EXAPMLES OF ORE EXTENSIONS WHICH ARE MAXIMAL ORDERS WHOSE BASED RINGS ARE NOT MAXIMAL ORDERS

H. MARUBAYASHI AND A. UEDA

ABSTRACT. Let R be a prime Goldie ring and (σ, δ) be a skew derivation on R. It is well known that if R is a maximal order, then the Ore extension $R[x; \sigma, \delta]$ is a maximal order. It was a long standing open question that the converse is true or not in case $\sigma \neq 1$ and $\delta \neq 0$. We give an example of non-maximal order R with a skew derivation (σ, δ) on R ($\sigma \neq 1, \delta \neq 0$) such that $R[x; \sigma, \delta]$ is a maximal order.

1. INTRODUCTION

Let σ be an automorphism of a ring R and let δ be a left σ -derivation of R. Then we say (σ, δ) is a skew derivation on R. The aim of this paper is to obtain an example such that the Ore extension $R[x; \sigma, \delta]$ is a maximal order but R is not a maximal order.

In case δ is trivial, the following example is known (see [1, Proposition 2.6]). Let D be a hereditary Noetherian prime ring (an HNP ring for short) satisfying the following:

- (a) there is a cycle $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ $(n \ge 2)$ such that $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n = aD = Da$ for some $a \in D$ and
- (b) any maximal ideal \mathfrak{n} different from \mathfrak{m}_i $(1 \leq i \leq n)$ is invertible.

We define a skew derivation (σ, δ) on D by $\sigma(r) = ara^{-1}$ and $\delta(r) = 0$ for all $r \in D$. Then D is clearly not a maximal order and the Ore extension $D[x; \sigma, 0]$ is a maximal order. But in case σ and δ are both non-tirvial, we need to consider the Ore extension of a polynomial ring over D and we must specify v-ideals of it.

Therefore let R = D[t] be the polynomial ring over D in an indeterminate t. Then (σ, δ) on D is extended to a skew derivation on R by $\sigma(t) = t$ and $\delta(t) = a$ (see [4, Lemma 1.2]) and it is proved that the Ore extension $R[x; \sigma, \delta]$ is maximal order but R is not a maximal order (Theorem 12).

Section 2 contains preliminary results which are used in Section 3. In Section 3, we describe the structure of prime invertible ideals of $R[x; \sigma, \delta]$ (Proposition 9) and Theorem 12 is proved by showing that any v-ideal is v-invertible.

We refer the readers to [12] and [13] for terminology not defined in the paper.

2. Preliminary results

Let S be a Noetherian prime ring with quotient ring Q and A be a fractional S-ideal. We use the following notation:

$$(S:A)_l = \{q \in Q \mid qA \subseteq S\}, \quad (S:A)_r = \{q \in Q \mid Aq \subseteq S\} \text{ and } A_v = (S:(S:A)_l)_r \supseteq A \text{ and } vA = (S:(S:A)_r)_l \supseteq A.$$

The detailed version of this paper will be submitted for publication elsewhere.

-134-

A is called a *v-ideal* if $_{v}A = A = A_{v}$. A *v*-ideal A is said to be *v-invertible* (*invertible*) if $_{v}((S:A)_{l}A) = S = (A(S:A)_{r})_{v}$ ($(S:A)_{l}A = S = A(S:A)_{r}$), respectively.

Note that if A is v-invertible, then it is easy to see that $O_r(A) = S = O_l(A)$ and $(S : A)_l = A^{-1} = (S : A)_r$, where $O_l(A) = \{q \in Q \mid qA \subseteq A\}$, a *left order* of A, $O_r(A) = \{q \in Q \mid Aq \subseteq A\}$, a *right order* of A and $A^{-1} = \{q \in Q \mid AqA \subseteq A\}$.

Concerning invertible ideals and v-invertible ideals of S, the next lemma holds.

Lemma 1. A v-ideal is invertible if and only if it is v-invertible and projective (left and right projective).

In the remainder of this section, let D be a hereditary Noetherian prime ring (an HNP ring for short) with quotient ring K = Q(D) and R = D[t]. Let σ be an inner automorphism induced by a regular element a of D, that is, $\sigma(r) = ara^{-1}$ for all $r \in D$ and δ be a trivial left σ -derivation on D, that is, $\delta(r) = 0$ for all $r \in D$.

