 11

There is an irreducible decomposition

Moldz 3 = Moldreg U Mold 3 U Mold3 5,

where the relative dimensions of Moldg(i%, Mold§23, and Mold§33 over 7, are
6, 4, and 4, respectively.
Moreover, both Molds5 = Moldreg N Mold % and

Mold3 = Moldreg N Moldg have relative d/menSIon 2 over Z, and

Mold§% N Mold3 = 0.
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The regular part M of M,

Definition 12

Let M, be the scheme of n x n-matrices over Z. The scheme M, is
isomorphic to the affine space A%z.
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The regular part M of M,

Definition 12

Let M, be the scheme of n x n-matrices over Z. The scheme M, is
isomorphic to the affine space A%z. Let A be the universal matrix on

M,.
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The regular part M of M,

Definition 12

Let M, be the scheme of n x n-matrices over Z. The scheme M, is
isomorphic to the affine space A%z. Let A be the universal matrix on
M,. The open subscheme M;® of M, is defined by

M8 .= {x € M, | In, A, A%,..., A" : linearly independent in M,(k(x))},

where k(x) is the residue field of x. We call M,’® the regular part of M,,.

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer October 7, 2017 30 / 40



The regular part M of M,

Definition 12

Let M, be the scheme of n x n-matrices over Z. The scheme M, is
isomorphic to the affine space A%z. Let A be the universal matrix on
M,. The open subscheme M;® of M, is defined by

M8 .= {x € M, | In, A, A%,..., A" : linearly independent in M,(k(x))},

where k(x) is the residue field of x. We call M,’® the regular part of M,,.
For a commutative ring R, we call a matrix A € M,®(R) regular or
non-derogatory.
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Proposition 1.5

Let R be a local ring. Let A € Mp®(R).
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Proposition 1.5

Let R be a local ring. Let A € My®(R). There exists P € GL,(R) such
that

0 0 O -
1 0 0 0 —co1

piap_| 0 1 0 0 —chos
0 0 1 0 —cys
00 0 -~ 1 —q

Note that x" + c1x" " + -+ 4 ¢c,_1Xx + Cp is the characteristic polynomial
of A.

v
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M8 /PGL, = Aj

The group scheme PGL,, acts on M;® by A+ PLAP.
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M6 /PGL, = A

The group scheme PGL,, acts on M;® by A+ PLAP.
We define 7 : M® — A by A (c1,¢2, ..., cpn), where
X"+ o x" L 4+ ... 4 ¢ch_1Xx + ¢, is the characteristic polynomial of A.
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/PGL, = A7

The group scheme PGL,, acts on M;® by A+ PLAP.
We define 7 : M® — A by A (c1,¢2, ..., cpn), where
X"+ o x" L 4+ ... 4 ¢ch_1Xx + ¢, is the characteristic polynomial of A.

The morphism m : My® — Al is a universal geometric quotient by PGLy,.
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The smooth morphism ¢ : M3*® — Molds 3

Let (A) be the subalgebra generated by A for A € M5™. We define
it ME® — Molds s by A — (A).
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The smooth morphism ¢ : M3*® — Molds 3

Let (A) be the subalgebra generated by A for A € M5™. We define
it ME® — Molds s by A — (A).

Proposition 1.6

The morphism 1) : M3™® — Molds 3 is smooth and surjective.
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The smooth morphism ¢ : M3*® — Molds 3

Let (A) be the subalgebra generated by A for A € M5™. We define
it ME® — Molds s by A — (A).

Proposition 1.6

The morphism 1) : M3™® — Molds 3 is smooth and surjective.

Definition 14

We define an open subscheme Moldgf}% of Molds 3 by
Moldie% = (ML%).
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Mold}3, Mold33 "2, Mold3%, and so on
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Moldz3, Mold33*"2, Molds%, and so on

Theorem 15

The smooth integral scheme Moldy’; of relative dimension 6 over Z has a
stratification of subschemes

MoldZ%% =
Mold}3 [ [ Mold33<® T Mo 1dN2XD1/F2HM 13y [T Mo a3y

v
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Moldz3, Mold33*"2, Molds%, and so on

Theorem 15

The smooth integral scheme Moldy’; of relative dimension 6 over Z has a
stratification of subschemes

Mold5s =
Mold33 ] [ Mold33 ™ [ Mo 1dN2XD1/F2HM 137 Mo ld‘]?’/F?’

such that

(1) Mold3D3 is a smooth integral scheme of rel. dim. 6 over Z.

Q MoldN2XDl is a smooth integral scheme of rel. dim. 5 over Z[1/2].
@ Mo 1dN2XD1/ 2 is 2 smooth variety of dimension 5 over IF5.

