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Aim
Understand bounded t-structures by silting objects.

Adachi and Mizuno (j.w. with Yang) How to capture t-structures 10th October 2017 2 / 21



Silting object

T : triangulated category with shift functor [1]
M : object of T

Definition [Keller-Vossieck (1988)]
M : silting object of T :⇔

HomT (M,M [∀i > 0]) = 0 (⇔: M : presilting)

T = thickM

siltT : the set of isoclasses of basic silting objects of T

Example
Λ: finite dimensional algebra over a filed
　=⇒ Λ is a silting object of Kb(projΛ).
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t-structure

T ≤0, T ≥0: full subcategories of T closed under isom.
T ≤n := T ≤0[−n], T ≥n := T ≥0[−n] (n ∈ Z)

Definition [Beilinson-Bernstein-Deligne (1982)]

(T ≤0, T ≥0): t-structure on T :⇔
T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0

HomT (X,Y ) = 0 (∀X ∈ T ≤0, ∀Y ∈ T ≥1)

T = T ≤0 ∗ T ≥1

:=

{
Z ∈ T

∣∣∣∣ ∃tri. X → Z → Y → X[1]
(X ∈ T ≤0, Y ∈ T ≥1)

}
The heart T 0 := T ≤0 ∩ T ≥0 is abelian.
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Bounded t-structure

Definition
(T ≤0, T ≥0): bounded :⇔ T =

∪
n∈Z T ≤n =

∪
n∈Z T ≥n

⇔ T = thickT 0

t-strbdT : the set of bounded t-structures on T

Example
Λ: finite dimensional algebra over a field
D := Db(modΛ): the bounded derived category

　=⇒ (D≤0
Λ ,D≥0

Λ ) is a bounded t-structure on D.

　　　D≤0
Λ := {X ∈ D | H∀i>0(X) = 0}

= {X ∈ D | HomD(Λ, X[∀i > 0]) = 0}
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Silting objects and t-structures

Λ: finite dimensional algebra over a field
C := Kb(projΛ) and D := Db(modΛ)

Λ is a silting object of C.
(D≤0

Λ ,D≥0
Λ ) is a bounded t-structure on D.

Theorem [Koenig-Yang (2014)]
∃injection siltC → t-strbdD　 (M 7→ (D≤0

M ,D≥0
M ))

D≤0
M ∩ D≥0

M ≃ mod EndD(M)

　　D≤0
M := {X ∈ D | HomD(M,X[∀i > 0]) = 0}

　　D≥0
M := {X ∈ D | HomD(M,X[∀i < 0]) = 0}
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ST-pair (S=silting object, T=t-structure)

T : Hom-fintie Krull-Schmidt triangulated category
C,D: thick subcateogories of T
Definition
(C,D): ST-pair inside T :⇔ ∃M : silting object of C s.t.

(1) (T ≤0
M , T ≥0

M ): t-structure on T
(2) T ≥0

M ⊆ D
(3) D = thickT 0

M

The triple (C,D,M) is called a ST-triple inside T .

　　 T ≤0
M := {X ∈ T | HomT (M,X[∀i > 0]) = 0}

　　 T ≥0
M := {X ∈ T | HomT (M,X[∀i < 0]) = 0}
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Example of ST-pair

Example 1
Λ: finite dimensional algebra over a field k
=⇒ (Kb(projΛ),Db(modΛ)): ST-pair inside Db(modΛ)

Example 2 [Amiot (2009), Kalck-Yang (2016)]
Γ: dg k-algebra satisfying

Hp(Γ) = 0 (∀p > 0)

H0(Γ): finite dimensional

Dfd(Γ) ⊆ per(Γ)

=⇒ (per(Γ),Dfd(Γ)): ST-pair inside per(Γ)
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Property of ST-pair

(C,D): ST-pair inside T :⇔ ∃M : silting object of C s.t.

(1) (T ≤0
M , T ≥0

M ): t-structure on T
(2) T ≥0

M ⊆ D
(3) D = thickT 0

M

Properties

(2) & (3) ⇒ (D≤0
M ,D≥0

M ): bounded t-structure on D
(D≤0

M := T ≤0
M ∩ D and D≥0

M := T ≥0
M ∩ D)

D≤0
M ∩ D≥0

M ≃ mod EndT (M)

M,N ∈ C: silting objects
Then (C,D,M): ST-triple ⇔ (C,D, N): ST-triple

Adachi and Mizuno (j.w. with Yang) How to capture t-structures 10th October 2017 9 / 21



Property of ST-pair

(C,D): ST-pair inside T :⇔ ∃M : silting object of C s.t.

(1) (T ≤0
M , T ≥0

M ): t-structure on T
(2) T ≥0

M ⊆ D
(3) D = thickT 0

M

Properties

(2) & (3) ⇒ (D≤0
M ,D≥0

M ): bounded t-structure on D
(D≤0

M := T ≤0
M ∩ D and D≥0

M := T ≥0
M ∩ D)

D≤0
M ∩ D≥0

M ≃ mod EndT (M)

M,N ∈ C: silting objects
Then (C,D,M): ST-triple ⇔ (C,D, N): ST-triple

Adachi and Mizuno (j.w. with Yang) How to capture t-structures 10th October 2017 9 / 21



Property of ST-pair

(C,D): ST-pair inside T :⇔ ∃M : silting object of C s.t.

