THE GROTHENDIECK GROUPS OF MESH ALGEBRAS

SOTA ASAI

ABSTRACT. This note is written on the Grothendieck groups of the stable categories of
finite-dimensional mesh algebras.

1. INTRODUCTION

This note is the collection of the results of our calculations of the Grothendieck groups
of the stable categories of finite-dimensional mesh algebras.

The concepts of mesh algebras and mesh categories are proposed by Riedtmann, and
important because many derived categories are recovered from the mesh categories of
their Auslander-Reiten quivers. For example, if I is the path algebra of a quiver with
its underlying graph a Dynkin diagram A, then D"(mod I') is recovered from the mesh
category of its AR quiver ZA [3].

Some of the results in this note have been obtained in [1], but this note is based on
different methods from the ones in [1]. The detail of the new methods and the calculations
will be submitted later.

1.1. Conventions. In this note, let K be a field and A be a finite-dimensional self-
injective K-algebra. mod A denotes the category of finitely generated right A-modules.
proj A is the fullsubcategory of mod A consisting of all projective A-modules, and mod A =
mod A/proj A is the stable category of mod A. Because A is self-injective, mod A is an
abelian Frobenius category and mod A has a structure of a triangulated category [3]. The
unit 1, is decomposed into primitive orthogonal idempotents e; + - - - + e,,,. In this case,
we put P, = e¢;A, I; = Homg(Ae;, K), and S; = top P, = soc ;. We define Nakayama
permutation v as Py = 1,(;.

2. PRELIMINARY

First, we recall basic properties on Grothendieck groups and mesh algebras. We can
refer to [3] for the detail.

Definition 1. Let C be a triangulated category.
The Grothendieck group Ko(C) is defined with its generators all isomorphic classes in
C and its relations [X| — [Y] + [Z] = 0 for each triangle X — Y — Z — X[1].

We have the following important proposition to calculate the Grothendieck group of
the stable category mod A. The latter part of (2) is deduced by Rickard’s famous triangle
equivalence mod A = D®(mod A)/K®(proj A) [4, Theorem 2.1].

Proposition 2. Let A be a finite-dimensional self-injective K -algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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(1) [3, IIL1.1.2] All isomorphic classes of simple A-modules [Si],...,[Sm] form a basis
of the Grothendieck group of the derived category Ko(DP(mod A)).

(2) The natural embedding K®(proj A) — D®(mod A) canonically induces a morphism
Ko(KP(proj A)) — Ko(D®(mod A)), and its cokernel is isomorphic to Ko(mod A).

Definition 3. Let @ = (Qo, Q1) be a locally finite quiver and 7 be an automorphism on
Qo. We call the pair Q = (Q, 7) a stable translation quiver if the number of arrows from
x to y coincide with the one from y to 7'z for z,y € Qo.

It will be seen that a stable translation quiver with multiple arrows does not give a
finite-dimensional mesh algebra from Rickard’s structure theorem. Thus, in this note, we
assume any stable translation quivers do not contain multiple arrows for the convinience.

Definition 4. Let ) be a stable translation quiver.
For a vertex a € g, we denote by a™ the set of targets of arrows from a™.
Let by, ..., b, be all distinct elements of a™. Then the full subquiver

a1 by B1
/ N

1

a T
N

is called a mesh and the corresponding mesh relation is 18y + - -+ + B = 0.
We define the mesh algebra of () as the quotient of the path algebra of () by all mesh
relations in Q).

The following example introduces an important way to construct a translation quiver.

Example 5. Let @) be a finite quiver. We define the quiver ZQ) = ((ZQ)o, (ZQ)1) as
follows; the vertices are the elements of (ZQ)o = Qy X Z, the arrows are the elements of

(ZQ)1 = {(iya) = (j,a) | (i = j) € Q1,a € Z} 1T {(j,a) = (i,a+1)| (i = j) € Q1,a €
Z}, and the translation is given by 7(i,a) = (i,a — 1). Then Z(@ is a stable translation
quiver.

Remark 6. If the underlying graph of ) is a Dynkin diagram A, the translation quiver
Z(Q does not depend on the orientations of ) up to isomorphism, thus we set ZA = ZQ).

Example 7. Let A4 be oriented as 1 — 2 — 3 — 4. Then Z A, is the following quiver

) _2> (47 _1) (47 0) (47 1)
NS

(3,0) (3,1) \
NS

2,0) (2,1) (2,2

W

~—

with its translation 7(i,a) = (i,a — 1).
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Considering mesh relations, the following paths are the longest nonzero paths in Z Ay;

(4,a)

(3.0) (3,a)  (3a+1)
/ SN S
(2.0) (2,a)  (2a+1)
/ NS
(1,@) (1,CL—|— 1)

(3,a) (3,a+1)

NN N

2,a+1) (2,a+2) (2,a)

NS N

1,0+ 2) (1,a) .

