
INTRODUCTION TO ALGEBRAS OF PARTIAL TRIANGULATIONS

LAURENT DEMONET

Abstract. The aim of this note is to give a gentle introduction to algebras of partial
triangulations of marked surfaces, following the structure of a talk given during the 49th
symposium on ring theory and representation theory, held in Osaka. This class of alge-
bras, which always have finite rank, contains classical Jacobian algebras of triangulations
of marked surfaces and Brauer graph algebras. We discuss representation theoretical
properties and derived equivalences. All results are proven in [2], under slightly milder
hypotheses.

1. The algebra of a partial triangulation

Let k be a unital ring and Σ be a connected compact oriented surface with or without
boundary. We fix a non-empty finite set M ⊂ Σ of marked points (some of them may be
on the boundary ∂Σ). For each M ∈ M, we fix an invertible coefficient λM ∈ k× and a
multiplicity mM ∈ Z>0. For simplicity, we suppose here that if Σ is a sphere then #M ≥ 5
and if Σ is a disc then #M ≥ 3.

Definition 1. An arc on (Σ,M) is a continuous map u : [0, 1]→ Σ satisfying:

• The restriction of u to (0, 1) is an embedding into Σ \M;
• Extremities 0 and 1 are mapped to M.

We consider arcs up to homotopy relative to their endpoints in Σ \ M. Moreover, we
exclude arcs that are homotopic to a marked point or to a boundary component, that is
the closure of a connected component of ∂Σ \M.

In this note, for simplicity, we exclude arcs that are loops enclosing a unique marked
point M ∈M with mM ≤ 2. We do not make this restriction in [2].

Definition 2. We say that two arcs u and v are compatible if, up to homotopy, they
are non-crossing. Then, a partial triangulation of (Σ,M) is a set σ of arcs of (Σ,M)
that are pairwise compatible. If σ is a maximal partial triangulation and each connected
component of ∂Σ contains at least a marked point, σ is called a triangulation.

In order to define the algebra ∆σ of a partial triangulation σ, we first need to construct
a quiver Qσ.

Definition 3. The quiver Qσ has set of vertices σ, and arrows are winding in Σ between
successive arcs around marked points counter-clockwisely. We call bouncing path of Qσ

any path of length 2 consisting of two arrows that are not successive around the same
endpoint.

We give two examples to illustrate this definition:
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Example 4. In the left example Σ is a disc with four marked points A, B, C and D (A
and B are on the boundary). In the right one, Σ is a torus with two marked points M
and N . The partial triangulations are depicted with thick lines.
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Bouncing paths of the first example are ab, cd, de and ec. Bouncing paths of the second
example are a2 and b2.

To define the algebra ∆σ, we need two more combinatorial concepts:

Definition 5. For each edge u ∈ σ and endpoint M of u, we denote by ωu,M the path of
Qσ going from u to u winding once around M if M /∈ ∂Σ and ωu,M = 0 if M ∈ ∂Σ.

Definition 6. A small triangle of σ is a triple (u, v, w) of arcs of σ together with three
marked points M , N and P such that

• u is incident to M and N ;
• v is incident to N and P ;
• w is incident to P and M ;
• The union of u, v and w encloses clockwisely (in the order u, v, w) a disc without

marked point inside.

We now define the algebra of the partial triangulation σ by ∆σ := kQσ/Iσ where Iσ is
the ideal generated by the following relations:

(1) For each u ∈ σ that joins M ∈M to N ∈M, we require λMω
mM
u,M = λNω

mN
u,N .

(2) For each u ∈ σ with endpoint M , we require ωmM
u,Mq = 0 for any arrow q of Qσ.

(3) Suppose that σ contains a small triangle M,N,P as in the following picture:
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where α, β and γ are arrows, ω is a the only possible simple path winding around
M if M /∈ ∂Σ and ω = 0 if M ∈ ∂Σ. We require the relation αβ = λM(ωγ)mM−1ω.

(4) For any bouncing path αβ that does not appear in case 3, we require αβ = 0.
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Example 7. Relations for the left partial triangulation of Example 4 are:

amD = (df)mC = (fd)mC = 0 (1)

ab = 0 (4)

cd = de = 0 (3)

ec = λC(fd)mC−1f (3)

and other relations are redundant.
Relations for the right partial triangulation are:

(ab)mM = (ba)mM (1)

a2 = b2 = 0. (4)

It turns out that algebras of partial triangulations are particularly well behaved. A
first result about them is that this definition is compatible with the naive notion of a
sub-partial triangulation:

Theorem 8. Let τ ⊂ σ. Then we have

∆τ
∼= eτ∆σeτ

where eτ is the sum of the primitive idempotents of ∆σ corresponding to the arcs of τ .

Notice that we have naturally kQτ ⊂ kQσ. However, relations as defined in this note
do not go through this inclusion. We have to take a more complicated variant of these
relations, giving an isomorphic algebra, to obtain Theorem 8.

