
PERSISTENT HOMOLOGY AND AUSLANDER-REITEN THEORY

YASUAKI HIRAOKA

Abstract. The content of this report is based on a series of papers [4, 5] which present
an extension of persistent homology as representations on quivers with nontrivial rela-
tions. We aim to briefly explain the connection between Auslander-Reiten theory and
persistent homology.

1. Introduction

Let Xr and Yr be two topological spaces parametrized by r ∈ N = {1, 2, . . . }. Suppose
that, for parameters r < s, we have continuous maps f : Xr → Xs and g : Yr → Ys. By
taking homology f∗ : H∗(Xr) → H∗(Xs) and g∗ : H∗(Yr) → H∗(Ys) with field coefficient
K, we can study persistent topological features in the parameter interval [r, s] for both
X and Y . This is the simplest setting of persistent homology [3, 10], and is characterized
by a unique decomposition

(f∗ : H∗(Xr)→ H∗(Xs)) ' I(r, r)nr ⊕ I(r, s)nrs ⊕ I(s, s)ns ,

where nr, nrs, ns ∈ N0 = {0, 1, 2, . . . }, and I(r, r), I(r, s), and I(s, s) are indecomposable
modules defined by

I(r, r) : K → 0, I(r, s) : K → K, I(s, s) : 0→ K.

Similarly, we obtain a decomposition for g∗ : H∗(Yr) → H∗(Ys). These decompositions
characterize “persistence” in the sense that topological features specified by the summand
I(r, s) are regarded as robust in the parameter interval [r, s], and those specified by the
summands I(r, r) and I(s, s) are observed only at each parameter value. Our interest
in this paper is to compare the persistent topological features of f : Xr → Xs and
g : Yr → Ys.

For this purpose, it is natural to map Xr and Yr into another topological space Zr as

Xr → Zr ← Yr,

and study common topological features via Zr. One of the standard choices for these
maps is the inclusion Xr ↪→ Xr ∪ Yr ←↩ Yr. Then, in order to study robust and common
topological features, a commutative diagram of topological spaces

(1.1) Xs
// Zs Ys
oo

Xr
//

OO

Zr

OO

Yr
oo

OO

provides an appropriate geometric setting. It should be noted that the individual robust
topological features are measured in the vertical direction and the common topological
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features are measured in the horizontal direction. Hence, on the homological level, our
problem is to consider a commutative diagram

(1.2) H∗(Xs) // H∗(Zs) H∗(Ys)oo

H∗(Xr) //

OO

H∗(Zr)

OO

H∗(Yr)oo

OO

of K-vector spaces and linear maps between them.
The algebraic object (1.2) can be regarded as a representation of the quiver

(1.3) ◦ // ◦ ◦oo

◦ //

OO

◦

OO

◦oo

OO

with commutative relations. We call this quiver the commutative triple ladder in this
paper. Recall that a representation V of this quiver is given by a commutative diagram

(1.4) V4
f45 // V5 V6

f65oo

V1
f12

//

f14

OO

V2

f25

OO

V3
f32

oo

f36

OO

of finite dimensional K-vector spaces and linear maps between them. In view of the
correspondence between representations and modules, we call (1.4) a persistence module
[1, 2, 4, 10] on the commutative ladder (1.3). Then, our problem is to consider decompo-
sitions of a given persistence module.

Under this setting, the paper [4] clarifies the following:

(1) The number of isomorphism classes of indecomposable persistence modules on
(1.3) is finite. This implies that persistence modules on (1.3) can be classified by
complete discrete invariants.

(2) The Auslander-Reiten quiver of (1.3), which lists up all the isomorphism classes
of indecomposable persistence modules and irreducible morphisms among them,
is explicitly derived. Moreover, the notion of persistence diagrams is generalized
to functions on the vertex set of the Auslander-Reiten quiver. In particular, the
multiplicity of the persistence module

K // K Koo

K //

OO

K

OO

K,oo

OO

where all the maps are identity maps, characterizes the robust and common topo-
logical features between f : Xr → Xs and g : Yr → Ys.

