THE GROTHENDIECK GROUPS OF MESH ALGEBRAS

SOTA ASAI

ABSTRACT. This note is written on the Grothendieck groups of the stable categories of finite-dimensional mesh algebras.

1. INTRODUCTION

This note is the collection of the results of our calculations of the Grothendieck groups of the stable categories of finite-dimensional mesh algebras.

The concepts of mesh algebras and mesh categories are proposed by Riedtmann, and important because many derived categories are recovered from the mesh categories of their Auslander-Reiten quivers. For example, if Γ is the path algebra of a quiver with its underlying graph a Dynkin diagram Δ , then $D^{\rm b}({\rm mod}\,\Gamma)$ is recovered from the mesh category of its AR quiver $\mathbb{Z}\Delta$ [3].

Some of the results in this note have been obtained in [1], but this note is based on different methods from the ones in [1]. The detail of the new methods and the calculations will be submitted later.

1.1. Conventions. In this note, let K be a field and Λ be a finite-dimensional selfinjective K-algebra. mod Λ denotes the category of finitely generated right Λ -modules. proj Λ is the full subcategory of mod Λ consisting of all projective Λ -modules, and $\underline{\text{mod}} \Lambda =$ mod $\Lambda/\text{proj }\Lambda$ is the stable category of mod Λ . Because Λ is self-injective, mod Λ is an abelian Frobenius category and $\underline{\text{mod}} \Lambda$ has a structure of a triangulated category [3]. The unit 1_{Λ} is decomposed into primitive orthogonal idempotents $e_1 + \cdots + e_m$. In this case, we put $P_i = e_i \Lambda$, $I_i = \text{Hom}_K(\Lambda e_i, K)$, and $S_i = \text{top } P_i = \text{soc } I_i$. We define Nakayama permutation ν as $P_i \cong I_{\nu(i)}$.

2. Preliminary

First, we recall basic properties on Grothendieck groups and mesh algebras. We can refer to [3] for the detail.

Definition 1. Let C be a triangulated category.

The Grothendieck group $K_0(\mathcal{C})$ is defined with its generators all isomorphic classes in \mathcal{C} and its relations [X] - [Y] + [Z] = 0 for each triangle $X \to Y \to Z \to X[1]$.

We have the following important proposition to calculate the Grothendieck group of the stable category $\underline{\text{mod}} \Lambda$. The latter part of (2) is deduced by Rickard's famous triangle equivalence $\underline{\text{mod}} \Lambda \cong D^{\text{b}}(\text{mod} \Lambda)/K^{\text{b}}(\text{proj} \Lambda)$ [4, Theorem 2.1].

Proposition 2. Let Λ be a finite-dimensional self-injective K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.

- (1) [3, III.1.2] All isomorphic classes of simple Λ -modules $[S_1], \ldots, [S_m]$ form a basis of the Grothendieck group of the derived category $K_0(D^{\mathrm{b}}(\mathrm{mod} \Lambda))$.
- (2) The natural embedding $K^{\mathrm{b}}(\operatorname{proj} \Lambda) \to D^{\mathrm{b}}(\operatorname{mod} \Lambda)$ canonically induces a morphism $K_0(K^{\mathrm{b}}(\operatorname{proj} \Lambda)) \to K_0(D^{\mathrm{b}}(\operatorname{mod} \Lambda))$, and its cokernel is isomorphic to $K_0(\operatorname{mod} \Lambda)$.

Definition 3. Let $Q = (Q_0, Q_1)$ be a locally finite quiver and τ be an automorphism on Q_0 . We call the pair $Q = (Q, \tau)$ a stable translation quiver if the number of arrows from x to y coincide with the one from y to $\tau^{-1}x$ for $x, y \in Q_0$.

It will be seen that a stable translation quiver with multiple arrows does not give a finite-dimensional mesh algebra from Rickard's structure theorem. Thus, in this note, we assume any stable translation quivers do not contain multiple arrows for the convinience.

Definition 4. Let Q be a stable translation quiver.

For a vertex $a \in Q_0$, we denote by a^+ the set of targets of arrows from a^+ .

