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Setting of this talk

For simplicity,

e k: a field.

e A: a finite dimensional k-algebra.

e C # 0: a fin. dim. bimodule over A.

e a module := a right module
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Section 1.

Self-injective dimension
formula for trivial extension
algebras

Remark 1.1
The contents of this section is

taken from the paper

“Homological dimension formulas

for trivial extension algebras”
arXiv 1710.01469
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A trivial extension algebra

A trivial extension algebra A=A C
of A by C is an algebra

whose underlying k-module is A @ C
and the multiplication is defined

(r,c)(s,d) := (rs, rd + cs)
for r, s e N, c,d € C.
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Remark: a canonical grading of a trivial extension algebra

A trivial extension algebra A = A @ C has
the grading

degN\ =0, degC = 1.
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Quasi-Veronese algebra (1/4)

To show an importance of
trivial extension algebras,
we will explain that

every finitely graded algebra

L
A=A
i=0

is graded Morita equivalent to
a trivial extension algebra
with the canonical grading.
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Quasi-Veronese algebra (2/4)

A= @f:e A; : a finitely graded algebra
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Quasi-Veronese algebra (2/4)

A= @f;o A; : a finitely graded algebra

We define

an algebra VA (the Beilinson algebra) and
a bimodule AA over VA

in the following way:
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Quasi-Veronese algebra (3/4)

Ag Ay -+ Ap_q

va.= |0 Ao A

9

0 0 --- A
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Quasi-Veronese algebra (3/4)

Ay A; -+ A4
0 Ay - Ary

T .|
A
A, 0 0
AA-— | A1 /‘.\e 0
Ay Az Ay
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Quasi-Veronese algebra (4/4)

Then Al = VA® AA s
the ¢-th quasi-Veronese algebra (I. Mori).

Proposition 1.2

qv : Mod? A = Mod” A

In particular,
A : lwanaga-Gorenstein <
Al : lwanaga-Gorenstein.
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Section 1.2.
Self-injective dimension
formula
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Injective dimension of object of D(Mod A) (1/2)

Definition 1 (Avramov-Foxby)

An object M of D(Mod A) is said to have
injective dimension at most n and is denoted as
il(\i M < n.

if it has an injective resolution / such that
I =0 for m > n.

i,c\l/\/lzn(i) il(\i/\/lgnholds
but i/(\le < n — 1 does not.
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e For M € Mod A,

the usual injective dimension and

the injective dimension

as an object of D(Mod A) coincide.

0id0 := —x
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Remark 1.3
e For M € ModA,

the usual injective dimension and

the injective dimension

as an object of D(Mod A) coincide.
eid0:= —o0

e For M € D(Mod N),
M=0&<idM = —©
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A self-injective dimension formula

0 : N — RHomp(C,C), O(r)(c):=rc
O, := RHom,(C?,0) :
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Theorem 2

let A=ND C.
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A self-injective dimension formula

0 : N — RHomp(C,C), O(r)(c):=rc
O, := RHom,(C?,0) :
RHoma(C?, A) — RHom,(C?*1, C)

Theorem 2

Let A= NSD C. Then,

idA = gr.id A
A A
=sup{il(\iC, i/(\icn@a+a+1 | a > 0}

1G-algebas and CM-modules October 10, 2017 15 / 65



A criterion for finiteness of self-injective dimension

i}ziA:sup{i/c\iC, i/c\lcn@a+a+1 |a >0}

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 16 / 65



A criterion for finiteness of self-injective dimension

ii‘iAzsup{i/(\iC, i/c\lcn@a+a+1 |a >0}

Corollary 3

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 16 / 65



A criterion for finiteness of self-injective dimension

ii‘iAzsup{i/(\iC, ilc\lcn@a+a+1 |a >0}

i}\i A < oo if and only if

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 16 / 65



A criterion for finiteness of self-injective dimension

iziA:sup{i/(\iC, ilc\lcn@a+a+1 |a >0}

Corollary 3
i}\i A < oo if and only if

the following conditions are satisfied:

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 16 / 65



A criterion for finiteness of self-injective dimension

iziA:sup{i/(\iC, ilc\lcn@a+a+1 |a >0}

Corollary 3

i}\i A < oo if and only if

the following conditions are satisfied:
(1) i/(\jl C <o

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 16 / 65



A criterion for finiteness of self-injective dimension

iziA:sup{i/(\iC, ilc\lcn@a+a+1 |a >0}

Corollary 3

i}\i A < oo if and only if

the following conditions are satisfied:
(1) i/(\jl C <o
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A criterion for finiteness of self-injective dimension

iziA:sup{i/(\iC, ilc\lcn@a+a+1 |a >0}

Corollary 3

i}\i A < oo if and only if

the following conditions are satisfied:
(1) i/(\jl C <o

(2) i/(\:lcn@a < oo fora > 0.

