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Abstract. One of the aims of the theory of representations of finite dimensional al-
gebras is to describe how linear transformations can act simultaneously on a finite di-
mensional vector space. We consider bounded linear operators on a infinite-dimensional
Hilbert space instead of linear transformations on a finite dimensional vector space. We
describe similarities and differences between ring theory and theory of operator algebras.

1. Introduction

Operator algebraists import many ideas from ring theory without paying anything.
Ring theorists import few ideas from theory of operator algebras because it is based on
functional analysis. But we expect more fruitful interactions between these two theory.
For example, quivers are related with operator algebras in the following (at least) three
different stages:
(1)Cuntz-Krieger algebras [1]
(2)Principal graphs for subfactors [5], [4],[8]
(3)Hilbert representations of quivers [2], [3]

First We describe similarities and differences between ring theory and theory of operator
algebras.

(1)Cuntz-Krieger algebras [1]

Strongly connected quivers generate an important class of purely infinite simple C∗-
algebras, called Cuntz-Krieger algebras, and they are classified by their K-groups. The
vertices are represented by orthogonal subspaces and the arrows are represented by partial
isometries with the orthognal ranges.

(2)Principal graphs for subfactors [5], [4],[8]

The category of bimodules for a subfactor forms a principal graph (a certain bitartite
graph) and a good invariant in subfactor theoory. In particular, irreducible hyperfinite
subfactors with Jones index less than four have Dynkin diagrams A,D and E. The ver-
tices are constructed by irreducible bimodules and arrows are constructed by bimodule
homomorphisms.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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Ring Theory,Representation Theory Theory of Operator algebras
Algebra Functional analysis

Finite dimensional alg. are improtant Finite dimensional alg. are trivial
Infinite dimensional alg. are interesting Infinite dimensional alg. are essential

vector space Hilbert space (need inner product)
ring *-algebra

non-commutative non-commutative
over a field K over C

no measure theory need measure theory
category is an essential tool category is a useful language

combinatrics topotopological approximation
? positivity

charateristic p ?
polynomial ring algebra of continuous functions
path algebra Cuntz-Krieger algebra

(3)Hilbert representations of quivers [2], [3]

A Hilbert representation of a quiver is to associate Hilbert spaces for the vertices and
bounded operators for arrows. Jordan blocks correspond to strongly irreducible operators.
The invaraint subspace problem is one of the famous unsolved problems in functional
anaysis and rephrased by the existence of a simple Hilbert representation of a quiver.

We study operator algebras instead of finite dimensional algebras. We have two im-
portant classes of operator algebras, that is, C∗-algebras and von Neumann algebras.
A C∗-algebra is a *-subalgebra of the algebra B(H) of bounded operators on a Hilbert
space H closed under operator-norm-topology. A von Neumann algebra is a *-subalgebra
of B(H) closed under weak-operator-topology. C∗-algebras are regarded as quantized
(locally) compact Housdorff spaces. Von Neumann algebras are regarded as quantized
measure spaces.

We can associated C∗-algebras for topological dynamical systems and von Neumann
algebras for measurable dynamical systems. In the half of this note, we will show our study
on C∗-algebras associated complex dynamical systems ([6]) and self-similar dynamical
systems ([7]) and on Hilbert representations. These results are based on joint works with
Tsuyoshi Kajiwara and Masatoshi Enomoto.

In order to ”feel” the difference between purely algebraic setting and functional analytic
setting, let us consider the following typical examples: Let L1 be one-loop quiver, that is,
L1 is a quiver with one vertex {1} and 1-loop {α} such that s(α) = r(α) = 1. Consider
two infinite-dimensional spaces the polynomial ring C[z] and the Hardy space H2(T).
Then C[z] is dense in H2(T) with respect to the Hilbert space norm.

Define a purely algebraic representation (V, T ) of L1 by V1 = C[z] and the multiplication
operator Tα by z. That is, Tαh(z) = zh(z) for a polynomial h(z) =

∑
n anz

n. Since
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End(V, T ) ∼= C[z] have no idempotents, the purely algebraic representation (V, T ) is
indecomposable.

Next we define a Hilbert representation (H,S) byH1 = H2(T) and Sα = Tz the Toeplitz
operator with the symbol z. Then Sα = Tz is the multiplication operator by z on H2(T)
and is identified with the unilateral shift. Then

End(H,S) ∼= {A ∈ B(H2(T)) | ATz = TzA}
= {Tϕ ∈ B(H2(T)) | ϕ ∈ H∞(T)}

is the algebra of analytic Toeplitz operators and isomorphic to H∞(T). By the F. and
M. Riesz Theorem, if f ∈ H2(T) has the zero set of positive measure, then f = 0.
Since H∞(T) = H2(T) ∩ L∞(T), H∞(T) has no non-trivial idempotents. Thus there
exists no non-trivial idempotents which commutes with Tz and Hilbert space (H,S) is
indecomposable. In this sense, the analytical aspect of Hardy space is quite important in
our setting.