Let b_1, \ldots, b_m be all distinct elements of a^+ . Then the full subquiver

is called a *mesh* and the corresponding *mesh* relation is $\alpha_1\beta_1 + \cdots + \alpha_m\beta_m = 0$.

We define the *mesh algebra* of Q as the quotient of the path algebra of Q by all mesh relations in Q.

The following example introduces an important way to construct a translation quiver.

Example 5. Let Q be a finite quiver. We define the quiver $\mathbf{Z}Q = ((\mathbf{Z}Q)_0, (\mathbf{Z}Q)_1)$ as follows; the vertices are the elements of $(\mathbf{Z}Q)_0 = Q_0 \times \mathbf{Z}$, the arrows are the elements of $(\mathbf{Z}Q)_1 = \{(i, a) \to (j, a) \mid (i \to j) \in Q_1, a \in \mathbf{Z}\} \amalg \{(j, a) \to (i, a + 1) \mid (i \to j) \in Q_1, a \in \mathbf{Z}\}$, and the translation is given by $\tau(i, a) = (i, a - 1)$. Then $\mathbf{Z}Q$ is a stable translation quiver.

Remark 6. If the underlying graph of Q is a Dynkin diagram Δ , the translation quiver $\mathbb{Z}Q$ does not depend on the orientations of Q up to isomorphism, thus we set $\mathbb{Z}\Delta = \mathbb{Z}Q$.

Example 7. Let A_4 be oriented as $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$. Then $\mathbf{Z}A_4$ is the following quiver

with its translation $\tau(i, a) = (i, a - 1)$.

-18-

Considering mesh relations, the following paths are the longest nonzero paths in $\mathbf{Z}A_4$;

The second figure means all paths from (2, a) to (3, a + 1) are the longest nonzero paths. We can see that any of the longest nonzero paths from (i, a) ends at (5 - i, a + i - 1).

To get a finite-dimensional mesh algebra, we take the quotient of $\mathbf{Z}A_4$ by an automorphism τ^3 . Then the quiver $\mathbf{Z}A_4/\langle \tau^3 \rangle$ is the following quiver

with its relation $\tau(i, a + k\mathbf{Z}) = (i, a - 1 + k\mathbf{Z})$. This quiver looks like a cylinder. From the discussion on the longest nonzero paths, we have $\nu(i, a + k\mathbf{Z}) = (5 - i, a + i - 1 + k\mathbf{Z})$.

We can deduce the following lemma similarly as above.

Lemma 8. A translation quiver $\mathbf{Z}A_n/\langle \tau^k \rangle$ gives a finite-dimensional mesh algebra for integers $n, k \geq 1$. The Nakayama permutation of this mesh algebra is given by $\nu(i, a + k\mathbf{Z}) = (n + 1 - i, a + i - 1 + k\mathbf{Z})$.

Actually, it is rare for mesh algebras to be finite-dimensional. This is stated in Riedtmann's structure theorem.

Theorem 9. [5] If a stable translation quiver gives a finite-dimensional mesh algebra, then it has a form of $\mathbb{Z}\Delta/G$, where Δ is a Dynkin diagram, and G is an admissible subgroup of Aut $\mathbb{Z}\Delta$. Namely, it is isomorphic to one of the following translation quivers;

$$\begin{array}{l} \mathbf{Z}A_n/\langle \tau^k \rangle, \ \mathbf{Z}A_n/\langle \tau^k \psi \rangle \ with \ n \ odd, \ \mathbf{Z}A_n/\langle \tau^k \varphi \rangle \ with \ n \ even, \\ \mathbf{Z}D_n/\langle \tau^k \rangle, \ \mathbf{Z}D_n/\langle \tau^k \psi \rangle, \ \mathbf{Z}D_4/\langle \tau^k \chi \rangle, \\ \mathbf{Z}E_6/\langle \tau^k \rangle, \ \mathbf{Z}E_6/\langle \tau^k \psi \rangle, \ \mathbf{Z}E_7/\langle \tau^k \rangle, \ \mathbf{Z}E_8/\langle \tau^k \rangle; \end{array}$$

where ψ, χ, φ are automorphisms on $\mathbb{Z}\Delta$ satisfying $\psi^2 = \mathrm{id}, \chi^3 = \mathrm{id}, \mathrm{and} \varphi^2 = \tau^{-1}$.