(3) ®, is an isomorphism for a > 0.
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The asid conditions and the asid number (1/4)

These three conditions are called

the right asid conditions (an abbreviation
of “attaching self-injective dimension”).

A bimodule C satisfying these conditions is
said to be a right asid bimodule.
Definition 4

For a right asid module C,

we define the right asid number to be

a, = min{a > 0 | ©, is an isomorphism}.
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The asid conditions and the asid number (2/4)

Let C be right asid and set d := id A.
The graded co-syzygies Q7"A (0 < n < d)
are concentrated in degree < 1.

The top degree of the socles is 1
i.e.,soc(Q°A); = soc(A); # 0.

The right asid number measures

the bottom degree.

o, = max{a | In, soc(Q7"A)_, #0} +1
where a > —1.

1G-algebas and CM-modules October 10, 2017 18 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 19 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

H. Minamoto and K. Yamaura |G-algebas and CM-modules October 10, 2017 19 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of

H. Minamoto and K. Yamaura

|G-algebas and CM-modules

October 10, 2017

19 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A = NG C is finite.

|G-algebas and CM-modules October 10, 2017

19 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A= NS C is finite.

The left asid number o, for

|G-algebas and CM-modules October 10, 2017

19 / 65



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A= NS C is finite.

The left asid number o, for

a left asid bimodule is defined

|G-algebas and CM-modules October 10, 2017



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A= NS C is finite.

The left asid number o, for

a left asid bimodule is defined

in a similar way.

|G-algebas and CM-modules October 10, 2017



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A= NS C is finite.

The left asid number o, for

a left asid bimodule is defined

in a similar way.

A bimodule C is called asid

|G-algebas and CM-modules October 10, 2017



The asid conditions and the asid number (3/4)

We define a left asid bimodule C
as a bimodule such that

the left self-injective dimension of
A= N®D C is finite.

The left asid number o, for

a left asid bimodule is defined

in a similar way.

A bimodule C is called asid

if it is both left and right asid.
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Section 1.3
The kernel of the canonical
functor =™
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The kernel of the canonical functor zo (1/3)

To prove the self-injective dimension
formula,

we make use of the grading of A=A C.
By the same method,

we obtain a description of

the kernel Ker =

of the canonical functor =o.
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The kernel of the canonical functor zo (2/3)

Let = denotes the canonical functor

quotient

D?(mod A) — D”(mod” A) ——— Sing” A.

where
Sing” A := D”(mod” A) /KP(proj” A).

Ker zo = D”(mod A) N KP(proj” A)
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The kernel of the canonical functor zo (3/3)

Assume that pd Cy < oo.
Then — ®} C acts on K"(proj A).

Kerw = | | Ker(— ®j C?) C K"(projA)
a>0

where we regard — ®% C? as
an endofunctor of K(proj A).
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Section 2.
On finitely graded 1G-algebras

and the stable categories of
their (graded) CM-modules
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Section 2.1.
(Graded) Ilwanaga-Gorenstein

algebras and (graded)
Cohen-Macaulay modules
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lwanaga-Gorenstein algebras

An algebra A is called
Iwanaga-Gorenstein(1G)
if it is Noetherian (on both sides) and

idA < oo,id A < 0.
A AoP
By Zaks’ Theorem,

under Noetherian hypothesis,
the second condition is equivalent to
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Graded lwanaga-Gorenstein algebras

A graded algebra A = @;_, A; is called
graded Iwanaga-Gorenstein(IG)
if it is graded Noetherian (on both sides)

and

gr1dA<oo gr.id A < oo.
AoP

By Zaks’ Theorem,
under graded Noetherian hypothesis,
the second condition is equivalent to

gr.id A =gr.id A < oc.
A AoP
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Remark on graded IG and IG (1/2)

