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Abstract. For a one-sided noetherian ring, Gabriel constructed two maps between
the isomorphism classes of indecomposable injective modules and the two-sided prime
ideals. In this paper, we give a categorical reformulation of these maps using the notion
of Grothendieck category. Gabriel’s maps become maps between the atom spectrum and
the molecule spectrum in our setting, and these two spectra have structures of partially
ordered sets. The main result in this paper shows that the two maps induce a bijection
between the minimal elements of the atom spectrum and those of the molecule spectrum.
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1. Introduction

For a one-sided noetherian ring, Gabriel [1] described the relationship between inde-
composable injective modules and two-sided prime ideals as follows.

Theorem 1 ([1]). Let Λ be a right noetherian ring. Then we have two maps

{ indecomposable injective right Λ-modules }
∼=

{ two-sided prime ideals of Λ }
φ

ψ

characterized by the following properties.

(1) For each indecomposable injective right Λ-module I, the only associated (two-sided)
prime of I is φ(I).

(2) For each two-sided prime ideal P of Λ, the injective envelope E(Λ/P ) of the right
Λ-module Λ/P is the direct sum of a finite number of copies of the indecomposable
injective Λ-module ψ(P ).

Moreover, the composite φψ is the identity map.

If the ring is commutative, then these maps are bijective ([7, Proposition 3.1]). In
general, these maps are far from being bijective as the following example shows.

Example 2. The ring Λ := C⟨x, y⟩/(xy − yx − 1) is a simple domain which is left and
right noetherian. The only two-sided prime ideal of Λ is 0, while there exist infinitely
many isomorphism classes of indecomposable injective right Λ-modules.

This is not in final form. The detailed version of this paper will be submitted for publication elsewhere.
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In this paper, we generalize Theorem 1 to a certain class of Grothendieck categories
as maps between the atom spectrum and the molecule spectrum of a Grothendieck cate-
gory. Moreover, by using naturally defined partial orders on these spectra, we establish a
bijection between the minimal elements of the atom spectrum and those of the molecule
spectrum. This result would have been unknown even in the case of the category ModΛ
of right modules over a right noetherian ring Λ.

Acknowledgement. The author would like to express his deep gratitude to Osamu
Iyama for his elaborated guidance. The author thanks S. Paul Smith for his valuable
comments.

2. Atom spectrum

Throughout this paper, let A be a Grothendieck category. In this section, we recall the
definition of the atom spectrum of A and related notions.

The atom spectrum is defined by using monoform objects and an equivalence relation
between them.

Definition 3.

(1) A nonzero object H in A is called monoform if for each nonzero subobject L of
H, no nonzero subobject of H is isomorphic to a subobject of H/L.

(2) For monoform objects H1 and H2 in A, we say that H1 is atom-equivalent to H2 if
there exists a nonzero subobject of H1 which is isomorphic to a subobject of H2.

The following result is fundamental.

Proposition 4 ([3, Proposition 2.2]). Every nonzero subobject of a monoform object is
monoform.

For a commutative ring R, all monoform objects in ModR can be described in the
following sense.

Proposition 5 ([9, p. 626]). Let R be a commutative ring. Then a nonzero object H in
ModR is monoform if and only if there exist p ∈ SpecR and a monomorphism H → k(p)
in ModR, where k(p) = Rp/pRp.

The atom equivalence is in fact an equivalence relation between the monoform objects
in A.

Definition 6. The atom spectrum ASpecA of A is the quotient set of the set of monoform
objects in A by the atom equivalence. Each element of ASpecA is called an atom in A.
For each monoform object H in A, the equivalence class of H is denoted by H.

The notion of atoms was originally introduced by Storrer [9] for module categories and
generalized to arbitrary abelian categories in [3].

The next result shows that the atom spectrum of a Grothendieck category is a gener-
alization of the prime spectrum of a commutative ring.

Proposition 7 ([9, p. 631]). Let R be a commutative ring. Then the map SpecR →
ASpec(ModR) given by p 7→ R/p is bijective.
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We can also generalize the notions of associated primes and support.

Definition 8. Let M be an object in A.

(1) Define the subset AAssM of ASpecA by

AAssM = {α ∈ ASpecA | α = H for some monoform subobject H of M }.
We call each element of AAssM an associated atom of M .

(2) Define the subset ASuppM of ASpecA by

ASuppM = {α ∈ ASpecA | α = H for some monoform subquotient H of M }.
We call it the atom support of M .

Proposition 9. Let R be a commutative ring, and let M be an R-module. Then the
bijection SpecR → ASpec(ModR) in Proposition 7 induces bijections AssM → AAssM
and SuppM → ASuppM .

We introduce a partial order on the atom spectrum, which plays an crucial role in this
paper.