It is well-known that all finite-dimensional mesh algebras are self-injective.

3. Results

In the previous section, all finite-dimensional mesh algebras are obtained. We can state the following main theorem on the Grothendieck groups of finite-dimensional mesh algebras. This is the collection of our main results.

Theorem 10. Let $Q = \mathbb{Z}\Delta/G$ be a stable translation quiver giving a finite-dimensional mesh algebra Λ . Then the Grothendieck group $K_0(\underline{\text{mod}} \Lambda)$ is isomorphic to the following, where c be the Coxeter number of Δ ,

$$d = \begin{cases} \gcd(c, 2k-1)/2 & (\mathbf{Z}\Delta/G = \mathbf{Z}A_n/\langle \tau^k \varphi \rangle) \\ \gcd(c, k) & (\text{otherwise}) \end{cases}$$

and r = c/d;

$$Q = \mathbf{Z}A_n / \langle \tau^k \rangle \Rightarrow \begin{cases} \mathbf{Z}^{(nd-3d+2)/2} \oplus (\mathbf{Z}/2\mathbf{Z})^{d-1} & (r \in 2\mathbf{Z}) \\ \mathbf{Z}^{(nd-2d+2)/2} & (r \notin 2\mathbf{Z}) \end{cases}, \\ Q = \mathbf{Z}A_n / \langle \tau^k \psi \rangle \\ (n \notin 2\mathbf{Z}) \end{cases} \Rightarrow \begin{cases} \mathbf{Z}^{(nd-3d)/2} \oplus (\mathbf{Z}/2\mathbf{Z})^{d-1} \oplus (\mathbf{Z}/4\mathbf{Z}) & (r \in 4\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^{nd-2d+1} & (r \in 2+4\mathbf{Z}) \\ \mathbf{Z}^{(nd-d)/4} & (r \notin 2\mathbf{Z}) \end{cases},$$

$$\begin{split} &Q = \mathbf{Z}A_n/\langle \tau^k \varphi \rangle \\ &(n \in 2\mathbf{Z}) \end{pmatrix} \Rightarrow (\mathbf{Z}/2\mathbf{Z})^{nd-2d+1}, \\ &Q = \mathbf{Z}D_n/\langle \tau^k \rangle \Rightarrow \begin{cases} \mathbf{Z}^{d-1} \oplus (\mathbf{Z}/2\mathbf{Z})^{nd-3d} \oplus (\mathbf{Z}/r\mathbf{Z}) & (k \in 2\mathbf{Z}, \ r \in 2\mathbf{Z}) \\ \mathbf{Z}^{(nd-d-2)/2} \oplus (\mathbf{Z}/r\mathbf{Z}) & (k \in 2\mathbf{Z}, \ r \notin 2\mathbf{Z}) \\ \mathbf{Z}^d \oplus (\mathbf{Z}/2\mathbf{Z})^{nd-3d} & (k \notin 2\mathbf{Z}, \ r \in 4\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^{nd-d-1} & (k \notin 2\mathbf{Z}, \ r \notin 4\mathbf{Z}) \end{cases} \\ &Q = \mathbf{Z}D_n/\langle \tau^k \psi \rangle \Rightarrow \begin{cases} \mathbf{Z}^d \oplus (\mathbf{Z}/2\mathbf{Z})^{nd-3d} & (k \in 2\mathbf{Z}, \ r \notin 4\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^{nd-d-1} & (k \notin 2\mathbf{Z}, \ r \notin 4\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^{nd-d-1} & (k \in 2\mathbf{Z}, \ r \in 2+4\mathbf{Z}) \\ \mathbf{Z}^{(nd-2d)/2} & (k \in 2\mathbf{Z}, \ r \notin 2\mathbf{Z}) \\ \mathbf{Z}^{d-1} \oplus (\mathbf{Z}/2\mathbf{Z})^{nd-3d} \oplus (\mathbf{Z}/r\mathbf{Z}) & (k \notin 2\mathbf{Z}) \end{cases} , \\ &Q = \mathbf{Z}D_4/\langle \tau^k \chi \rangle \Rightarrow \begin{cases} \mathbf{Z}^4 & (k \in 2\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^4 & (k \notin 2\mathbf{Z}) \\ (\mathbf{Z}/2\mathbf{Z})^4 & (k \notin 2\mathbf{Z}) \end{cases} , \\ &Q = \mathbf{Z}E_6/\langle \tau^k \rangle \Rightarrow \begin{cases} \mathbf{Z}^{d+1} \oplus (\mathbf{Z}/2\mathbf{Z})^{d+1} \oplus (\mathbf{Z}/4\mathbf{Z})^{d-1} & (d = 1, 3) \\ \mathbf{Z}^{(3d+2)/2} \oplus (\mathbf{Z}/2\mathbf{Z})^{(3d+2)/2} & (d = 2, 6) \\ \mathbf{Z}^{(9d+12)/4} & (d = 4, 12) \end{cases} \end{split}$$