(%) Mold ', Is a smooth integral scheme of rel. dim. 4 over Z[1/3].

(5] MoldJ3/ % is a smooth variety of dimension 4 over Fs.

v
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The morphisms g, : P*(V) x P*(V) — Molds 3 and

ps, - P*(V) X P*(V) — 1\/’101d3,3
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The morphisms g, : P*(V) x P*(V) — Molds 3 and

ps, - P*(V) X ]P)*(V) — 1\/’101d3,3

Let V = 0%3 be a free sheaf of rank 3 on Spec Z. Let us denote by

P,.(V) and P*(V) the projective spaces consisting of rank 1 and rank 2
subbundles of V/, respectively.
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The morphisms g, : P*(V) x P*(V) — Molds 3 and

ps, - P*(V) X ]P)*(V) — 1\/’101d3,3

Let V = 0%3 be a free sheaf of rank 3 on Spec Z. Let us denote by
P,.(V) and P*(V) the projective spaces consisting of rank 1 and rank 2
subbundles of V/, respectively.

Let us define ¢g, : P*(V) x P*(V) — Molds 3 by
(Wh, Wa) — (Hom(V /Wi, Wh)), where (Hom(V/ /Wi, Wh)) is the
subalgebra of Hom(V/, V) generated by Hom(V /W;, W).
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The morphisms g, : P*(V) x P*(V) — Molds 3 and

ps, - P*(V) X ]P)*(V) — 1\/’101d3,3

Let V = 0%3 be a free sheaf of rank 3 on Spec Z. Let us denote by
P,.(V) and P*(V) the projective spaces consisting of rank 1 and rank 2
subbundles of V/, respectively.

Let us define ¢g, : P*(V) x P*(V) — Molds 3 by
(Wh, Wa) — (Hom(V /Wi, Wh)), where (Hom(V/ /Wi, Wh)) is the
subalgebra of Hom(V/, V) generated by Hom(V /W;, W).

Let us define ¢g, : P.(V) x P.(V) — Molds 3 by
(L1, Lp) — (Hom(V/Ly, L3)), where (Hom(V//Ly, Lp)) is the subalgebra of
Hom(V/, V) generated by Hom(V//Ly, L).

Nakamoto, Torii (U. Yamanashi, Okayama U.) Beamer October 7, 2017 35/ 40



Mold3% and Mold3
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Mold3% and Mold3

Definition 16
We define open subschemes Mold§?3 and Moldgf3 of Molds 3 as
Mold3% := s, (P*(V) x P*(V) \ A) and

Mold§?3 = @5, (P«(V) x P(V) \ A), respectively. Here we denote by A
the diagonals of P*(V) x P*(V) or P,(V) x P.(V).
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Mold3% and Mold3

Definition 16
We define open subschemes Mold§?3 and Moldgf3 of Molds 3 as
Mold3% := s, (P*(V) x P*(V) \ A) and

Mold§?3 = @5, (P«(V) x P(V) \ A), respectively. Here we denote by A
the diagonals of P*(V) x P*(V) or P,(V) x P.(V).

Note that
M01d§f3 = g, (P*(V) x P*(V))

and
Mold3% = s, (P(V) x Pu(V)).
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Again : the main theorem on Molds 3
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Again : the main theorem on Molds 3

Theorem 17 (Theorem 11)

There is an irreducible decomposition

Molds 3 = Mold5§ U Mold§% U Mold33,

where the relative dimensions of Moldg Mold3 3, and Moldg’f‘3 over 7 are
6, 4, and 4, respectively.
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Again : the main theorem on Molds 3

Theorem 17 (Theorem 11)

There is an irreducible decomposition

Molds 3 = Mold5§ U Mold§% U Mold33,

where the relative dimensions of Moldg‘?, Mold3 L, and Moldg’f‘3 over 7. are
6, 4, and 4, respectively.
Moreover, both Mold§53 o= Moldreg N Mold§ L and

Moldg“3 = Moldreg N Mold333 have relative dimension 2 over Z, and

Mold3% N Mold§33 = 0.
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The description of Molds 3
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Appendix (1)

Proposition 1.7

Any subalgebras of M(k) can be classified into one of the following cases:
Q My(k)
E I 3
onis={(; 1)
x 0
onio-{(; 1))
Q Ny(k) := a b bek
2 T O a a?
0 C(k)=4 (2 %) |ack
218 = 0 a d
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Appendix (2)

Example 18

In the case n = 2, we have

Mold>; = SpecZ,
Moldyp, = P3,
Moldp3 = P},
Moldo4 = SpecZ.
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