Definition 10. For α, β ∈ ASpecA, we write α ≤ β if β ∈ ASuppH holds for each
monoform object H in A with H = α.

The partial order on the atom spectrum is a generalization of the inclusion relation
between prime ideals of a commutative ring.

Proposition 11. Let R be a commutative ring. Then the bijection SpecR → ASpec(ModR)
in Proposition 7 is an isomorphism between the partially ordered sets (SpecR,⊂) and
(ASpec(ModR),≤).

We can generalize Matlis’ correspondence in commutative ring theory.

Theorem 12 ([3, Theorem 5.9]). Let A be a locally noetherian Grothendieck category.
Then we have a bijection

ASpecA ∼−→ { indecomposable injective objects in A}
∼=

given by H 7→ E(H).

For a locally noetherian Grothendieck category A, the localizing subcategories of A can
be classified by the localizing subsets of ASpecA.

Definition 13. A subset Φ of ASpecA is called a localizing subset if there exists an object
M in A such that Φ = ASuppM .

Theorem 14 ([2, Theorem 3.8], [6, Corollary 4.3], and [3, Theorem 5.5]). Let A be a
locally noetherian Grothendieck category. Then we have a bijection

{ localizing subcategories of A} ∼−→ { localizing subsets of ASpecA}
given by X 7→ ASuppX :=

∪
M∈X ASuppM . The inverse map is given by Φ 7→ ASupp−1 Φ,

where
ASupp−1 Φ = {M ∈ A | ASupp ⊂ Φ }.
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Moreover, the atom spectrum of the quotient category by a localizing subcategory can
be described as follows.

Theorem 15 ([5, Theorem 5.17]). Let A be a Grothendieck category, and let X be a
localizing subcategory of A. Denote by F : A → A/X the canonical functor. Then we
have a bijection

ASpecA \ ASuppX ∼−→ ASpec
A
X

given by H 7→ F (H).

If the Grothendieck category A has a noetherian generator, then the set of minimal
atoms in A has significant properties. Denote by AMinA the set of minimal atoms in A.

Theorem 16. Let A be a Grothendieck category having a noetherian generator.

(1) ([5, Proposition 4.7]) For each α ∈ ASpecA, there exists β ∈ AMinA satisfying
β ≤ α.

(2) ([4, Theorem 4.4]) AMinA is a finite set.
(3) ASpecA \ AMinA is a localizing subset of A.

Definition 17. Let A be a Grothendieck category having a noetherian generator. Define
the artinianization Aartin of A as the quotient category of A by the localizing subcategory
ASupp−1(ASpecA \ AMinA).

It is easy to deduce that the artinianization has a generator of finite length. Moreover,
the following result ensures that it is the module category of some right artinian ring.

Theorem 18 (Năstăsescu [8]). Let A be a Grothendieck category. Then the following
assertions are equivalent.

(1) A has an artinian generator.
(2) A has a generator of finite length.
(3) There exists a right artinian ring Λ satisfying A ∼= ModΛ.

3. Molecule spectrum

In this section, we introduce a new spectrum of a Grothendieck category, which we call
the molecule spectrum. It is a generalization of the set of two-sided prime ideals of a ring.
The definition uses the notion of closed subcategory.

Definition 19.

(1) A full subcategory C of A is called closed if C is closed under subobjects, quotient
objects, arbitrary direct sums, and arbitrary direct products.

(2) Let C and D be closed subcategories of A. Denote by C ∗ D the full subcategory
of A consisting of all objects M in A such that there exists an exact sequence

0 → L→M → N → 0

with L ∈ C and N ∈ D.
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For each family of objects {Mi}i∈I inA, we have the canonical monomorphism
⊕

i∈IMi →∏
i∈IMi since A is a Grothendieck category. Therefore the closedness under arbitrary di-

rect sums can be dropped from the definition of closed subcategory.
The following well-known result shows that closed subcategories of a Grothendieck

category is a generalization of two-sided ideals of a ring.

Proposition 20. Let Λ be a ring.

(1) We have a poset isomorphism

({ two-sided ideals of Λ },⊂) ∼−→ ({ closed subcategories of ModΛ },⊃)

given by I 7→ Mod(Λ/I), where Mod(Λ/I) is identified with the full subcategory

{M ∈ ModΛ |MI = 0 }

of ModΛ.
(2) Let I and J be two-sided ideals of Λ. Then we have

Mod
Λ

IJ
= Mod

Λ

J
∗Mod

Λ

I

as a full subcategory of ModΛ, that is, the isomorphism in (1) induces an isomor-
phism

({ two-sided ideals of Λ }, ·) ∼−→ ({ closed subcategories of ModΛ }, ∗)

of monoids.
(3) Let M be a right Λ-module. Then the two-sided ideal AnnΛ(M) corresponds to

the smallest closed subcategory ⟨M⟩closed of A containing M by the isomorphism
in (1).