(3) An algorithm for computing indecomposable decompositions is presented by using
the Auslander-Reiten quiver.

(4) Numerical examples to detect robust and common topological features are shown.
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We note that the quiver (1.3) is not one of An, Dn and E6, E7, E8 types studied in
Gabriel’s theorem [6]. However, the commutativity imposed in (1.3) enables us to derive
the finiteness property of the representation type as mentioned above.

The research in [4] is motivated both by a recent theoretical result and by applications
of topological data analysis. On the theoretical side, it is inspired by the paper [1], where
Carlsson and de Silva formulate persistent homology as representations of an An quiver
and generalize to zigzag persistence. By this connection to the representation theory, the
algebraic aspects of persistent homology have been understood further. The paper [4]
deals with a generalization to representations of associative algebras.

On the other hand, from the application side, this work is motivated by the analysis
of protein [7] and amorphous structures [8, 9] using persistent homology. For example, in
the paper [7], the authors study a topological characterization of protein compressibility
by using persistent homology computed on α-complex models of proteins. One of the key
observations obtained in that work is that there exist two distinct radius parameters r < s
for the atoms which characterize protein compressibility. Hence, once we develop a tool
which gives us more detailed information of robust and common topological features on
these restricted two parameter values, we expect to obtain further understanding of the
relationship between protein compressibility and their geometric structures. The result
in the paper [4] provides a tool for that purpose.

2. Auslander-Reiten theory on Commutative Triple Ladder

In this section, we first provide the explicit form of the Auslander-Reiten quiver of
the commutative ladder (1.3). Then, from the finiteness of the Auslander-Reiten quiver,
a generalization of persistence diagrams for the commutative ladder (1.3) is naturally
derived.

On the commutative triple ladder, let us denote a persistence module

Kn4 // Kn5 Kn6oo

Kn1 //

OO

Kn2

OO

Kn3oo

OO

by
n4n5n6

n1n2n3
. This is called its dimension vector expression. In the paper [4], the following

theorem is presented.
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Theorem 1. The Auslander-Reiten quiver Γ of the commutative triple ladder (1.3) is
given as follows:
(2.1)

011

011

��

100

000

��

000

110

��

001

001

��
110
000

��

011
010

��

AA

111
011

��

AA

100
110

��

AA

001
111

��

AA

000
001

010
000

//

AA

��

010
010

// 121
010

//

AA

��

111
000

// 111
010

//

AA

��

000
010

// 111
121

//

AA

��

111
111

// 101
111

AA

��

000
111

AA

��
011

000

AA

110

010

AA

��

111

110

AA

��

001

011

AA

��

100

111

AA

��

000

100

110

110

AA

001

000

AA

000

011

AA

100

100

AA

The morphisms on K → K are all identity maps, and the maps in
111
121

and
121
010

are given

by

K // K Koo

K
f12

//

OO

K2

f25

OO

K
f32

oo

OO , f12 =

(
1
0

)
, f32 =

(
0
1

)
, f25 =

(
1 1

)
,

K
f45 // K2 K

f65oo

0 //

OO

K

f25

OO

0oo

OO , f45 =

(
1
0

)
, f65 =

(
0
1

)
, f25 =

(
1
1

)
.

From Theorem 1, all the indecomposable modules are classified by the dimension vectors
listed in the above, and any persistence module V can be uniquely expressed by

(2.2) V '
⊕
[M ]∈Γ

[M ]n[M ] ,

where [M ] ∈ Γ is a vertex in Γ and n[M ] ∈ N0. Hence, these dimension vectors are the
complete discrete invariants for persistence modules on (1.3). In particular, the dimension

vector
111
111

gives us information about robust common topological features.

From this remark, the following is a natural generalization of persistence diagrams.
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Definition 2. The persistence diagram D(V ) of a persistence module (2.2) on the com-
mutative triple ladder is a function on the vertex set of the Auslander-Reiten quiver Γ:

D(V ) = {n[M ] ∈ N0 | [M ] : vertex of Γ}.
That is, the value of D(V ) at [M ] is given by n[M ] in the indecomposable decomposition
of V in (2.2).
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