—~
—~

The second figure means all paths from (2, a) to (3,a + 1) are the longest nonzero paths.
We can see that any of the longest nonzero paths from (i,a) ends at (5 —i,a + 17— 1).

To get a finite-dimensional mesh algebra, we take the quotient of Z A, by an automor-
phism 73. Then the quiver ZA4/(73) is the following quiver

(4,1) (4,2) (4,0) (4,1)
NSNS NS
32 (30 (1)

JON SN SN

(2, 2) (2, 0) (2, 1) (2, 2)
NN SN S
(1,0) (1,1) (1,2)

with its relation 7(i,a + kZ) = (i,a — 1 + kZ). This quiver looks like a cylinder. From
the discussion on the longest nonzero paths, we have v(i,a+kZ) = (5—i,a+i—1+kZ).

We can deduce the following lemma similarly as above.

Lemma 8. A translation quiver ZA, /(") gives a finite-dimensional mesh algebra for
integers n,k > 1. The Nakayama permutation of this mesh algebra is given by v(i,a +
kZ)=n+1—id,a+i—1+kZ).

Actually, it is rare for mesh algebras to be finite-dimensional. This is stated in Riedt-
mann’s structure theorem.

Theorem 9. [5] If a stable translation quiver gives a finite-dimensional mesh algebra,
then it has a form of ZA/G, where A is a Dynkin diagram, and G is an admissible
subgroup of Aut ZA. Namely, it is isomorphic to one of the following translation quivers;
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Z A (TR, Z A, (TFY) with n odd, Z A, /{TF@) with n even,
ZD,/(r*), ZD,/(T"}), ZD4/(7"x),
ZE6/<Tk>7 ZE6/<7J€77Z)>7 ZE7/<Tk>7 ZE8/<Tk>;

where 1, X, ¢ are automorphisms on Z A satisfying ¥* = id, x* = id, and ¢* = 771,

It is well-known that all finite-dimensional mesh algebras are self-injective.

3. RESuLTS

In the previous section, all finite-dimensional mesh algebras are obtained. We can
state the following main theorem on the Grothendieck groups of finite-dimensional mesh
algebras. This is the collection of our main results.

Theorem 10. Let Q = ZA/G be a stable translation quiver giving a finite-dimensional
mesh algebra A. Then the Grothendieck group Ko(mod A) is isomorphic to the following,
where ¢ be the Cozxeter number of A,

_ {gcd(c, 2k —1)/2 (ZA[G = ZA,[(T5))

ged(c, k) (otherwise)
and r = c/d;
Z(nd73d+2)/2 D(Z/2Z d—1 27
Q=2ZA,/(m") = {Z(nd—2d+2)/2 ) E: ; 2Z; ’
Z(nd=3d)/2 ¢ (Z)2Z) ' ® (Z)4Z) (re4dZ)
0 :<f£3/z<§k¢> = { (z /2724 (re2+42),
Z(nd—d)/4 (r¢22)

U

(Z7 @ (Z)2Z2)" 3 ¢ (Z)rZ) )

Z D2 ¢ (Z /rZ) ke2Z, r¢27)

Z'® (Z/)2Z)-3 k¢2Z, redz)’
)
)

(ke2Z, re2Z
(
(
((Z/2Z)rd—d—1 (k¢2Z, r¢ iz
(
(
(
(

Q=2Z2ZD,/(t") =

(Z @ (Z/2Z)—3 ke2Z, redZ

APV A ke€2Z, re2+42)
= ZD,/{(TF)) = ( ) ’
Q [{T) 7(nd—2d)/2 ke2Z, r¢2Z)
\Z7 e (222w (Z)rZ) (k¢2Z)

z* (ke2Z)

(Z)2Z2)* (k¢2Z)’

Z™M 9 (Z)2Z2) @ (Z/4Z2) (d=1,3)
Q= ZEg/(t") =  ZBI2 g (Z)2Z)B3H2/? (d=2,6) ,
7(9d+12)/4 (d =4,12)

Q=ZDy/(T"x) = {
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(2 @ (Z2/2Z)" (d=1,3)
Q= ZEs/(t"¢) = { (Z2/22)07972  (d=2,6) ,
| ZBH72 (d=4,12)
(Z/)22)° (d=1)
_ (Z/)2z)°**  (d=3,9)
Q=2ZE/(r") = Z5¢(Z2/32) (d=2)
| Z27+? (d = 6,18)
((Z/2Z)* (d=1,3,5)
_ k (Z/22)'"* (d=15)
Q=ZEg/(T") = Z4d (d=2,6,10)"
| Z'"? (d = 30)

4. PROOF FOR ZA, /(")

In the rest of this note, we prove the main theorem for Z A, /(7*). We orient A, as
1 -2 — - = n,and set Q = ZA,/(r%). The vertices of () are the elements of
{1,...,n} x (Z/kZ). The following proposition is crucial to prove the theorem.