We can generalize the notion of two-sided prime ideals of a ring to a Grothendieck
category.

Definition 21. A nonzero closed subcategory P of A is called prime if for each closed
subcategories C and D satisfying P ⊂ C ∗ D, we have P ⊂ C or P ⊂ D.

Proposition 22. Let Λ be a ring. Then the isomorphism in Proposition 20 (1) induces
a poset isomorphism

({ two-sided prime ideals of Λ },⊂) ∼−→ ({ prime closed subcategories of ModΛ },⊃).

Although the set of prime closed subcategories can be used as the definition of the
molecule spectrum, we use the notion of prime object instead, in order to clarify the
similarity between the atom spectrum and the molecule spectrum.

Definition 23.

(1) A nonzero object H in A is called prime if for each nonzero subobject L of H, it
holds that ⟨L⟩closed = ⟨H⟩closed.

(2) For prime objects H1 and H2 in A, we say that H1 is molecule-equivalent to H2 if
⟨H1⟩closed = ⟨H2⟩closed.
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Definition 24. The molecule spectrum MSpecA of A is the quotient set of the set of
prime objects in A by the molecule equivalence. Each element of MSpecA is called a
molecule in A. For each prime object H in A, the equivalence class of H is denoted by

H̃.

The following result shows that the molecule spectrum is also regarded as a general-
ization of the set of two-sided prime ideals of a ring. Although we assume the existence
of a noetherian generator, this result can be also shown for the category ModΛ of right
modules over an arbitrary ring Λ by using classical ring-theoretic argument.

Proposition 25. Let A be a Grothendieck category with a noetherian generator. Then
we have a bijection

MSpecA ∼−→ { prime closed subcategories of A}

given by H̃ 7→ ⟨H⟩closed. For each ρ = H̃ ∈ MSpecA, the prime closed subcategory
⟨H⟩closed corresponding to ρ is denoted by ⟨ρ⟩closed.

MSpecA has a partial order induced from the set of prime closed subcategories.

Definition 26. Let A be a Grothendieck category with a noetherian generator. For
ρ, σ ∈ MSpecA, we write ρ ≤ σ if ⟨ρ⟩closed ⊃ ⟨σ⟩closed holds.

The partial order on MSpecA can be also defined for ModΛ, where Λ is an arbitrary
ring, and we can show the following proposition.

Proposition 27. Let Λ be a ring. Then we have a poset isomorphism

({ two-sided prime ideals of Λ },⊂) ∼−→ (MSpecΛ,≤)

given by P 7→ Λ̃/P .

Denote by MMinA the set of minimal elements of MSpecA.

4. Atom-molecule correspondence

From now on, let A be a Grothendieck category having a noetherian generator and
satisfying the Ab4* condition, that is, direct product preserves exactness. For a right
noetherian ring Λ, the category ModΛ satisfies this assumption. The following theorem
is our main result.

Theorem 28.

(1) We have a surjective poset homomorphism

φ : ASpecA → MSpecA
given by H 7→ H̃, where H is taken to be a prime monoform object in A.

(2) The map φ induces a poset isomorphism

AMinA ∼−→ MMinA.
(3) There exists an injective poset homomorphism

ψ : MSpecA → ASpecA
satisfying the following properties.
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(a) For each ρ ∈ MSpecA, the image ψ(ρ) is the smallest element in the set

{α ∈ ASpecA | ρ ≤ φ(α) }.
(b) The composite φψ is the identity map on MSpecA.
(c) The map ψ induces a poset isomorphism MSpecA ∼−→ ℑψ.
(d) For each α ∈ ASpecA and ρ ∈ MSpecA, we have

ψ(ρ) ≤ α ⇐⇒ ρ ≤ φ(α).

This theorem is proved by using the next two lemmas. Recall that an object H in A is
called compressible if every nonzero subobject of H has a subobject which is isomorphic
to H. In our setting, every compressible object in A is monoform.

Lemma 29. For every α ∈ AMinA, there exists a compressible object H satisfying
α = H.

A full subcategory X of A is called weakly closed if X is closed under subobjects,
quotient objects, and arbitrary direct sums. The following lemma explains why minimal
elements of ASpecA behave nicely.

Lemma 30. LetM be an object in A satisfying AAssM ⊂ AMinA. Let X be the smallest
weakly closed subcategory containing M . Then X is closed under arbitrary direct products,
that is, X = ⟨M⟩closed.

The Ab4* condition is used in the proof of Lemma 30. The proof also depends on the
fact that AMinA is a finite set.
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