A graded algebra A = (P, Ai is
graded IG if and only if

it is 1G as an ungraded algebra.
Moreover,

gridA<idA<gr.id A+ 1.
A A A

The second inequality is due to
M. Van den Bergh.
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Remark on graded IG and IG (2/2)

When A = @_, A; is finitely graded,
we have
gr.id A = id A.
A A
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Graded CM-modules

A graded A-module M is called

Cohen-Macaulay(CM) if

Extz'(M, A) = 0.
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Graded CM-modules

A graded A-module M is called

Cohen-Macaulay(CM) if

Extz'(M, A) = 0.

e CMZ A: the category of graded CM
A-modaules

e CM” A : the stable category of graded
CM A-modules.
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Graded CM-modules

A graded A-module M is called

Cohen-Macaulay(CM) if

Extz'(M, A) = 0.

e CMZ A: the category of graded CM
A-modaules

e CM” A : the stable category of graded
CM A-modules.
(a triangulated category)
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Related triangulated categories
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Related triangulated categories

e Sing” A = DP(mod” A)/KP(proj” A):
the graded singular derived category.
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graded projective A-modules.
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graded projective A-modules.

o =
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Related triangulated categories

e Sing” A = DP(mod” A)/KP(proj” A):
the graded singular derived category.

e K2°(proj” A): the homotopy category of
acyclic complexes of
graded projective A-modules.

e O = DP(mod=° A) N D*(mod=! A%P)* :
the Orlov subcategory
where (—)* = RHom o (—, A).
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These triangulated categories are equivalent
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These triangulated categories are equivalent

K2°(proj“ A) — =~ CM

Z
zlﬂ
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These triangulated categories are equivalent

K2¢(proj” A) — =~ CM*
zlﬂ
~ . 7
Dﬂo Sing” A

A

where 7|5 : the restriction of
7 : D’(mod” A) — Sing” A.
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These triangulated categories are equivalent

K2(proj” A) —<=——~CM" A

zlﬂ
~ . 7
() e Sing” A

where 7|5 : the restriction of
7 : D’(mod” A) — Sing” A.
3 : Rickard, Happel and Buchweitz.
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These triangulated categories are equivalent

K2¢(proj”“ A) —-=—~CM* A
zlﬂ
~ . 7

Dﬂo Sing” A

where 7|5 : the restriction of

7 : D’(mod” A) — Sing” A.

3 : Rickard, Happel and Buchweitz.
ZO: Buchweitz.
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These triangulated categories are equivalent

K2(proj” A) —<=——~CM" A

zlﬂ
~ . 7
() e Sing” A

where 7|5 : the restriction of

7 : D’(mod” A) — Sing” A.

3 : Rickard, Happel and Buchweitz.
ZO: Buchweitz.

m|o : Orlov.
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Section 2.2.
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When A=A Cis IG
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Section 2.2.

When is A I\GB C 1G?
When A=A & C is IG!
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An observation

A=N& C is IG if and only if
C is an asid bimodule.
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An observation

A=AN® Cis IG if and only if
C is an asid bimodule.
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An observation

A=AN® Cis IG if and only if

C is an asid bimodule.

Assume that A is IG. If C satisfies
the 1-st right and left asid conditions

id/\ C < oo, id/\op C < oo,
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An observation

A=AN® Cis IG if and only if

C is an asid bimodule.

Assume that A is IG. If C satisfies
the 1-st right and left asid conditions

id/\ C < oo, id/\op C < oo,

then the 2-nd right and left asid conditions
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An observation

A=AN® Cis IG if and only if

C is an asid bimodule.

Assume that A is IG. If C satisfies
the 1-st right and left asid conditions

id/\ C < oo, id/\op C < oo,

then the 2-nd right and left asid conditions
are automatically satisfied.
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A categorical characterization (1/2)
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Assume that N is |G and that
idya C < oo, idper C < 0.
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A categorical characterization (1/2)

Assume that N is |G and that
idya C < oo, idper C < 0.
Then A= N@® C is IG if and only if
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A categorical characterization (1/2)

Theorem 7

Assume that N is |G and that

idya C < oo, idper C < 0.

Then A= N@® C is IG if and only if
KP(proj A) has an admissible subcategory T
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A categorical characterization (1/2)

Theorem 7

Assume that N is |G and that

idya C < oo, idper C < 0.

