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Abstract. This note is written on the Grothendieck groups of the stable categories of
finite-dimensional mesh algebras.

1. Introduction

This note is the collection of the results of our calculations of the Grothendieck groups
of the stable categories of finite-dimensional mesh algebras.

The concepts of mesh algebras and mesh categories are proposed by Riedtmann, and
important because many derived categories are recovered from the mesh categories of
their Auslander-Reiten quivers. For example, if Γ is the path algebra of a quiver with
its underlying graph a Dynkin diagram ∆, then Db(modΓ ) is recovered from the mesh
category of its AR quiver Z∆ [3].

Some of the results in this note have been obtained in [1], but this note is based on
different methods from the ones in [1]. The detail of the new methods and the calculations
will be submitted later.

1.1. Conventions. In this note, let K be a field and Λ be a finite-dimensional self-
injective K-algebra. modΛ denotes the category of finitely generated right Λ-modules.
projΛ is the fullsubcategory of modΛ consisting of all projective Λ-modules, and modΛ =
modΛ/projΛ is the stable category of modΛ. Because Λ is self-injective, modΛ is an
abelian Frobenius category and modΛ has a structure of a triangulated category [3]. The
unit 1Λ is decomposed into primitive orthogonal idempotents e1 + · · ·+ em. In this case,
we put Pi = eiΛ, Ii = HomK(Λei, K), and Si = topPi = soc Ii. We define Nakayama
permutation ν as Pi

∼= Iν(i).

2. Preliminary

First, we recall basic properties on Grothendieck groups and mesh algebras. We can
refer to [3] for the detail.

Definition 1. Let C be a triangulated category.
The Grothendieck group K0(C) is defined with its generators all isomorphic classes in

C and its relations [X]− [Y ] + [Z] = 0 for each triangle X → Y → Z → X[1].

We have the following important proposition to calculate the Grothendieck group of
the stable category modΛ. The latter part of (2) is deduced by Rickard’s famous triangle
equivalence modΛ ∼= Db(modΛ)/Kb(projΛ) [4, Theorem 2.1].

Proposition 2. Let Λ be a finite-dimensional self-injective K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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(1) [3, III.1.2] All isomorphic classes of simple Λ-modules [S1], . . . , [Sm] form a basis
of the Grothendieck group of the derived category K0(D

b(modΛ)).
(2) The natural embedding Kb(projΛ) → Db(modΛ) canonically induces a morphism

K0(K
b(projΛ)) → K0(D

b(modΛ)), and its cokernel is isomorphic to K0(modΛ).

Definition 3. Let Q = (Q0, Q1) be a locally finite quiver and τ be an automorphism on
Q0. We call the pair Q = (Q, τ) a stable translation quiver if the number of arrows from
x to y coincide with the one from y to τ−1x for x, y ∈ Q0.

It will be seen that a stable translation quiver with multiple arrows does not give a
finite-dimensional mesh algebra from Rickard’s structure theorem. Thus, in this note, we
assume any stable translation quivers do not contain multiple arrows for the convinience.

Definition 4. Let Q be a stable translation quiver.
For a vertex a ∈ Q0, we denote by a+ the set of targets of arrows from a+.
Let b1, . . . , bm be all distinct elements of a+. Then the full subquiver
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is called a mesh and the corresponding mesh relation is α1β1 + · · ·+ αmβm = 0.
We define the mesh algebra of Q as the quotient of the path algebra of Q by all mesh

relations in Q.

The following example introduces an important way to construct a translation quiver.

Example 5. Let Q be a finite quiver. We define the quiver ZQ = ((ZQ)0, (ZQ)1) as
follows; the vertices are the elements of (ZQ)0 = Q0 ×Z, the arrows are the elements of
(ZQ)1 = {(i, a) → (j, a) | (i → j) ∈ Q1, a ∈ Z} ⨿ {(j, a) → (i, a + 1) | (i → j) ∈ Q1, a ∈
Z}, and the translation is given by τ(i, a) = (i, a − 1). Then ZQ is a stable translation
quiver.

Remark 6. If the underlying graph of Q is a Dynkin diagram ∆, the translation quiver
ZQ does not depend on the orientations of Q up to isomorphism, thus we set Z∆ = ZQ.

