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Abstract. Let G be a group and k be a commutative ring. We define a G-invariant
bimodule SMR over G-categories R,S and a G-graded bimodule BNA over G-graded
categories A,B, and introduce the orbit bimodule M/G and the smash product bi-
module N#G. We will show that these constructions are inverses to each other. This
will be apply to Morita equivalences and stable equivalences of Morita type.

Introduction

We fix a commutative ring k and a group G. To include infinite coverings of k-
algebras into consideration we usually regard k-algebras as locally bounded k-categories
with finite objects, and we will work with small k-categories. For small k-categories
R and S with G-actions we introduce G-invariant S-R-bimodules and their category
denoted by S-ModG-R, and denote by R/G the orbit category of R by G, which
is a small G-graded k-category. For small G-graded k-categories A and B we in-
troduce G-graded B-A-bimodules and their category denoted by B-ModG-A, and de-
note by A#G the smash product of A and G, which is a small k-category with G-
action. Then the Cohen-Montgomery duality theorem [4, 2] says that we have equiv-
alences (R/G)#G ≃ R and (A#G)/G ≃ A, by which we identify these pairs (see
also [3]). Here we introduce functors (-)/G : S-ModG-R → (S/G)-ModG-(R/G) and
(-)#G : A-ModG-B → (A#G)-ModG-(B#G), and show that they are equivalences
and quasi-inverses to each other (by applying A := R/G, R := A#G, etc.), have good
properties with tensor products and preserve projectivity of bimodules. We apply this
to equivalences given by bimodules such as Morita equivalences, stable equivalences of
Morita type to have theorems such as for stable equivalences of Morita type:

Theorem. (1) There exists a “G-invariant stable equivalence of Morita type” between
R and S if and only if there exists a “G-graded stable equivalence of Morita type”
between R/G and S/G.

(2) There exists a “G-graded stable equivalence of Morita type” between A and B if
and only if there exists a “G-invariant stable equivalence of Morita type” between A#G
and B#G.

We note that a G-invariant (resp. G-graded) stable equivalence of Morita type is
defined to be a usual stable equivalence of Morita type with additional properties, and
does not mean an equivalence between stable categories of G-invariant (resp. G-graded)
modules (see section 6 for detail).

The detailed version of this paper will be submitted for publication elsewhere.
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1. Preliminaries

For a category R we denote the class of objects and morphisms of R by R0 and
R1, respectively. We sometimes write x ∈ R for x ∈ R0. We first recall definitions of
G-categories and their 2-category G-Cat.

Definition 1.1. (1) A k-category with a G-action, or a G-category for short, is a pair
(R,X) of a category R and a group homomorphism X : G→ Aut(R). We often write
ax for X(a)x for all a ∈ G and x ∈ R0 ∪R1 if there seems to be no confusion.

(2) Let R = (R,X) and R′ = (R′, X ′) be G-categories. Then a G-equivariant functor
from R to R′ is a pair (E, ρ) of a k-functor E : R → R′ and a family ρ = (ρa)a∈G of
natural isomorphisms ρa : X

′
aE ⇒ EXa (a ∈ G) such that the diagrams

X ′
baE = X ′

bX
′
aE

X′
bρa +3

ρba %-SS
SSSS

SSSS
SSSS

SSSS
SSSS

SSSS
SS

X ′
bEXa

ρbXa

��
EXba = EXbXa

commute for all a, b ∈ G.
(3) A k-functor E : R → R′ is called a strictly G-equivariant functor if (E, (1lE)a∈G)

is a G-equivariant functor, i.e., if X ′
aE = EXa for all a ∈ G.

(4) Let (E, ρ), (E ′, ρ′) : R → R′ be G-equivariant functors. Then a morphism from
(E, ρ) to (E ′, ρ′) is a natural transformation η : E ⇒ E ′ such that the diagrams

X ′
aE EXa

X ′
aE

′ E ′Xa

ρa +3

ρ′a

+3

X′
aη

��
ηXa

��

commute for all a ∈ G.
These data define a 2-category G-Cat of small G-categories.

Next we recall definitions of G-graded categories and their 2-category G-GrCat.

Definition 1.2. (1) A G-graded k-category is a category A together with a family of
direct sum decompositions A(x, y) =

⊕
a∈GA

a(x, y) (x, y ∈ A) of k-modules such that
Ab(y, z) · Aa(x, y) ⊆ Aba(x, z) for all x, y ∈ A and a, b ∈ G. It is easy to see that
1lx ∈ A1(x, x) for all x ∈ A0.