$$Q = \mathbf{Z} E_6 / \langle \tau^k \psi \rangle \Rightarrow \begin{cases} \mathbf{Z}^{2d} \oplus (\mathbf{Z}/2\mathbf{Z})^{d+1} & (d = 1, 3) \\ (\mathbf{Z}/2\mathbf{Z})^{(9d+6)/2} & (d = 2, 6) \\ \mathbf{Z}^{(3d+4)/2} & (d = 4, 12) \end{cases},$$

$$Q = \mathbf{Z} E_7 / \langle \tau^k \rangle \Rightarrow \begin{cases} (\mathbf{Z}/2\mathbf{Z})^6 & (d = 1) \\ (\mathbf{Z}/2\mathbf{Z})^{6d+2} & (d = 3, 9) \\ \mathbf{Z}^6 \oplus (\mathbf{Z}/3\mathbf{Z}) & (d = 2) \\ \mathbf{Z}^{3d+2} & (d = 6, 18) \end{cases},$$

$$Q = \mathbf{Z} E_8 / \langle \tau^k \rangle \Rightarrow \begin{cases} (\mathbf{Z}/2\mathbf{Z})^{8d} & (d = 1, 3, 5) \\ (\mathbf{Z}/2\mathbf{Z})^{112} & (d = 15) \\ \mathbf{Z}^{4d} & (d = 2, 6, 10) \\ \mathbf{Z}^{112} & (d = 30) \end{cases},$$

4. Proof for
$$\mathbf{Z}A_n/\langle \tau^k \rangle$$

In the rest of this note, we prove the main theorem for $\mathbf{Z}A_n/\langle \tau^k \rangle$. We orient A_n as $1 \to 2 \to \cdots \to n$, and set $Q = \mathbf{Z}A_n/\langle \tau^k \rangle$. The vertices of Q are the elements of $\{1, \ldots, n\} \times (\mathbf{Z}/k\mathbf{Z})$. The following proposition is crucial to prove the theorem.

Proposition 11. Let three abelian subgroups $H, H', H'' \subset K_0(D^{\mathrm{b}}(\mathrm{mod} \Lambda))$ be

$$H = \langle [P_x] \mid x \in Q_0 \rangle, \quad H' = \langle [S_x] + [S_{\nu\tau^{-1}x}] \mid x \in Q_0 \rangle$$
$$H'' = \langle [P_x] \mid x \in \{1\} \times (\mathbf{Z}/k\mathbf{Z}) \rangle \subset H.$$

Then we have H = H' + H'' and thus $K_0(\underline{\mathrm{mod}} \Lambda) \cong K_0(D^{\mathrm{b}}(\mathrm{mod} \Lambda))/(H' + H'')$.

Proof. Let $x \in Q_0$. A projective resolution of Λ -module S_x has a form of

$$0 \to S_{\nu\tau^{-1}x} \to P_{\tau^{-1}x} \to \bigoplus_{y \in x^+} P_y \to P_x \to S_x \to 0.$$

This is induced by a projective resolution of Λ as Λ - Λ -bimodule given by [2, (4.1)–(4.3), Corollary 4.3].