Then A= N@® C is IG if and only if
KP(proj A) has an admissible subcategory T
which satisfies the following conditions (1), (2).
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A categorical characterization (1/2)

Theorem 7

Assume that N is |G and that

idy C < o0, idyer C < 00.

Then A= N@® C is IG if and only if
KP(proj A) has an admissible subcategory T
which satisfies the following conditions (1), (2).

admissibility:
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A categorical characterization (2/2)

Theorem 7 (conti.): The conditions for T.
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A categorical characterization (2/2)

Theorem 7 (conti.): The conditions for T.

(1) The functor T = — Q5 C actson T
as an equivalence, i.e., 7(T) C T and

Tlr: T—=T  autoequivalence.

(2) The functor 7 = — Q% C
nilpotently acts on T+, i.e.,
T(T+) Cc Tt and
T3(T+) = 0 for some a € N.
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When A=A CisIG (1/4)

Theorem 8

Assume that N is IG and C is an asid bimodule.
Hence A = NP C is IG. Then,
(1) o, = oy
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When A=A CisIG (1/4)

Theorem 8

Assume that N is IG and C is an asid bimodule.
Hence A = NP C is IG. Then,
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2)T =
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When A=A CisIG (1/4)

Theorem 8

Assume that N is IG and C is an asid bimodule.
Hence A = NP C is IG. Then,

(1) a, = ay =:

(2) T = thick C¢,
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When A=A CisIG (1/4)

Assume that N is IG and C is an asid bimodule.
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When A=A CisIG (1/4)

Assume that N is IG and C is an asid bimodule.
Hence A= N& C is IG. Then,

(1) a, = ay =:

(2) T = thick C¢,

(3) T+ = Ker(— ®; C*) = Kerw

where o denotes the canonical functor

w : DP’(mod A) — D”(mod” A) — Sing” A
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When A=A C is IG (2/4)

If moreover gldim A < oo,

v
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When A=A C is IG (2/4)

If moreover gldim A < oo, then T = CMZ A,

v
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When A=A C is IG (2/4)

If moreover gldim A < oo, then T = CMZ A,

K2°(proj” A) —~=——~CM
Polz Zlﬂ
=9 Sing” A

in|t
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When A=A C is IG (2/4)

If moreover gldim A < oo, then T = CMZ A,

0
K(proj” A) —~*—CM” A
Polz Zlﬂ
U9 Sing” A

in|t

where in|t : the restriction of

in : D’(mod A) C DP(mod” A).
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When A=A C is IG (2/4)

If moreover gldim A < oo, then T = CMZ A,

0
K2¢(proj” A) — S o[V |
Polz Zlﬂ
=9 Sing” A

in|t

where in|t : the restriction of
in : D’(mod A) C DP(mod” A).
w|t = w|p oin|y.
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When A=A C is IG (3/4)

In particular,
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In particular, CMZ A is realized as
an admissible subcategory of D”(mod A).
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In particular, CMZ A is realized as
an admissible subcategory of D”(mod A).

D’(modA) D T CM*A

Corollary 10

A= @f:o A; : afin. dim. graded |G-algebra.
If gldim Ay < oo, then the Grothendieck group
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When A=A C is IG (3/4)

In particular, CMZ A is realized as
an admissible subcategory of D”(mod A).

D’(modA) D T CM*A

Corollary 10

A=@,_,Ai: afin dim. graded |G-algebra.
If gldim Ay < oo, then the Grothendieck group
Ko(CMZ A) is free and

rank KO(CMZ A) < £#{simple A-modules}

|
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When A=A C is IG (4/4)

Remark 2.1
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When A=A C is IG (4/4)

Remark 2.1

In the case where A is IG,

we can obtain a similar commutative diagram
by introducing the notion of

locally perfect complexes .
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Section 3. Applications
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Section 3.1.
Two classes of 1G algebras of
finite CM-type
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CM-version of Gabreial’s Theorem in covering theory

Theorem 11 (MY-Yoshiwaki)
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CM-version of Gabreial’s Theorem in covering theory

Theorem 11 (MY-Yoshiwaki)

Let A be a finite dimensional graded |G algebra.
Then, A is of finite CM type if and only if

it is of finite graded CM-type.