(2) A degree-preserving functor is a pair (H, r) of a k-functor H : A→ B of G-graded
categories and a map r : A0 → G such that

H(Arya(x, y)) ⊆ Barx(Hx,Hy)

(or equivalently H(Aa(x, y)) ⊆ Br−1
y arx(Hx,Hy)) for all x, y ∈ A and a ∈ G. This r is

called a degree adjuster of H.
(3) A k-functor H : A → B of G-graded categories is called a strictly degree-

preserving functor if (H, 1) is a degree-preserving functor, where 1 denotes the constant
map A0 → G with value 1 ∈ G, i.e., if H(Aa(x, y)) ⊆ Ba(Hx,Hy) for all x, y ∈ A and
a ∈ G.
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(4) Let (H, r), (I, s) : A → B be degree-preserving functors. Then a natural trans-
formation θ : H ⇒ I is called a morphism of degree-preserving functors if θx ∈
Bs−1

x rx(Hx, Ix) for all x ∈ A.
These data define a 2-category G-GrCat of small G-graded categories.

Finally we recall definitions of orbit categories and smash products, and their rela-
tionships.

Definition 1.3. Let R be a G-category. Then the orbit category R/G of R by G is a
category defined as follows.

• (R/G)0 := R0;
• For any x, y ∈ G, (R/G)(x, y) :=

⊕
a∈GR(ax, y); and

• For any x
f−→ y

g−→ z in R/G, gf := (
∑

a,b∈G;ba=c gb · b(fa))c∈G.
• For each x ∈ (R/G)0 its identity 1lx := 1lR/Gx in R/G is given by 1lx = (δa,11l

R
x )a∈G,

where 1lRx is the identity of x in R.

By setting (R/G)a(x, y) := R(ax, y) for all x, y ∈ R0 and a ∈ G, the decompositions
(R/G)(x, y) =

⊕
a∈G(R/G)

a(x, y) makes R/G a G-graded category.

Definition 1.4. Let A be a G-graded category. Then the smash product A#G is a
category defined as follows.

• (A#G)0 := A0 ×G, we set x(a) := (x, a) for all x ∈ A and a ∈ G.

• (A#G)(x(a), y(b)) := Ab
−1a(x, y) for all x(a), y(b) ∈ A#G.

• For any x(a), y(b), z(c) ∈ A#G the composition is given by the following commu-
tative diagram

(A#G)(y(b), z(c))× (A#G)(x(a), y(b)) −−−→ (A#G)(x(a), z(c))∥∥∥ ∥∥∥
Ac

−1b(y, z)× Ab
−1a(x, y) −−−→ Ac

−1a(x, z),

where the lower horizontal homomorphism is given by the composition of A.
• For each x(a) ∈ (A#G)0 its identity 1lx(a) in A#G is given by 1lx ∈ A1(x, x).

A#G has a free G-action defined as follows: For each c ∈ G and x(a) ∈ A#G, cx(a) :=
x(ca); and for each f ∈ (A#G)(x(a), y(b)) = Ab

−1a(x, y) = (A#G)(x(ca), y(cb)), cf := f .

The following two propositions were proved in [1].

Proposition 1.5 ([1, Proposition 5.6]). Let A be a G-graded category. Then there is
a strictly degree-preserving equivalence ωA : A→ (A#G)/G of G-graded categories.

Proposition 1.6 ([1, Theorem 5.10]). Let R be a category with a G-action. Then there
is a G-equivariant equivalence εR : R → (R/G)#G.

In fact, the orbit category construction and the smash product construction can be
extended to 2-functors (-)/G : G-Cat → G-GrCat and (-)#G : G-GrCat → G-Cat,
respectively, and they are inverses to each other as stated in the following theorem,
where ω := (ωA)A and ε := (εR)R are 2-natural isomorhisms.
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Theorem 1.7 ([2, Theorem 7.5]). (-)/G is strictly left 2-adjoint to (-)#G and they
are mutual 2-quasi-inverses.

Remark 1.8. ωA : A → (A#G)/G above is an equivalence in the 2-category G-GrCat
and εR : R → (R/G)#G above is an equivalence in the 2-category G-Cat. By these
equivalences we identify (A#G)/G with A, and (R/G)#G with R in the following
sections.