Example 7. Let A4 be oriented as 1 → 2 → 3 → 4. Then ZA4 is the following quiver
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with its translation τ(i, a) = (i, a− 1).
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Considering mesh relations, the following paths are the longest nonzero paths in ZA4;
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The second figure means all paths from (2, a) to (3, a+ 1) are the longest nonzero paths.
We can see that any of the longest nonzero paths from (i, a) ends at (5− i, a+ i− 1).

To get a finite-dimensional mesh algebra, we take the quotient of ZA4 by an automor-
phism τ 3. Then the quiver ZA4/⟨τ 3⟩ is the following quiver
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with its relation τ(i, a + kZ) = (i, a − 1 + kZ). This quiver looks like a cylinder. From
the discussion on the longest nonzero paths, we have ν(i, a+kZ) = (5− i, a+ i−1+kZ).

We can deduce the following lemma similarly as above.

Lemma 8. A translation quiver ZAn/⟨τ k⟩ gives a finite-dimensional mesh algebra for
integers n, k ≥ 1. The Nakayama permutation of this mesh algebra is given by ν(i, a +
kZ) = (n+ 1− i, a+ i− 1 + kZ).

Actually, it is rare for mesh algebras to be finite-dimensional. This is stated in Riedt-
mann’s structure theorem.

Theorem 9. [5] If a stable translation quiver gives a finite-dimensional mesh algebra,
then it has a form of Z∆/G, where ∆ is a Dynkin diagram, and G is an admissible
subgroup of AutZ∆. Namely, it is isomorphic to one of the following translation quivers;
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ZAn/⟨τ k⟩, ZAn/⟨τ kψ⟩ with n odd, ZAn/⟨τ kφ⟩ with n even,
ZDn/⟨τ k⟩, ZDn/⟨τ kψ⟩, ZD4/⟨τ kχ⟩,
ZE6/⟨τ k⟩, ZE6/⟨τ kψ⟩, ZE7/⟨τ k⟩, ZE8/⟨τ k⟩;

where ψ, χ, φ are automorphisms on Z∆ satisfying ψ2 = id, χ3 = id, and φ2 = τ−1.

It is well-known that all finite-dimensional mesh algebras are self-injective.

3. Results

In the previous section, all finite-dimensional mesh algebras are obtained. We can
state the following main theorem on the Grothendieck groups of finite-dimensional mesh
algebras. This is the collection of our main results.

Theorem 10. Let Q = Z∆/G be a stable translation quiver giving a finite-dimensional
mesh algebra Λ. Then the Grothendieck group K0(modΛ) is isomorphic to the following,
where c be the Coxeter number of ∆,

d =

{
gcd(c, 2k − 1)/2 (Z∆/G = ZAn/⟨τ kφ⟩)
gcd(c, k) (otherwise)

and r = c/d;

Q = ZAn/⟨τ k⟩ ⇒

{
Z(nd−3d+2)/2 ⊕ (Z/2Z)d−1 (r ∈ 2Z)

Z(nd−2d+2)/2 (r /∈ 2Z)
,

Q = ZAn/⟨τ kψ⟩
(n /∈ 2Z)

⇒


Z(nd−3d)/2 ⊕ (Z/2Z)d−1 ⊕ (Z/4Z) (r ∈ 4Z)

(Z/2Z)nd−2d+1 (r ∈ 2 + 4Z)

Z(nd−d)/4 (r /∈ 2Z)

,

Q = ZAn/⟨τ kφ⟩
(n ∈ 2Z)

⇒ (Z/2Z)nd−2d+1,

Q = ZDn/⟨τ k⟩ ⇒


Zd−1 ⊕ (Z/2Z)nd−3d ⊕ (Z/rZ) (k ∈ 2Z, r ∈ 2Z)

Z(nd−d−2)/2 ⊕ (Z/rZ) (k ∈ 2Z, r /∈ 2Z)

Zd ⊕ (Z/2Z)nd−3d (k /∈ 2Z, r ∈ 4Z)

(Z/2Z)nd−d−1 (k /∈ 2Z, r /∈ 4Z)