Moreover, if this is the case, the functor

mod”Z A — mod A which forgets the grading
induces the equality

ind CMZ A/(1) = ind CM A.
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Iterated tilted algeba of Dynkin type

Theorem 12
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Theorem 12

Let N be an iterated tilted algebra of Dynkin type,
that is, N is derived equivalent to

the path algebra k@Q of some Dynkin quiver Q.
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Theorem 12

Let N be an iterated tilted algebra of Dynkin type,
that is, N\ is derived equivalent to

the path algebra k@Q of some Dynkin quiver Q.
If a trivial extension algebra A = N & C is IG,
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Iterated tilted algeba of Dynkin type

Theorem 12

Let N be an iterated tilted algebra of Dynkin type,
that is, N\ is derived equivalent to

the path algebra k@Q of some Dynkin quiver Q.
If a trivial extension algebra A = N & C is IG,
then it is of finite CM type.
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The case C = N ®kx M (1/2)
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The case C = N ®kx M (1/2)

M : a right A-module.
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The case C = N ®kx M (1/2)

M : a right A-module.
N : a left A-module.
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The case C = N ®kx M (1/2)

M : a right A-module.
N : a left A-module.
A:=NSD (N Q M).
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Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-module.
A:=NSD (N Q M).

Theorem 13

Assume gldim A < oo.
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Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-modaule.
A:=NSD (N Q M).
Theorem 13

Assume gldim A < oo.
(1) gldim A < oo if and only if
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Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-modaule.
A:=NSD (N Q M).
Theorem 13

Assume gldim A < oo.
(1) gldim A < oo if and only if M @y N = 0.

1G-algebas and CM-modules October 10, 2017 46 / 65




Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-modaule.
A:=NSD (N Q M).
Theorem 13
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Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-modaule.
A:=NSD (N Q M).
Theorem 13

Assume gldim A < oc.

(1) gldim A < oo if and only if M @y N = 0.

(2) A is IG and gldim A = oo if and only if
RHom(M, M) = k and
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Thecase C = N ®kx M (1/2)

M : a right A-module.
N : a left A-modaule.
A:=NSD (N Q M).
Theorem 13

Assume gldim A < oc.
(1) gldim A < oo if and only if M @y N = 0.
(2) A is IG and gldim A = oo if and only if
RHom(M, M) = k and
RHom(M, N) = N[—p] for some p € N.
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

y
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oo.
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oco. Then the followings holds.
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oco. Then the followings holds.

(a) Let p be the integer in (2). Then
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oco. Then the followings holds.

(a) Let p be the integer in (2). Then

p_de_pdN
Aop

V.
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oco. Then the followings holds.

(a) Let p be the integer in (2). Then

p—de—pdN
Aop

(b) CM” A >~ D"(mod k)
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Thecase C = N ®k M (2/2)

Theorem 13 (conti.)

Assume that A=A D (N Q¢ M) is IG and
gldim A = oco. Then the followings holds.

(a) Let p be the integer in (2). Then

p—de—pdN
Aop

(b) CM” A >~ D"(mod k)
under which (1) corresponds [p + 1].

V.
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(a) Let p be the integer in (2). Then

p—de—pdN
Aop

(b) CM” A >~ D"(mod k)
under which (1) corresponds [p + 1].
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Assume that A=A D (N Q¢ M) is IG and
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(a) Let p be the integer in (2). Then
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(b) CM” A >~ D"(mod k)

under which (1) corresponds [p + 1].
(c) CM A = (mod k)®P+1,
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Classification of asid
bimodule
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we obtain the complete list of

asid modules C

when A is the path algebra of
As-quiver or Asz-quiver
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Using the categorical characterization
obtained in Theorem 7,

we obtain the complete list of

asid modules C

when A is the path algebra of
As-quiver or Asz-quiver

in the following strategy.
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The strategy of classification

Step 1.
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The strategy of classification
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The strategy of classification

Step 1. Classify admissible subcategories
T of KP(proj A).

For the path algebra of Aj-quiver or
As-quiver, the first step is completed

by Ingalls-Thomas, Araya.
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The strategy of classification

Step 1. Classify admissible subcategories
T of KP(proj A).

For the path algebra of Aj-quiver or
As-quiver, the first step is completed

by Ingalls-Thomas, Araya.