2. G-invariant bimodules and G-graded bimodues

Definition 2.1. Let R = (R,X) and S = (S, Y ) be small k-categories with G-actions.
(1) A G-invariant S-R-bimodule is a pair (M,ϕ) of an S-R-bimodule M and a

family ϕ := (ϕa)a∈G of natural transformations ϕa : M → M(X(a)(-), Y (a)(-)), where
ϕa = (ϕa(x, y))(x,y)∈R0×S0 , ϕa(x, y) : M(x, y) → M(ax, ay) is in Mod k, such that the
following diagram commutes for all a, b ∈ G and all (x, y) ∈ R0 × S0:

M(x, y) M(ax, ay)

M(bax, bay).

ϕa(x,y)//

ϕb(ax,ay)

��ϕba(x,y) ''OO
OOO

OOO
OOO

(2) Let (M,ϕ) and (N,ψ) be G-invariant S-R-bimodules. A morphism (M,ϕ) →
(N,ψ) is an S-R-bimodule morphism F : M → N such that the following diagram
commutes for all a ∈ G and all (x, y) ∈ R0 × S0:

M(x, y) M(ax, ay)

N(x, y) N(ax, ay).

ϕa(x,y)//

ψa(x,y)
//

F (x,y)
��

F (ax,ay)
��

(3) The class of all G-invariant S-R-bimodules together with all morphisms between
them forms a k-category denoted by S-ModG-R.

Remark 2.2. The commutativity of the diagram in (1) above for a = b = 1 shows
that ϕ1 = 1lM , which also shows that ϕa(x, y)

−1 = ϕa−1(ax, ay) for all a ∈ G and all
(x, y) ∈ R0 × S0.

Definition 2.3. Let A and B be G-graded small k-categories.
(1) A G-graded B-A-bimodule is a B-A-bimodule M together with decompositions

M(x, y) =
⊕

a∈GM
a(x, y) in Modk for all (x, y) ∈ A0 ×B0 such that

Bc(y, y′) ·Ma(x, y) · Ab(x′, x) ⊆M cab(x′, y′)

for all a, b, c ∈ G and all x, x′ ∈ A0, y, y
′ ∈ B0.

(2) Let M and N be G-graded B-A-bimodules. Then a morphism M → N is a
B-A-bimodule morphism F : M → N such that F (Ma(x, y)) ⊆ Na(Fx, Fy) for all
a ∈ G and all (x, y) ∈ A0 ×B0.

(3) The class of all G-graded B-A-bimodules together with all morphisms between
them forms a k-category denoted by B-ModG-A.
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3. orbit bimodules

Throughout this section R = (R,X) and S = (S, Y ) are small k-categories with
G-actions, and E : R → R/G and F : S → S/G the canonical G-covering, respectively.

Definition 3.1. (1) Let M = (M,ϕ) be a G-invariant S-R-bimodule. Then we form a
G-graded S/G-R/G-bimodule M/G as follows which we call the orbit bimodule of M
by G:

• For each (x, y) ∈ (R/G)0 × (S/G)0 = R0 × S0 we set

(M/G)(x, y) :=
⊕
a∈G

M(ax, y). (3.1)

• For each (x, y), (x′, y′) ∈ (R/G)0×(S/G)0 = R0×S0 and each (r, s) ∈ (R/G)(x′, x)×
(S/G)(y, y′) we define a morphism

(M/G)(r, s) : (M/G)(x, y) → (M/G)(x′, y′)

in Mod k by

(M/G)(r, s)(m) := s ·m · r :=

(∑
cba=d

sc · ϕc(mb) · cbra

)
d∈G

(3.2)

for all r = (ra)a∈G ∈
⊕

a∈GR(ax
′, x),m = (mb)b∈G ∈

⊕
b∈GM(ax, y), and

s = (sc)c∈G ∈
⊕

c∈G S(cy, y
′). By the naturality of ϕa (a ∈ G) we easily see

that (3.2) defines an (S/G)-(R/G)-bimodule structure on M/G.
• We set Ma(x, y) := M(ax, y) for all a ∈ G and all (x, y) ∈ R0 × S0. We easily
see that this defines a G-grading on M/G by (3.1) and (3.2).

(2) Let f : M → N be in S-ModG-R. For each (x, y) ∈ R0 × S0 we set

(f/G)(x, y) :=
⊕
a∈G

f(ax, y).

Then as is easily seen f/G := (f/G(x, y))(x,y)∈R0×S0 turns out to be a morphism
M/G→ N/G in (S/G)-ModG-(R/G).

(3) It is easy to see that (1) together with (2) above defines a k-functor
(-)/G : S-ModG-R → (S/G)-ModG-(R/G).