2. Brauer graph algebras and Jacobian algebras of surfaces

We explain here that the class of algebras of partial triangulations contains two impor-
tant classes of algebras.

Theorem 9. If σ contains no small triangle, neither arc incident to ∂Σ, then ∆σ is the
Brauer graph algebra of σ considered as a ribbon graph. Moreover, any Brauer graph
algebra is the algebra of a partial triangulation of a surface without boundary.

We will not recall what a Brauer graph algebra is. For more details, see for example
[4] or [5]. However, this definition is very close to the definition of the algebra of a partial
triangulation and Theorem 9 is mostly straightforward.

Theorem 10. If all mM are invertible in k and σ is a triangulation, then ∆σ is the
Jacobian algebra of a quiver with potential (Qσ,Wσ). To define Wσ, consider the set E
of small triangles T of σ up to rotation and for each of them denote by αT , βT and γT
the three arrows as in the figure defining relation (3) earlier. Then, for each M ∈M take
arbitrarily an arc uM incident to M . Then

Wσ :=
∑
T∈E

αTβTγT −
∑
M∈M

λM
mM

ωmM
u,M

(as usual for potentials, terms are only well defined up to cyclic permutations).
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Notice that if mM = 1 for all M ∈ M, we recover the usual Jacobian algebra of a
surface as defined in [3]. Recall that the Jacobian algebra of (Qσ,Wσ) is the quotient

of the completed path algebra k̂Qσ by the cyclic derivatives of Wσ. So we get here an
improvement as ∆σ is directly defined from kQσ without completion.

3. Algebraic properties of ∆σ

We have the following result about ∆σ:

Theorem 11. The k-algebra ∆σ is a free k-module of rank∑
M∈M∩∂Σ

dM(dM − 1)

2
+

∑
M∈M∩(Σ\∂Σ)

mMd
2
M + f

where, for M ∈ M, dM is the degree of M in the graph σ (without counting boundary
components), and f is the number of arcs in σ with both endpoints on boundaries.

Example 12. The algebra of the left partial triangulation of Example 4 has rank 5 +
4mC +mD, and the right one has rank 4mM .

More precisely, there is a k-basis of ∆σ consisting of all strict and non-idempotent
prefixes of all ωmM

u,M , together with primitive idempotents and elements λMω
mM
u,M = λNω

mN
u,N .

The following property generalizes a known result for Brauer graph algebras and Jaco-
bian algebras of surfaces without boundary:

Theorem 13. If σ has no arc incident to the boundary, then ∆σ is a symmetric k-algebra
( i.e. Homk(∆σ, k) ∼= ∆σ as ∆σ-bimodules).

4. Representation type of ∆σ

The next theorem permits to expect that the classification of ∆σ-modules is possible:

Theorem 14. If k is an algebraically closed field, then ∆σ is of tame representation type.

The proof of this result relies on a deformation theorem by Crawley-Boevey [1]. Indeed,
the relations defining ∆σ can be deformed to the relations of a Brauer graph algebra in a
suited manner. Moreover, Brauer graph algebras are of tame representation type. Notice
that unfortunately, these techniques do not permit to deduce directly the classification of
∆σ-modules even though modules over Brauer graph algebras are known.

5. Flip of partial triangulations and derived equivalences

Finally, we give a flip leading to derived equivalences. For an arc u in σ such that arcs
marked by + in the following diagrams are also in σ (in particular, they are not in ∂Σ),
we define µu(σ) by replacing u by u∗ defined in the following way:

u∗ u

+

· · ·u∗ u

+

+

u∗ u

+

(F1) (F2) (F3)
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We also define coefficients µu(λ). For a marked point M ∈ M, µu(λ)M = λM except in
the following cases:

• In case (F1), if M is the topmost vertex of the figure then µu(λ)M = −λM .
• In case (F1), if M is the rightmost vertex of the figure then µu(λ)M = (−1)mMλM .
• In case (F2), if M is the unique marked point enclosed by u then µu(λ)M = −λM .

Then we get the following result:

Theorem 15. There is a derived equivalence between ∆σ and ∆
µu(λ)
µu(σ) where the second

algebra is computed with respect to the coefficients µu(λ).

Example 16. We consider the two following partial triangulations of a disc with three
marked points, none of them are in ∂Σ:

M

N P
M N P

They are related by a flip so the following algebras, obtained for λM = λN = λP = 1 and
mM = mN = mP = m are derived equivalent:

k


•

x

""

y




•

x

II

y
33 •

y

bb

x
ss


(x2 − (yx)m−1y, y2)

and

k

 •
β1

66α 88 •
γ1
66

β2vv •
γ2vv

δ
xx




β2α− (γ1γ2β2β1)m−1γ1γ2β2,
αβ1 − (β1γ1γ2β2)m−1β1γ1γ2,
β1β2 − αm−1, γ1δ, δγ2, γ2γ1,

δm − (γ2β2β1γ1)m


.
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