,

Q = ZDn/⟨τ kψ⟩ ⇒


Zd ⊕ (Z/2Z)nd−3d (k ∈ 2Z, r ∈ 4Z)

(Z/2Z)nd−d−1 (k ∈ 2Z, r ∈ 2 + 4Z)

Z(nd−2d)/2 (k ∈ 2Z, r /∈ 2Z)

Zd−1 ⊕ (Z/2Z)nd−3d ⊕ (Z/rZ) (k /∈ 2Z)

,

Q = ZD4/⟨τ kχ⟩ ⇒

{
Z4 (k ∈ 2Z)

(Z/2Z)4 (k /∈ 2Z)
,

Q = ZE6/⟨τ k⟩ ⇒


Zd+1 ⊕ (Z/2Z)d+1 ⊕ (Z/4Z)d−1 (d = 1, 3)

Z(3d+2)/2 ⊕ (Z/2Z)(3d+2)/2 (d = 2, 6)

Z(9d+12)/4 (d = 4, 12)

,
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Q = ZE6/⟨τ kψ⟩ ⇒


Z2d ⊕ (Z/2Z)d+1 (d = 1, 3)

(Z/2Z)(9d+6)/2 (d = 2, 6)

Z(3d+4)/2 (d = 4, 12)

,

Q = ZE7/⟨τ k⟩ ⇒


(Z/2Z)6 (d = 1)

(Z/2Z)6d+2 (d = 3, 9)

Z6 ⊕ (Z/3Z) (d = 2)

Z3d+2 (d = 6, 18)

,

Q = ZE8/⟨τ k⟩ ⇒


(Z/2Z)8d (d = 1, 3, 5)

(Z/2Z)112 (d = 15)

Z4d (d = 2, 6, 10)

Z112 (d = 30)

.

4. Proof for ZAn/⟨τ k⟩

In the rest of this note, we prove the main theorem for ZAn/⟨τ k⟩. We orient An as
1 → 2 → · · · → n, and set Q = ZAn/⟨τ k⟩. The vertices of Q are the elements of
{1, . . . , n} × (Z/kZ). The following proposition is crucial to prove the theorem.

Proposition 11. Let three abelian subgroups H,H ′, H ′′ ⊂ K0(D
b(modΛ)) be

H = ⟨[Px] | x ∈ Q0⟩, H ′ = ⟨[Sx] + [Sντ−1x] | x ∈ Q0⟩,
H ′′ = ⟨[Px] | x ∈ {1} × (Z/kZ)⟩ ⊂ H.

Then we have H = H ′ +H ′′ and thus K0(modΛ) ∼= K0(D
b(modΛ))/(H ′ +H ′′).

Proof. Let x ∈ Q0. A projective resolution of Λ-module Sx has a form of

0 → Sντ−1x → Pτ−1x →
⊕
y∈x+

Py → Px → Sx → 0.

This is induced by a projective resolution of Λ as Λ-Λ-bimodule given by [2, (4.1)–(4.3),
Corollary 4.3].

Now we prove H ′ + H ′′ ⊂ H. H ′′ ⊂ H is clear. H ′ ⊂ H holds because the above
projective resolution implies

[Sx] + [Sντ−1x] = [Pτ−1x]−
∑
y∈x+

[Py] + [Px] ∈ H.

We have H ′ +H ′′ ⊂ H.
The remained task is to prove H ⊂ H ′ + H ′′. We assume k = 1 and Q0 = {1, . . . , n}

first. It is enough to show [Pi] ∈ H ′ + H ′′. We prove this by induction on i. If i = 1,
then [P1] ∈ H ′′. If i = 2, . . . , n, put x = i− 1. The projective resolution of Λ-module Sx

implies

[Sx] + [Sντ−1x] = [Pτ−1x]−
∑
y∈x+

[Py] + [Px]

= [Pi−1]− ([Pi−2] + [Pi]) + [Pi−1],
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where we set P0 = 0. Therefore, we have

[Pi] = −([Sx] + [Sντ−1x]) + [Pi−1]− [Pi−2] + [Pi−1].