Lemma 3.2. By regarding R/G as a left R-module and a right R-module via the
canonical G-covering functor E : R → R/G, we have

R/G⊗R R/G ∼= R/G⊗R/G R/G ∼= R/G

as (R/G)-(R/G)-bimodules.

Proposition 3.3. Let M be a G-invariant S-R-bimodule. Then

(1) M ⊗R (R/G) ∼= FM/G as S-(R/G)-bimodules; and
(2) (S/G)⊗S M ∼= M/GE as (S/G)-R-bimodules.

Hence in particular we have isomorphisms of S-R-bimodules

(3) M ⊗R (R/G)E ∼= FM/GE
∼= F (S/G)⊗S M

and an isomorphism of G-graded (S/G)-(R/G)-bimodules
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(4) (S/G)⊗S M ⊗R (R/G) ∼= M/G.

Proposition 3.4. Let T = (T, Z) be a small k-category with G-action, and SMR, TNS

be G-invariant bimodules. Then

(1) T (N ⊗S M)R is a G-invariant bimodule.
(2) (N ⊗S M)/G ∼= (N/G)⊗S/G (M/G) in (T/G)-ModG-(R/G).

Proposition 3.5. Let SPR be a projective bimodule that is G-invariant. Then (S/G)P/G(R/G)

is a projective bimodule that is G-graded.

Remark 3.6. In the proof above, note that in general we have

(S(w, -)⊗k R(-, z))/G ̸∼= (S/G)⊗S S(w, -)⊗k R(-, z)⊗R (R/G)

because S(w, -)⊗k R(-, z) is not always G-invariant.

4. smash product

Throughout this section A and B are G-graded small k-categories.

Definition 4.1. (1) LetM be aG-graded B-A-bimodule. Then we define aG-invariant
(B#G)-(A#G)-bimodule M#G as follows, which we call the smash product of M and
G:

• For each (x(a), y(b)) ∈ (A#G)0 × (B#G)0 we set

(M#G)(x(a), y(b)) :=M b−1a(x, y).

• For each (x(a), y(b)), (x′(a
′), y′(b

′)) ∈ (A#G)0×(B#G)0 and each (α, β) ∈ (A#G)

(x′(a
′), x(a))× (B#G)(y(b), y′(b

′)) = Aa
−1a′(x′, x)×Bb′−1b(y, y′) we define a mor-

phism (M#G)(α, β) in Mod k by the following commutative diagram:

(M#G)(x(a), y(b)) (M#G)(x′(a
′), y′(b

′))

M b−1a(x, y) M b′−1a′(x′, y′).

(M#G)(α,β)
//

M(α,β)
//

Since M(α, β)(m) ∈ M (b′−1b)(b−1a)(a−1a′)(x′, y′) = M b′−1a′(x′, y′) for all m ∈
M b−1a(x, y), the bottom morphism is well-defined. It is easy to verify that
this makes M#G a (B#G)-(A#G)-bimodule.

• For each (x(a), y(b)) ∈ (A#G)0× (B#G)0 and each c ∈ G we define ϕc(x
(a), y(b))

by the following commutative diagram:

(M#G)(x(a), y(b)) (M#G)(c · x(a), c · y(b))

M b−1a(x, y) (M#G)(x(ca), y(cb)).

ϕc(x(a),y(b)) //

Then by letting ϕc := (ϕc(x
(a), y(b)))(x(a),y(b)), and ϕ := (ϕc)c∈G, we have a G-

invariant (B#G)-(A#G)-bimodule (M#G, ϕ).
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(2) Let f : M → N be in B-ModG-A. For each (x(a), y(b)) ∈ (A#G)0 × (B#G)0 we
define (f#G)(x(a), y(b)) by the commutative diagram

(M#G)(x(a), y(b)) (N#G)(x(a), y(b))

M b−1a(x, y) N b−1a(x, y).

(f#G)(x(a),y(b))
//

f |
Mb−1a(x,y)

//

Then as is easily seen f#G := ((f#G)(x(a), y(b)))(x(a),y(b)) is a morphism M#G →
N#G in the category (B#G)-ModG-(A#G).

(3) It is easy to see that (1) together with (2) above defines a k-functor

(-)#G : B-ModG-A→ (B#G)-ModG-(A#G).

Proposition 4.2. Let C be a G-graded small k-category, and BMA, CNB G-graded
bimodules. Then

(1) N ⊗B M is a G-graded C-A-bimodule.
(2) (N ⊗B M)#G ∼= (N#G)⊗B#G (M#G) in (C#G)-ModG-(A#G).