Now we prove $H' + H'' \subset H$. $H'' \subset H$ is clear. $H' \subset H$ holds because the above projective resolution implies

$$[S_x] + [S_{\nu\tau^{-1}x}] = [P_{\tau^{-1}x}] - \sum_{y \in x^+} [P_y] + [P_x] \in H.$$

We have $H' + H'' \subset H$.

The remained task is to prove $H \subset H' + H''$. We assume k = 1 and $Q_0 = \{1, \ldots, n\}$ first. It is enough to show $[P_i] \in H' + H''$. We prove this by induction on *i*. If i = 1, then $[P_1] \in H''$. If $i = 2, \ldots, n$, put x = i - 1. The projective resolution of Λ -module S_x implies

$$[S_x] + [S_{\nu\tau^{-1}x}] = [P_{\tau^{-1}x}] - \sum_{y \in x^+} [P_y] + [P_x]$$
$$= [P_{i-1}] - ([P_{i-2}] + [P_i]) + [P_{i-1}],$$

-21-

where we set $P_0 = 0$. Therefore, we have

$$[P_i] = -([S_x] + [S_{\nu\tau^{-1}x}]) + [P_{i-1}] - [P_{i-2}] + [P_{i-1}].$$

From the induction hypothesis, we have $[P_{i-1}] - [P_{i-2}] + [P_{i-1}] \in H' + H''$, and by definition, we have $[S_x] + [S_{\nu\tau^{-1}x}] \in H'$. Now, $[P_i] \in H' + H''$ is proved. The induction has been completed. A similar proof holds even if $k \neq 1$. We have H = H' + H''.

The latter assertion is proved by Proposition 2.

Now our task is moved to express the generators of H' and H'' as linear combinations of the images of simple Λ -modules. For this purpose, we define some matrices.

Definition 12. We define three matrices.

(1) $X_k \in GL_k(\mathbf{Z})$ as the permutation matrix of a cyclic permutation (1, 2, ..., k). (2) $T_n(x) \in \operatorname{Mat}_{n,n}(\mathbf{Z}[x]), U_n(x) \in \operatorname{Mat}_{n,1}(\mathbf{Z}[x])$ as

$$T_n(x) = \begin{pmatrix} & & x^n \\ & \ddots & \\ & x^2 & & \\ x & & & \end{pmatrix}, \quad U_n(x) = \begin{pmatrix} 1 \\ 1 \\ \ddots \\ 1 \end{pmatrix}.$$

For example,

$$X_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Using these matrices, the Grothendieck group is written in the following way.

Lemma 13. We have $K_0(\underline{\text{mod}} \Lambda) \cong \text{Cok} (1_{nk} + T_n(X_k) \quad U_n(X_k)).$

Proof. For $i \in \{1, ..., n\}$ and $a \in \{0, ..., k-1\}$, we let the (i-1)k + (a+1)th row of the matrix in the right-hand side correspond to $[S_{i,a+kZ}]$, the element of the basis of $K_0(D^{\mathrm{b}}(\mathrm{mod}\,\Lambda))$. Then it is easy to see the columns of $1_{nk} + T_n(X_k)$ and $U_n(X_k)$ correspond to the generators of H' and H'', respectively. Using Proposition 11, we have the assertion.

We consider transformations of $(1_n + T_n(x) \quad U_n(x))$ in $\operatorname{Mat}_{n+1,n}(\mathbf{Z}[x])$.