Step 2. For an admissible subcategory T,
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For the path algebra of Aj-quiver or
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The strategy of classification

Step 1. Classify admissible subcategories
T of KP(proj A).

For the path algebra of Aj-quiver or
As-quiver, the first step is completed

by Ingalls-Thomas, Araya.

Step 2. For an admissible subcategory T,
classify bimodules C such that

the functor — ®% C acts T as

an equivalence and
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The strategy of classification

Step 1. Classify admissible subcategories
T of KP(proj A).

For the path algebra of Aj-quiver or
As-quiver, the first step is completed

by Ingalls-Thomas, Araya.

Step 2. For an admissible subcategory T,
classify bimodules C such that

the functor — ®% C acts T as

an equivalence and nilpotently acts on T-.
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The quiver presentation of C

The case A = k[1 <& 2].
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The quiver presentation of C

The case A = k[1 & 2].

We use a quiver presentation
to exhibit a bimodule C over A.
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The quiver presentation of C

The case A = k[1 & 2].

We use a quiver presentation
to exhibit a bimodule C over A.

é1 Ce1 <o é1 Ce2

O"l la.

€2 Ce1 ~a €2 Cez
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The quiver presentation of C

The case A = k[1 & 2].

We use a quiver presentation
to exhibit a bimodule C over A.

é1 Ce1 <o é1 Ce2

O"l la.

€2 Ce1 ~a €2 Cez

e; : the idempotent of A
corresponding to the vertex |
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The list of asid bimodule over 1 <— 2 (1/3)

(1) T = D"(modA)
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The list of asid bimodule over 1 <— 2 (1/3)

() T = DP(modA)
(precisely the case a = 0.)
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The list of asid bimodule over 1 <— 2 (1/3)

() T = DP(modA)
(precisely the case a = 0.)

NN = k- 0,

by
k-—k
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The list of asid bimodule over 1 <— 2 (1/3)

() T = DP(modA)
(precisely the case a = 0.)

A=k- 0, D(A)=k-—k

by .
k-—k 0- k
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The list of asid bimodule over 1 < 2 (1/3)

() T = DP(modA)
(precisely the case a = 0.)

A=k- 0, D(A)=k-—k

by .
k-—k 0- k

(1) T = thick P;
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The list of asid bimodule over 1 < 2 (1/3)

() T = DP(modA)
(precisely the case a = 0.)
A=k- 0, D(A)=k-k

by .
k-—k 0- k

() T = thick P,
Ne; Qk el = T< 0
k<0
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The list of asid bimodule over 1 <— 2 (2/3)

(1) T = thick P,
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The list of asid bimodule over 1 <— 2 (2/3)

(1) T = thick P,
Ne; Q e2h = 0~ 0

X<
T
X<
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The list of asid bimodule over 1 <— 2 (2/3)

(1) T = thick P,
Ne; Qceoh = 00
k—

X<

(IV) T = thick /»
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The list of asid bimodule over 1 <— 2 (2/3)

(1) T = thick P,
Ne; Qceoh = 00
k—

X<

(IV) T = thick b
SI™ @i S;*" = 0~k
0- 0
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The list of asid bimodule over 1 <— 2 (3/3)

(V) T=0
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The list of asid bimodule over 1 <— 2 (3/3)

(V) T=0
(precisely the case gldim A < o0.)
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The list of asid bimodule over 1 <— 2 (3/3)

(V) T=0
(precisely the case gldim A < o0.)

(V-1) (Ae; @ elN)®" = 0--0

k- 0

(V-2) (S @ esN)®" = k" k"
| 0- 0

(V-3) (e @4 {227 = 0- K

0- k"
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The list of asid module C of 1 <2 — 3
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The list of asid module C of 1 <2 — 3
such that gldim A = oc.
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The list for 1 <+ 2 — 3, gldim A = oo (1/9)

(1) T = DP(mod A)
(precisely the case a = 0.)
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The list for 1 <+ 2 — 3, gldim A = oo (1/9)

(1) T = DP(mod A)
(precisely the case a = 0.)

k < 0 >Q 0< 0 >k Q< k‘>-|:( |:(<—k >q
bov oy v v b ey
k<—k—k k<—k—k 0<- k- >0 0<-k >0
A A R N
0< 0 >k k<-0->0 k<—k >0 0<k—k
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The list for 1 <+ 2 — 3, gldim A = oo (2/9)