Any subrepresentation of the purely algebraic representation (V, T ) is given by the
restriction to an ideal J = p(z)C[z] for some polynomial p(z). Any subrepresentation of
the Hilbert representation (H,S) is given by an invariant subspace of the shift operator Tz.
Beurling theorem shows that any subrepresentation of (H,S) is given by the restriction
to an invariant subspace M = φH2(T) for some inner function φ. For example, if an ideal
J is defined by

J = {f(z) ∈ C[z] | f(λ1) = · · · = f(λn) = 0}

for some distinct numbers λ1, . . . λn ∈ C, then the corresponding polynomial p(z) is given
by p(z) = (z − λ1) . . . (z − λn). The case of Hardy space is much more analytic. We shall
identify H2(T) with a subspace H2(D) of analytic functions on the open unit disc D. If
an invariant subspace M is defined by

M = {f ∈ H2(D) | f(λ1) = · · · = f(λn) = 0}

for some distinct numbers λ1, . . . λn ∈ D, then the corresponding inner function φ is given
by a finite Blaschke product

φ(z) =
(z − λ1)

1− λ1z
. . .

(z − λn)

1− λnz
.

Here we cannot use the notion of degree like polynomials and we must manage to treat
orthogonality to find such an inner function φ.

2. path algebras and Cuntz-Krieger algebras

The elements of a path algebra of a quiver are finite linear sums of paths in the quiver.
Similarly the elements of a Cuntz-Krieger algebra of a quiver are generated by partial
isometry operators representating paths. The difference is that the ranges of generating
partial isometries are orthogonal and we add the adjoint T ∗ of any operator T in the
Cuntz-Krieger algebra. But usually the Cuntz-Krieger algebra is described using the 0-
1 matrix A corresponding the quiver as follows: The Cuntz-Krieger algebra OA is the
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symbolic dynamical system complex dynamical system
quiver (or 0-1 matrix A ) rational function R

irreducible matrix restriction of R on the Julia set JR
Cantor set closed subset of Riemann sphere

one-sided Markov shift branched covering map
Cuntz-Krieger algebra OA　 Cuntz-Pimsner algebra OR(JR)

maximal abelian subalgebra C(XA) maximal abelian subalgebra C(JR)
étale groupoid not étale groupoid in general

K-group is a good invariant K-group is not a good invariant

universal algebra generated by partial isometries S1, S2, . . . , Sn with orthogonal ranges
satisfying that

S∗
i Si =

n∑
j=1

A(i, j)SjS
∗
j and

n∑
j=1

SjS
∗
j = I

Theorem 1. (Cuntz-Krieger) Let A be an irreducible 0 − 1 matrix which is not a per-
mutation. Then the correspoding Cuntz-Krieger algebra OA is simple, purely infinite,
nuclear C∗-algebra. Furthermore the K-groups are the following:

K0(OA) = Zn/(I − At)Zn K1(OA) = Ker (I − At) ⊂ Zn

It is known that the K-groups are complete invarint of a certain class of simple nuclear
C∗-algebras containing Cuntz-Krieger algebras.

3. C∗-algebras associated with complex dynamical systems

We can regard Cuntz-Krieger algebras are C∗-algebraic version of path algebras for
quivers. But we usually consider that Cuntz-Krieger algebras are associated with cer-
tain symbolic dynamical systems ,i.e. Markov shifts. Similarly many C∗-algebras are
constructed from dynamical systems.

Let R be a rational function of the form R(z) = P (z)
Q(z)

with relatively prime polynomials

P and Q. The degree of R is denoted by N = degR := max{degP, degQ}.

We regard a rational function R as a N -fold branched covering map R : Ĉ → Ĉ on the
Riemann sphere Ĉ = C ∪ {∞}.

The sequence (Rn)n of iterations of R gives a complex analytic dynamical system on Ĉ.
The Fatou set FR of R is the maximal open subset of Ĉ on which (Rn)n is equicontinuous
(or a normal family), and the Julia set JR of R is the complement of the Fatou set in

Ĉ. The Fatou set FR is a stable part and the Julia set JR is an unstable part. Since the
Riemann sphere Ĉ is decomposed into the union of the Julia set JR and Fatou set FR,
we associated three C∗-algebras OR = OR(Ĉ), OR(JR) and OR(FR) by considering R as

dynamical systems on Ĉ, JR and FR respectively.

Theorem 2. (Kajiwara-Watatani) Let R be a rational function with degR ≥ 2. Then
the C∗-algebra OR(JR) associated with R on the Julia set JR is simple and purely infinite.
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Theorem 3. (Kajiwara-Watatani) Let R be a rational function with degR ≥ 2. Then
the following are equivalent:
(1)The core OR(JR)

γ is simple.
(2)The Julia set JR contains no branched points i.e. JR ∩BR = ∅.