Example 14. If n = 7, $(1 + T_n(x) \quad U_n(x))$ is

$$\begin{pmatrix} 1 & & & & x^7 & 1 \\ & 1 & & & x^6 & & 1 \\ & & 1 & & x^5 & & & 1 \\ & & & 1 + x^4 & & & & 1 \\ & & x^3 & & 1 & & & 1 \\ & & x^2 & & & & 1 & & 1 \\ x & & & & & & 1 & 1 \end{pmatrix}$$

This can be transformed as a matrix on $\boldsymbol{Z}[x]$ as follows;

$$\begin{pmatrix} 1 & & & & & & \\ & 1 & & & & & & \\ & & 1+x^4 & & & 1 & \\ & & 1-x^8 & & 1-x^2 & \\ & & & 1-x^8 & & 1-x^2 & \\ & & & & 1-x^8 & 1-x^2 & \\ & & & & 1-x^8 & & \\ & & & & 1$$

Thus we have $\operatorname{Cok} (1_{7k} + T_7(X_k) \quad U_7(X_k)) \cong (\operatorname{Cok}(1 - X_k^8))^2 \oplus \operatorname{Cok}((1 - X_k)(1 + X_k^4)).$ If n = 6, $(1 + T_n(x) \quad U_n(x))$ is

$$\begin{pmatrix} 1 & & x^6 & 1 \\ & 1 & x^5 & & 1 \\ & & 1 & x^4 & & & 1 \\ & & x^3 & 1 & & & 1 \\ & & x^2 & & & 1 & & 1 \\ x & & & & & 1 & 1 \end{pmatrix}.$$

This can be transformed as a matrix on $\boldsymbol{Z}[x]$ as follows;

$$\begin{pmatrix} 1 & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & 1 - x^7 & & 1 - x^3 \\ & & & & 1 - x^7 & 1 - x^2 \\ & & & & & 1 - x^7 & 1 - x \end{pmatrix}$$

-23-

$$\mapsto \begin{pmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 - x^7 & & \\ & & & 1 - x^7 & \\ & & & 0 & 1 - x \end{pmatrix}.$$

Thus we have $\operatorname{Cok}\left(1_{6k} + T_6(X_k) \quad U_6(X_k)\right) \cong (\operatorname{Cok}(1 - X_k^7))^2 \oplus \operatorname{Cok}(1 - X_k).$

These examples are generalized as follows.

Lemma 15. $K_0(\underline{\text{mod}} \Lambda) \cong \text{Cok} (1 + T_n(X_k) \quad U_n(X_k))$ is isomorphic to

$$\begin{cases} (\operatorname{Cok}(1_k - X_k^{n+1}))^{(n-3)/2} \oplus \operatorname{Cok}((1_k - X_k)(1_k + X_k^{(n+1)/2})) & (n \notin 2\mathbf{Z}) \\ (\operatorname{Cok}(1_k - X_k^{n+1}))^{(n-2)/2} \oplus \operatorname{Cok}(1_k - X_k) & (n \in 2\mathbf{Z}) \end{cases}.$$

Now we only have to calculate the direct summands appeared in the previous lemma. The results are the following, and using these, the part for $\mathbf{Z}A_n/\langle \tau^k \rangle$ of the main theorem is proved.

Lemma 16. [1, Lemma 2.8, Lemma 2.12] We have $\operatorname{Cok}(1_k - X_k) \cong \mathbb{Z}$, $\operatorname{Cok}(1_k - X_k^{n+1}) \cong \mathbb{Z}^d$ and if $n \notin 2\mathbb{Z}$,

$$\operatorname{Cok}((1_k - X_k)(1_k + X_k^{(n+1)/2})) \cong \begin{cases} \boldsymbol{Z} \oplus (\boldsymbol{Z}/2\boldsymbol{Z})^{d-1} & (r \in 2\boldsymbol{Z}) \\ \boldsymbol{Z}^{(d+2)/2} & (r \notin 2\boldsymbol{Z}) \end{cases}$$

References

- [1] S. Asai, The Grothendieck groups of mesh algebras: type A_n , arXiv:1505.06983.
- [2] A. Dugas, Resolutions of mesh algebras: periodicity and Calabi-Yau dimensions, Math. Z., 271 (2012), 1151–1184.
- [3] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Note Series, 119 (1988), Cambridge University Press.
- [4] J. Rickard, Derived categories and stable equivalence, Journal of Pure and Applied Algebra, 61 (1989), Issue 3, 303–317.
- [5] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück. (German), Comment. Math. Helv. 55 (1980), no. 2, 199–224.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY NAGOYA, AICHI 464-8602 JAPAN *E-mail address*: m14001v@math.nagoya-u.ac.jp