(“) T= thiCk(Pl, h, Iz)

k<—k >Q
bbby
k<—k->0
booA
k<0 >0

H. Minamoto and K. Yamaura

0k -0
vy
0<~-k >0
Yo
k6k >0
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The list for 1 <+ 2 — 3, gldim A = oo (2/9)

(“) T= thiCk(Pl, h, Iz)

k<—k >0 O<-k->0

SRR T S T T

k<—k->0 0<+ k>0

T

(“l) T= thiCk(P3, I3, I2)
0<-0->k O<-k—k
v oy v by
0<-—-k—k 0 k>0
IR
0<-k—k 0<-k->0
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The list for 1 <+ 2 — 3, gldim A = oo (3/9)

(|V) T= thiCk(Pl, Ps, I3)

k<-0->0

b oy

k<—k—k
A A A

0<-0->0

o >O< X

b
< k—k
T
< 0->0

(V) T= thiCk(P3, Ps, Il)

0<-0->
VooV
k<—k —
A

6<6>

0
v
k
/
k

< 0-->0

Voo
~— k>0

(I

~—k—k
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The list for 1 <+ 2 — 3, gldim A = oo (4/9)

(Vl) T= thiCk(Pl, P3)

k=0 -0 0-
VFoovoov
k< 0>k k <
R
O< 0 >k k <

0>k
v o
0>k
AoA
0 >0

(V1) T = thick(h, h)

0< k—k k=k =0

v v v

N
<o Q=0 0<
Aoa A

k—k->0 0=
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The list for 1 <+ 2 — 3, gldim A = oo (5/9)

(VIII) T = thick P;

0<-0->0 k"<k" >0
v v v v v v
k" < 0>k 0<0 >k
RS S
0< 0 > k 0< 0 >k

(1X) T = thick P,

k< 0.0 k< 0 -0

¢ v v L v v
k 0 >k" k<-0->0
e T T T
0<-0 >0 0< k" >k"

0<
v
0<-k"
A A
0<-0
k < 0
oy
k <- k"
i
0< k"

\

v

\
xR < O
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The list for 1 <+ 2 — 3, gldim A = oo (6/9)

(X) T = thick Iy

0<-0->0 0<-0->0
R U T T
k" < O >0 k<—k >0

0<- k"—>k" 0<-0
v v by
0< k *>k @ (/3< 0 ,>0

RN

6< k™" > k" k<—k >6

k? < k" = k"

< @

v v v
0<--0->0
SR
k<—k->0
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The list for 1 «+— 2 — 3, gldim A = oo (7/9)

(X1) T = thick /5

0~ 0 -k
vy
< 0> k™
.
0= 0 »0
k" < k" >O
R
k" << k" >0
(R
k" << k" >0
0 K
v v v
0<--0->0
Lox

k:"ekz"»k:"

Q<
v

@ 0~
0=

0<
v

@ 0=
0=
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v v
0->0
Ao
0->0
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0->0
Ao
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The list for 1 <+ 2 — 3, gldim A = oo (8/9)

(XI1) T = thick P,

0< 0 >0 0<0 >0 0< 0 >0
v v v v v v v v v
k<—k—k 0<-0->0 ® k<—k—k
R RS
K"<-0->0 K"<-0 >0 k<-0->0
0< 0 >k 0< 0 -k 0= 0 >~k
T T T T T 2 A
k<—k—k 0<-0->0 ® k<—k—k
YT AT T e T
0<-0->0 0<-0->0 0=<-0->0
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The list for 1 <+ 2 — 3, gldim A = oo (9/9)

(XI11) T = thick

O< k" — k" 0<

voov by

0<- k" —=k" 0<
s %

=0 0<-0->0  0<

v vV v
>0 k" < k" >0 0
b e

>0 k" < k" >0 0<

X=X <X

0<-0.>0 0<

k >Q
by
k >0
b
k >0
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The last quivers
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The last quivers
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Thank you
HYNESITIWE L
Danke schon
Merci beaucoup
Tack sa mycket
ZIE)
Kamsahamnida
Cam on nhieu
dhonyobad
thanks a lot!!(literally)
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A question for the audience

Problem 14
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A question for the audience

Problem 14

Naming.
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A question for the audience

Problem 14

Naming. Is “asid” a good name?
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