4. Hilbert representation of quivers

Let Γ = (V,E, s, r) be a finite quiver. We say that (H, f) is a Hilbert representation of
Γ if H = (Hv)v∈V is a family of Hilbert spaces and f = (fα)α∈E is a family of bounded
linear operators such that fα : Hs(α) → Hr(α) for α ∈ E.

Hilbert representation (H, f) of Γ is called decomposable if (H, f) is isomorphic to a
direct sum of two non-zero Hilbert representations. A non-zero Hilbert representation
(H, f) of Γ is said to be indecomposable if it is not decomposable, that is, if (H, f) ∼=
(K, g)⊕ (K ′, g′) then (K, g) ∼= 0 or (K ′, g′) ∼= 0.

A Hilbert representation (H, f) of a quiver Γ is called transitive if End(H, f) = CI. It is
clear that if a Hilbert representation (H, f) is canonically simple, then (H, f) is transitive.
If a Hilbert representation (H, f) of Γ is transitive , then (H, f) is indecomposable. In fact,
since End(H, f) = CI, any idempotent endomorphism T is 0 or I. In purely algebraic
setting, a representation of a quiver is called a brick if its endomorphism ring is a division
ring. But for a Hilbert representation (H, f) of a quiver, End(H, f) is a Banach algebra
and not isomorphic to its purely algebraic endomorphism ring in general, because we only
consider bounded endomorphisms. By Gelfand-Mazur theorem, any Banach algebra over
C which is a division ring must be isomorphic to C. Therefore the reader may use ”brick”
instead of ”transitive Hilbert representation” if he does not confuse the difference between
purely algebraic endomorphism ring and End(H, f).

A lattice L of subspaces of a Hilbert space H containing 0 and H is called a transitive
lattice if

{A ∈ B(H) | AM ⊂ M for any M ∈ L} = CI.
Let L = {0,M1,M2, . . . ,Mn, H} be a finite lattice. Consider a n subspace quiver

Rn = (V,E, s, r), that is, V = {1, 2, . . . , n, n + 1} and E = {αk | k = 1, . . . , n} with
s(αk) = k and r(αk) = n+ 1 for k = 1, . . . , n. Then there exists a Hilbert representation
(K, f) of Rn such that Kk = Mk, Kn+1 = H and fαk

: Mk → H is an inclusion for
k = 1, . . . , n. Then the lattice L is transitive if and only if the corresponding Hilbert
representation (H, f) is transitive. This fact guarantees the terminology ”transitive” in
the above.

Theorem 4. (Enomoto-Watatani) Let Γ be a quiver whose underlying undirected graph is
an extended Dynkin diagram. Then there exists an infinite-dimensional transitive Hilbert
representation of Γ if and only if Γ is not an oriented cyclic quiver.

A non-zero Hilbert representation (H, f) of a quiver Γ is called simple if (H, f) has
only trivial subrepresentations 0 and (H, f). A Hilbert representation (H, f) of Γ is
called canonically simple if there exists a vertex v0 ∈ V such that Hv0 = C, Hv = 0
for any other vertex v ̸= v0 and fα = 0 for any α ∈ E. It is clear that if a Hilbert
representation (H, f) of Γ is canonically simple, then (H, f) is simple. It is trivial that if
a Hilbert representation (H, f) of Γ is simple, then (H, f) is indecomposable.
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Operator theory Representation of quivers
Hilbert space vertex

bounded operator edge
direct sum direct sum

irreducible operator irreducible representation
strongly irreducible operator T indecomposable representation

commutant {T}′ endomorphism ring
up to similar up to isomorphism

Fredholm index defect
no non-trivial invariant subspace simple

transitive operator transitive representation

We can rephrase the invariant subspace problem in functional analysis in terms of simple
representations of a one-loop quiver. Let L1 be one-loop quiver, so that L1 has one vertex
1 and one arrow α : 1 → 1. Any bounded operator A on a non-zero Hilbert space H
gives a Hilbert representation (HA, fA) of L1 such that HA

1 = H and fA
α = A. Then the

operator A has only trivial invariant subspaces if and only if the Hilbert representation
(HA, fA) of L1 is simple. If H is one-dimensional and A is a non-zero scalar operator,
then the Hilbert representation (HA, fA) of L1 is simple but is not canonically simple. If
H is finite-dimensional with dimH ≥ 2, then the Hilbert representation (HA, fA) of L1

is not simple, because any operator A on H has a non-trivial invariant subspace. If H is
countably infinite-dimensional, then we do not know whether the Hilbert representation
(HA, fA) of L1 is not simple. In fact this is the invariant subspace problem, that is, the
question whether any operator A on H has a non-trivial (closed) invariant subspace.
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