Proposition 11. Let three abelian subgroups H, H', H" C Ky(D"(mod A)) be
H=([P] |z €Qo), H =S+ [Sur1a] | 2 € Q)
H"=(P,] |z € {1} x (Z/kZ)) C H.
Then we have H = H' + H" and thus Ko(mod A) & Ky(D"(mod A))/(H' + H").
Proof. Let x € Q. A projective resolution of A-module S, has a form of
0—=S,-1, = Pr1, — EB P,— P, — 5, — 0.
yea+

This is induced by a projective resolution of A as A-A-bimodule given by [2, (4.1)—(4.3),
Corollary 4.3].

Now we prove H' + H” € H. H” C H is clear. H' C H holds because the above
projective resolution implies

[Se] + [Sur-12] = [Pr1a] = D[R]+ [P:] € H.
yext
We have H' + H" C H.

The remained task is to prove H C H' + H”. We assume k = 1 and @y = {1,...,n}
first. It is enough to show [P;] € H' + H"”. We prove this by induction on i. If i = 1,
then [P] € H". If i =2,...,n, put « = ¢ — 1. The projective resolution of A-module S,
implies



where we set Py = 0. Therefore, we have
[Bi] = =([Se] + [Sur-12]) + [Fica] = [Pice] 4 [Pica].

From the induction hypothesis, we have [P;_|—[P;_s|+[P—1] € H'+H", and by definition,
we have [S,] + [S,,-1.] € H'. Now, [P] € H' 4+ H" is proved. The induction has been
completed. A similar proof holds even if & # 1. We have H = H' + H".

The latter assertion is proved by Proposition 2. 0

Now our task is moved to express the generators of H' and H” as linear combinations
of the images of simple A-modules. For this purpose, we define some matrices.
Definition 12. We define three matrices.

(1) Xy € GLg(Z) as the permutation matrix of a cyclic permutation (1,2,..., k).
(2) T (z) € Mat,, ,(Z[z]), Un(x) € Mat, 1(Z][z]) as

" 1
1
Tn(-r) = xQ 5 Un(x) =
T 1
For example,

0 0 01
1 00 0
Xi=10 10 0
0010

Using these matrices, the Grothendieck group is written in the following way.
Lemma 13. We have Ky(mod A) = Cok (1nk + T (Xk) Un(Xk)).

Proof. For i € {1,...,n} and a € {0,...,k — 1}, we let the (: — 1)k + (a + 1)th row
of the matrix in the right-hand side correspond to [S;.+kz], the element of the basis
of Ko(DP(mod A)). Then it is easy to see the columns of 1, + T,,(X;) and U,(X})
correspond to the generators of H' and H”, respectively. Using Proposition 11, we have
the assertion. 0

We consider transformations of (1, + T,(z) Un(2)) in Maty,41,,(Z]z]).

Example 14. If n =7, (1+ T,(z) U,(x)) is

1 71
1 28 1

1 x° 1

14 a2? 1

3 1 1

22 1 1

T 1 1
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This can be transformed as a matrix on Z[z| as follows;

1
1
1
1+ a2t 1
1—a8 1—23
1—a8 1— g2
1—2% 1—2
1
1
1
— 1+t 1
1—28
1—28
1—28% 1—2
1
1
1
— 0 1
1—28
1—28
—(1—z)(1 + 2% 1—-2% 0
1
1
1
— 0 1
1—a8
1—28
—(l—ac)(1+x4) 0 0

Thus we have Cok (17, + T7(X)) Ur(X5)) = (Cok(1 — X§))? @ Cok((1 — X5)(1 4+ X))
Ifn=6, (1+T,(x) Un(x))is

1 26 1
1 xd 1
1zt 1

3 1 1

x? 1 1

T 1 1

1
1
1
1—a7 1—2a8
1—a7 1— a2
1—27 1—2



0 1—-=x
Thus we have Cok (1gx + T5(Xk) Us(Xk)) = (Cok(1 — X[))? ® Cok(1 — X).
These examples are generalized as follows.

Lemma 15. Ko(mod A) = Cok (1 + T0,(Xi) U,(Xy)) is isomorphic to

(Cok(1), — X1))=3/2 ¢ Cok((1, — X3) (1 + X"V2))  (n ¢ 22)
(COk(lk — X,ZH—I))(”*Z)/Z D COk(lk — Xk) (TL S QZ) ‘

Now we only have to calculate the direct summands appeared in the previous lemma.
The results are the following, and using these, the part for Z A, /(1*) of the main theorem
is proved.

Lemma 16. [1, Lemma 2.8, Lemma 2.12] We have Cok(1;—X}) = Z, Cok(1;,— X71') =
Z% and if n ¢ 2Z,

Z®(Z)2Z)"" (r € 2Z)

Cok((1y — Xp) (1, + X" T0/2)) = {Z<d+2>/z (r¢2Z)
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