(1) (T ≤0
M , T ≥0

M ): t-structure on T
(2) T ≥0

M ⊆ D
(3) D = thickT 0

M

Properties

(2) & (3) ⇒ (D≤0
M ,D≥0

M ): bounded t-structure on D
(D≤0

M := T ≤0
M ∩ D and D≥0

M := T ≥0
M ∩ D)

D≤0
M ∩ D≥0

M ≃ mod EndT (M)

M,N ∈ C: silting objects
Then (C,D,M): ST-triple ⇔ (C,D, N): ST-triple

Adachi and Mizuno (j.w. with Yang) How to capture t-structures 10th October 2017 9 / 21



Main result 1

(C,D): ST-pair inside T

Theorem
∃injection Ψ : siltC → t-strbdD　 (M 7→ (D≤0

M ,D≥0
M ))

Question
When is Ψ a bijection?

Theorem [Keller-Vossieck (1988)]
Λ: path algebra of Dynkin type =⇒ Ψ: bijection

Λ: Kronecker algebra =⇒ Ψ: NOT bijective
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Silting-discrete triangulated category

M ≥ N :⇔ HomT (M,N [∀i > 0]) = 0

Proposition [Aihara-Iyama (2012)]
(siltT ,≥) is a poset.

Definition [Aihara (2013)]

T : silting-discrete :⇔ ∀M ∈ siltT and ∀d ∈ Z>0,

dM -silt T := {N ∈ siltT | M ≥ N ≥ M [d− 1]}: finite

T : silting-discrete triangulated category
　⇒ the poset (siltT ,≥) has various good properties.
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Main result 2

(C,D): ST-pair inside T

Theorem
The following are equivalent:

(1) Ψ: bijection.

(2) C: silting-discrete.
(3) The heart of any bounded t-structure on D has

a projective generator.

　　Ψ : siltC −→ t-strbdD　 (M 7→ (D≤0
M ,D≥0

M ))
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Application: Stability conditions

(C,D): ST-pair

Corollary [Qiu-Woolf (2014), BPP, PSZ, AMY]
C: silting-discrete
　⇒ the “stability manifold” Stab(D) is contractible.

BPP := Broomhead-Pauksztello-Ploog (2016)
PSZ := Pauksztello-Saorin-Zvonareva (2017)
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Examples of silting-discrete algebras

Example

Kb(projΛ): silting-discrete if Λ is

local algebras,

representation-finite hereditary algebras,

derived-discrete algebras,

representation-finite symmetric algebras,

generalized Brauer tree algebras,

algebras of dihedral, semidihedral, quatenion type.
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We want to construct various examples of silting-discrete
triangulated categories.

Aim
Give a criterion of silting-discrete triangulated categories
by cluster theory.
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Calabi-Yau pair

(C,D): ST-pair (or (C,D,M): ST-triple) inside T

Definition [Iyama-Yang (2014)]
(C,D): d-Calabi-Yau (d-CY) pair :⇔

C ⊇ D
∃funct. isom.
HomT (X,Y ) ≃ DHomT (Y,X[d])(X ∈ D, Y ∈ C)

Remark
M,N ∈ C: silting objects
Then (C,D,M): d-CY triple ⇔ (C,D, N): d-CY triple
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Silting theory and Cluster theory

For simplicity, d ≥ 2: integer.
(C,D): (d+1)-CY pair (or (C,D,M): (d+1)-CY triple)

Theorem [Iyama-Yang (2014)]
(1) U := C/D: d-Calabi-Yau triangulated category

(2) The canonical functor C → U induces an injection
π : dM -silt C → d -ctiltU .

(3) d = 2 ⇒ the map π is bijective.

U ∈ U : d-cluster-tilting (d-CT) object :⇔
addU = {X ∈ U | HomU(U,X[i]) = 0 (1 ≤ i ≤ d− 1)}

d -ctiltU : the set of isoclasses of basic d-CT objects of U
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Cluster theory and silting theory

(C,D): (d+ 1)-CY pair

Theorem
d -ctiltU : finite =⇒ C: silting-discrete

Theorem
Assume d = 2.
The following are equivalent.

(1) C: silting-discrete
(2) 2M -silt C: finite set for all silting objects M

(2’) 2M -silt C: finite set for some silting object M

(3) 2 -ctiltU : finite set
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Application: derived preprojective algebra

Q: finite (graded) quiver, d ≥ 1
Γ := Γd+1(Q): derived preprojective algebra
H0(Γ): finite dimensional

Lemma
(per(Γ),Dfd(Γ)): (d+ 1)-CY pair

Theorem
The following are equivalent.

(1) per(Γ): silting-discrete

(2) Q: Dynkin
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Application: complete Ginzburg dg algebra

(Q,W ): quiver with potential
Γ := Γ(Q,W ): complete Ginzburg dg algebra
H0(Γ): finite dimensional

Lemma
(per(Γ),Dfd(Γ)): 3-CY pair

Theorem
The following are equivalent.

(1) per(Γ): silting-discrete.

(2) Q is related to a Dynkin quiver by a finite sequence
of quiver mutations.
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Application: Stability conditions

Γ ∈ {Γd+1(Q),Γ(Q,W )}
perΓ: silting-discrete

Corollary
The “stability manifold” Stab(Dfd(Γ)) is contractible.

This result was a conjecture given by Yu Qiu (2011).
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