From the induction hypothesis, we have [Pi−1]−[Pi−2]+[Pi−1] ∈ H ′+H ′′, and by definition,
we have [Sx] + [Sντ−1x] ∈ H ′. Now, [Pi] ∈ H ′ + H ′′ is proved. The induction has been
completed. A similar proof holds even if k ̸= 1. We have H = H ′ +H ′′.

The latter assertion is proved by Proposition 2. □

Now our task is moved to express the generators of H ′ and H ′′ as linear combinations
of the images of simple Λ-modules. For this purpose, we define some matrices.

Definition 12. We define three matrices.

(1) Xk ∈ GLk(Z) as the permutation matrix of a cyclic permutation (1, 2, . . . , k).
(2) Tn(x) ∈ Matn,n(Z[x]), Un(x) ∈ Matn,1(Z[x]) as

Tn(x) =


xn

· · ·
x2

x

 , Un(x) =


1
1
· · ·
1

 .

For example,

X4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Using these matrices, the Grothendieck group is written in the following way.

Lemma 13. We have K0(modΛ) ∼= Cok
(
1nk + Tn(Xk) Un(Xk)

)
.

Proof. For i ∈ {1, . . . , n} and a ∈ {0, . . . , k − 1}, we let the (i − 1)k + (a + 1)th row
of the matrix in the right-hand side correspond to [Si,a+kZ ], the element of the basis
of K0(D

b(modΛ)). Then it is easy to see the columns of 1nk + Tn(Xk) and Un(Xk)
correspond to the generators of H ′ and H ′′, respectively. Using Proposition 11, we have
the assertion. □

We consider transformations of
(
1n + Tn(x) Un(x)

)
in Matn+1,n(Z[x]).

Example 14. If n = 7,
(
1 + Tn(x) Un(x)

)
is

1 x7 1
1 x6 1

1 x5 1
1 + x4 1

x3 1 1
x2 1 1

x 1 1

.
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This can be transformed as a matrix on Z[x] as follows;



1
1

1
1 + x4 1

1− x8 1− x3

1− x8 1− x2

1− x8 1− x



7→



1
1

1
1 + x4 1

1− x8

1− x8

1− x8 1− x



7→



1
1

1
0 1

1− x8

1− x8

−(1− x)(1 + x4) 1− x8 0



7→



1
1

1
0 1

1− x8

1− x8

−(1− x)(1 + x4) 0 0


.

Thus we have Cok
(
17k + T7(Xk) U7(Xk)

) ∼= (Cok(1−X8
k))

2 ⊕Cok((1−Xk)(1 +X4
k)).

If n = 6,
(
1 + Tn(x) Un(x)

)
is


1 x6 1

1 x5 1
1 x4 1
x3 1 1

x2 1 1
x 1 1

.

This can be transformed as a matrix on Z[x] as follows;


1

1
1

1− x7 1− x3

1− x7 1− x2

1− x7 1− x


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7→


1

1
1

1− x7

1− x7

1− x7 1− x



7→


1

1
1

1− x7

1− x7

0 1− x

 .

Thus we have Cok
(
16k + T6(Xk) U6(Xk)

) ∼= (Cok(1−X7
k))

2 ⊕ Cok(1−Xk).

These examples are generalized as follows.

Lemma 15. K0(modΛ) ∼= Cok
(
1 + Tn(Xk) Un(Xk)

)
is isomorphic to{

(Cok(1k −Xn+1
k ))(n−3)/2 ⊕ Cok((1k −Xk)(1k +X

(n+1)/2
k )) (n /∈ 2Z)

(Cok(1k −Xn+1
k ))(n−2)/2 ⊕ Cok(1k −Xk) (n ∈ 2Z)

.

Now we only have to calculate the direct summands appeared in the previous lemma.
The results are the following, and using these, the part for ZAn/⟨τ k⟩ of the main theorem
is proved.

Lemma 16. [1, Lemma 2.8, Lemma 2.12] We have Cok(1k−Xk) ∼= Z, Cok(1k−Xn+1
k ) ∼=

Zd and if n /∈ 2Z,

Cok((1k −Xk)(1k +X
(n+1)/2
k )) ∼=

{
Z ⊕ (Z/2Z)d−1 (r ∈ 2Z)

Z(d+2)/2 (r /∈ 2Z)
.
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