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Abstract. An algebra is gendo-symmetric if it is isomorphic to the endomorphism
ring of a generator over a symmetric algebra. We classify representation-finite gendo-
symmetric algebras which are also biserial, and give some elementary properties.

1. Introduction

This is a report on some results presented in [1]. While our original motivation in loc.
cit. is rather different, for the sake of brevity, our goal here is to give a classification
of representation-finite gendo-symmetric biserial algebras. This gives a very computable
(due to its biseriality) class of gendo-symmetric algebras.

Throughout, all algebras are finite dimensional over an algebraically closed field K. All
modules are finitely generated right modules unless otherwise specified. Paths of quivers
are composed from left to right, which is opposite to the direction of composition of maps.
Let us start by recall the definitions of various classes of algebras.

Definition 1. [2, 3] An algebra Γ is gendo-symmetric if Γ ∼= EndΛ(M) where M is a
generator of the module category modΛ over a symmetric algebra Λ.

The two classes of typical examples of gendo-symmetric are Auslander algebra of
representation-finite symmetric algebras, and the family of Schur algebras S(n, r) with
n ≥ r. The reason for the second class being gendo-symmetric is that it is isomorphic
to the endomorphism ring of direct sum of permutation modules (depending on n and r)
over the group algebra KSr of symmetric group, and one of these permutation modules
is given by IndKSr

{1} K = KSr when n ≥ r.

Definition 2. A module is uniserial if it is left serial and right serial. An algebra is said
to be biserial if for any indecomposable projective module, its radical is the sum of two
uniserial modules whose intersection is simple or zero.

In order to define the next class of algebras, let us introduce the Brauer tree combina-
torics first.

Definition 3. A Brauer tree is a datum (G = (V,E), σ := (σv)v∈V ,m := (mv)v∈V ) where

• G = (V,E) is a (finite) graph which is also tree, where V is the set of vertices and
E is the set of edges;
• for each v ∈ V , σv is a cyclic ordering (permutation) of all the edges incident to v;
• (mv)v∈V is a series of positive integers so that mv = 1 for all but at most one

vertex; each mv is called the multiplicity of v.

The detailed version of this paper will be submitted for publication elsewhere.
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The exceptional vertex of (G, σ,m) is the vertex whose multiplicity, which will be called
exceptional multiplicity, is not equal to 1. In the case when mv = 1 for all v ∈ V (which
will be denoted by m ≡ 1), any vertex and its associated multiplicity can be regarded as
being exceptional. A vertex of valency 1 will be called a leaf vertex, and its attached edge
is called a leaf.

We will usually just specify a datum by a tuple (G,m), where G is the graph G equipped
with the cyclic orderings (σv)v∈V . We call G a planar tree for short. The edge immediately
before (resp. after) x in the cyclic ordering around v is called the predecessor (resp.
successor) of x around v. Whenever we visualise a planar tree in a picture, we will
present the edges emanating from each vertex according to the associated cyclic ordering
in the counter-clockwise direction.

Define a set H := HG of symbols (x|y) with x, y being edges of G so that they are both
incident to a vertex v and y is the successor of x around v. We also call the vertex v in
this instance as the vertex associated to (x|y) (or associating vertex of (x|y)). To avoid
ambiguity, we take HG := {(x|x), (x|x)} in the case when G has only one edge x.

The Brauer quiver associated to G is a quiver, denoted by QG, whose set of vertices is
the set E of edges in G, and the set of arrows are given by x → y for each (x|y) ∈ H.
While it makes sense to identify (QG)1 with H, there will come a time when we need
to distinguish arrows with elements of H. Therefore, we will always denote an arrow by
(x→ y) instead of just simply (x|y).

Let ρx,v = (x = x0 → x1 → · · · → xk = x) denote the simple cycle (i.e. the one without
repeating arrow) in QG so that xi is incident to v for all i ∈ {1, 2, . . . , k}. Note that k is
the valency of the vertex v in G.

Definition 4. An algebra B is a Brauer tree algebra associated to the Brauer tree (G,m)
if it is Morita equivalent to the bounded path algebra ΛG,m := KQG/I, where the ideal I
is generated by the following Brauer relations:

• (x→ y → z) = 0, if x and z are incident to different vertices;
• ρmu

x,u = ρmv
x,v , where u, v are the two endpoints of x.

Example 5. Consider the Brauer tree (G,m) where G has the following visualisation:

◦
0

◦ 1 ◦ 2 ◦ 3 ◦
This means that the cyclic ordering of the 3-valent vertex u is (0, 1, 2) and the cyclic
ordering of the other endpoint v of edge 2 is (2, 3). Suppose the exceptional vertex is v
with multiplicity 2. Then all the indecomposable projective modules of B := ΛG,m are
uniserial apart from e2B. The Loewy filtration is described by the cyclic ordering and
the multiplicity of the associated vertex, which gives the following pictorial presentation
of the Loewy structure of B:

0 1 2 3
1 2 0 3 2
2 ⊕ 0 ⊕ 1 2 ⊕ 3
0 1 3 2

2 3
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This presentation gives a clear view of the structures of the two uniserial modules appear-
ing defining the biseriality of B: one has simple subquotients (S0, S1, S2) in its Loewy
filtration, while the other has simple subquotients (S3, S2, S3, S2) in its Loewy filtration.