Proposition 4.3. Let BPA be a projective bimodule that is G-graded. Then B#G(P#G)A#G
is a projective bimodule that is G-invariant.

5. Cohen-Montgomery duality for bimodules

Theorem 5.1. Let R, S be small k-categories with G-actions, and A,B be G-graded
small k-categories.

(1) The functor (-)/G : S-ModG-R → (S/G)-ModG-(R/G) is an equivalence, a
quasi-inverse of which is given by the composite

(S/G)-ModG-(R/G)
(-)#G−→ ((S/G)#G)-ModG-((R/G)#G)

∼−→ S-ModG-R.

(2) The functor (-)#G : B-ModG-A → (B#G)-ModG-(A#G) is an equivalence, a
quasi-invers of which is given by the composite

(B#G)-ModG-(A#G)
(-)/G−→ ((B#G)/G)-ModG-((A#G)/G)

∼−→ B-ModG-A.

(3) In particular, for each G-invariant bimodule RMS we have (M/G)#G ∼= M as
S-R-bimodules, and for each G-graded bimodule BMA we have (M#G)/G ∼= M
as B-A-bimodules.

6. Applications

Definition 6.1. Let R,S be small k-categories with G-actions, and A,B be G-graded
small k-categories.

(1) A pair (SMR, RNS) of bimodules is said to give a G-invariant stable equivalence
of Morita type between R and S if SM,MR, RN,NS are projective modules
and SMR, RNS are G-invariant bimodules such that N ⊗S M ∼= R ⊕ RPR and
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M ⊗R N ∼= S ⊕ SQS as G-invariant bimodules for some projective bimodules

RPR, SQS that are G-invariant.
(1′) A pair (SMR, RNS) of bimodules is said to give a G-invariant Morita equivalence

between R and S if it gives a G-invariant stable equivalence of Morita type with
P = 0 = Q in (1) above.

(2) A pair (BMA, ANB) of bimodules is said to give a G-graded stable equivalence
of Morita type between A and B if BM,MA, AN,NB are projective modules
and BMA, ANB are G-graded bimodules such that N ⊗B M ∼= A ⊕ APA and
M ⊗A N ∼= B ⊕ BQB as G-graded bimodules for some projective bimodules

APA, BQB that are G-graded.
(2′) A pair (BMA, ANB) of bimodules is said to give a G-graded Morita equivalence

between A and B if it gives a G-graded stable equivalence of Morita type with
P = 0 = Q in (2) above.

Theorem 6.2. Let R, S be small k-categories with G-actions, and A,B be G-graded
small k-categories.

(1) A pair (SMR, RNS) of bimodules gives a G-invariant stable equivalence of Morita
type between R and S if and only if the pair (M/G,N/G) gives a G-graded stable
equivalence of Morita type between R/G and S/G.

(1′) A pair (SMR, RNS) of bimodules gives a G-invariant Morita equivalence between
R and S if and only if the pair (M/G,N/G) gives a G-graded Morita equivalence
between R/G and S/G.

(2) A pair (BMA, ANB) of bimodules gives a G-graded stable equivalence of Morita
type between A and B if and only if the pair (M#G,N#G) gives a G-invariant
stable equivalence of Morita type between A#G and B#G.

(2′) A pair (BMA, ANB) of bimodules gives a G-graded Morita equivalence between
A and B if and only if the pair (M#G,N#G) gives a G-invariant Morita
equivalence between A#G and B#G.

References

[1] Asashiba, H.: A generalization of Gabriel’s Galois covering functors and derived equivalences, J.
Algebra 334 (2011), no. 1, 109–149.

[2] Asashiba, H.: A generalization of Gabriel’s Galois covering functors II: 2-categorical Cohen-
Montgomery duality, Applied Categorical Structure (2015) (DOI) 10.1007/s10485-015-9416-9.
(preprint arXiv: 0905.3884.)

[3] Cibils, C. and Marcos, E.: Skew category, Galois covering and smash product of a k-category,
Proc. Amer. Math. Soc. 134 (1), (2006), 39–50.

[4] Cohen, M. and Montgomery, S.: Group-graded rings, smash products, and group actions, Trans.
Amer. Math. Soc. 282 (1984), 237–258.

Department of Mathematics,
Faculty of Science,
Shizuoka University,
836 Ohya, Suruga-ku,
Shizuoka, 422-8529, Japan

E-mail address: asashiba.hideto@shizuoka.ac.jp

–32–