The following theorem is well-known to experts by combining various results from the
literature.

Theorem 6. An algebra is representation-finite biserial symmetric if, and only if, it is a
Brauer tree algebra.

It turns out that if we replace symmetric by gendo-symmetric on the left-hand side of
the theorem, then the right-hand can be replaced by a similarly combinatorial-defined
algebra, which we call special gendo-Brauer tree algebra.

2. Special gendo-Brauer tree algebras

The following class of modules of Brauer tree algebras plays a central role in our inves-
tigation.

Definition 7. Let B := ΛG,m be a basic Brauer tree algebra. For each (x|y) ∈ H(G)
where G has more than one edge, we denote by M(x, y) the hook module (x → y)B. In
the case when G has only a single edge x (i.e. B ∼= K[X]/(X`+1) for some ` ≥ 1), the
symbol M(x, x) means either the radical or the socle of the regular module B, i.e. the
K[X]/(X`+1)-module isomorphic to either K[X]/(X`) or K. If we ever need to use both
of these modules at the same time, we take {M(x, x),M(x, x)} = {K[X]/(X`), K}.

The distance between two vertices u, v of a planar tree G is the number of edges in the
(unique) path in G whose endpoints are u, v. Distance gives a natural bipartite structure
on trees. In particular, we say that two vertices have the same (resp. different) parity if
and only if their distance is even (resp. odd).

Definition 8. Fix a Brauer tree (G,m) and H := HG. A (possibly empty) subset W
of H is called special if there does not exist (x|y), (y|z) ∈ W so that their associating
vertices have different parity.

Fix a special subset W of H. Define a Brauer tree (GW ,mW ) = (GW , σW ,mW ) by
enlarging (G,m) as follows.

All of the new vertices of GW will have valency 1 and multiplicity 1. The new edges
of GW will all be leaves corresponding to elements of W ; the endpoints of the (new) leaf
corresponding to (x|y) ∈ W is a new vertex and the vertex associated to (x|y). The cyclic
ordering on GW is given by inserting (x|y) in between x and y.

We can visualise the data (G,W ) in a similar way as Brauer trees by showing the planar
tree GW with the following modification:

• Edges in G are shown in solid lines with ◦ at the endpoints.
• Edges in W (i.e. in GW \G) are shown in solid lines with “propagation”, whereas

its attaching leaf vertex will not be shown.

Definition 9. For a Brauer tree (G,m) with special subset W of HG, let ΓW
G,m be basic

algebra appearing as the quotient of ΛGW ,mW by the sum of socles of the projective
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ΛGW ,mW -modules corresponding to (x|y) ∈ W ⊂ (QGW )0, over all elements of W . An

algebra is called special gendo-Brauer tree if it is Morita equivalent to some ΓW
G,m.

Example 10. Consider the Brauer tree (G,m) given in Example 5. The combinatorial
data (G,m,W ) with W = {(2|0), (2|3)} is visualised as follows:

◦
0 (2|0)

: : : : : : : ◦

◦
1
◦

2
•

3
(2|3) �����

Note that, following the traditional convention in Brauer trees, the exceptional vertex is
represented by the black node, in contrast to the other white nodes (vertex with multi-
plicity 1). It is clear from this visualisation that W is special but not of pure parity. The
Loewy structure of the algebra ΓW

G,m is:

2 (2|3) 3
(2|0) 0 1 (2|3) 3 2

0 1 2 (2|0) 3 2 (2|3)
1 ⊕ 2 ⊕ (2|0) ⊕ 0 2 ⊕ (2|3) ⊕ 3
2 (2|0) 0 1 (2|3) 3 2

0 1 3 2 (2|3)
2 3

Let e be the idempotent given by e0 +e1 +e2 +e3. Roughly speaking, the effect of applying
the Schur functor (−)e to ΓW

G,m is to remove all the composition factors labelled by (2|0)
and (2|3). The resulting diagram is then the same as the Loewy diagram of the generator
ΛG,m⊕M(2, 0)⊕M(2, 3) over ΛG,m - this is, in fact, the Morita-Tachikawa correspondence
(see [2, 4]) in action.

Theorem 11. Let ΓW
G,m be a basic special gendo-Brauer tree algebras as in the previous

definition. Then ΓW
G,m is isomorphic to the endomorphism ring of the generator

ΛG,m ⊕
⊕

(x|y)∈W

M(x, y)

of mod ΛG,m. In particular, it is representation-finite gendo-symmetric biserial. Con-
versely, any representation-finite gendo-symmetric biserial algebra appears in such a form
up to Morita equivalence.

We finish by giving some facts about various homological dimensions of these algebras.

Proposition 12. Let (G,m) be a Brauer tree with special subset W . Then the following
statements hold.

(1) ΓW
G,m has dominant dimension at least 2.

(2) ΓW
G,m is Gorenstein, i.e. the injective dimensions of the regular left module and the

regular right module are both finite.
(3) ΓW

G,m has finite global dimension if, and only if, m ≡ 1 and |W | = 1.

In fact, these homological dimensions can be determined combinatorially using (G,m)
and W . We will omit these description due to technicalities but refer the reader to [1].
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