Put R = D[t], the polynomial ring over D in an indeterminate t. σ and δ are extended to an automorphism σ of R and a left σ -derivation δ on R as follows ([4, Lemma 1.2]);

$$\sigma(t) = t$$
 and $\delta(t) = a$.

It is well-known that a skew derivation (σ, δ) is naturally extended to a skew derivation on K ([12, p. 132]). Also we note that $\sigma \delta = \delta \sigma$ holds.

We put

 $V_r(R) = \{ \mathfrak{a} : \text{ ideals } | \mathfrak{a} = \mathfrak{a}_v \} \supseteq V_{(m,r)}(R) = \{ \mathfrak{a} \in V_r(R) | \mathfrak{a} \text{ is maximal in } V_r(R) \},$

 $V_l(R) = \{ \mathfrak{a} : \text{ ideals } | \mathfrak{a} = {}_v \mathfrak{a} \} \supseteq V_{(m,l)}(R) = \{ \mathfrak{a} \in V_l(R) | \mathfrak{a} \text{ is maximal in } V_l(R) \}$ and

 $\operatorname{Spec}_0(R) = \{ \mathfrak{b} : \text{ prime ideals } | \mathfrak{b} \cap D = (0) \text{ and } \mathfrak{b} \text{ is a v-ideal} \}.$

Note that for each fractional *R*-ideal \mathfrak{a} , $\mathfrak{a} = \mathfrak{a}_v$ if and only if \mathfrak{a} is right projective by [2, Proposition 5.2] and that there is a one-to-one correspondence between $\operatorname{Spec}_0(R)$ and $\operatorname{Spec}(K[t])$ (see [12, Proposition 2.3.17]).

Using these facts, we can prove the following lemma.

Lemma 2. $V_{(m,r)}(R) = V_{(m,l)}(R)$ and is equal to

 $V_m(R) = \{\mathfrak{m}[t], \mathfrak{b} \mid \mathfrak{m} \text{ runs over all maximal ideals of } D \text{ and } \mathfrak{b} \in Spec_0(R)\}.$

From Lemmas 1 and 2, we have the following.

Lemma 3. If $\mathfrak{b} \in Spec_0(R)$, then \mathfrak{b} is invertible.

Now we can determine the maximal invertible ideals of R by Lemmas 2 and 3.

Proposition 4. $\{\mathfrak{p}[t] = \mathfrak{m}_1[t] \cap \cdots \cap \mathfrak{m}_k[t], \mathfrak{b} \mid \mathfrak{m}_1, \ldots, \mathfrak{m}_k \text{ is a cycle of } D, k \geq 1, \mathfrak{b} \in Spec_0(R)\}$ is the full set of maximal invertible ideals of R (ideals maximal amongst the invertible ideals).

The following proposition follows from the proof of [3, Proposition 2.1 and Theorem 2.9].

Proposition 5. The invertible ideals of R generate an Abelian group whose generators are maximal invertible ideals.

In case D has enough invertible ideals, it is shown in [9] that R = D[t] is a v-HC order with enough v-invertible ideals, which is a Krull type generalization of HNP rings. Recall the notion of v-HC orders: A Noetherian prime ring S is called a v-HC order if $v(A(S:A)_l) = O_l(A)$ for any ideal A of S with A = vA and $((R:S)_rB)_v = O_r(B)$ for any ideal B of S with $B = B_v$. A v-HC order S is said to be having enough v-invertible ideals if any v-ideal of S contains a v-ideal which is v-invertible. A v-ideal C is called eventually v-idempotent if $(C^n)_v$ is v-idempotent for some $n \ge 1$, that is, $((C^n)_v) = (C^n)_v$.

Ideal theory in HNP rings are generalized to one in v-HC orders with enough v-invertible ideals. The following two lemmas are very useful to investigate the structure of v-ideals of v-HC orders (for their proofs, see [8, Lemma 1.1] and [10, Lemma 1 and Proposition 3]).

Lemma 6. Let S be a prime Goldie ring and A, B be fractional S-ideals.

- (1) $(AB)_v = (AB_v)_v$.
- (2) $(A_vB)_v = (AB)_v$ if B is v-invertible.
- (3) $(AB)_v = A_v B$ if B is invertible.

Lemma 7. Let S be a v-HC order with enough v-invertible ideals and A be a fractional S-ideal.

- (1) $_{v}A = A_{v}.$
- (2) $A_v = (BC)_v$ for some v-invertible ideal B and eventually v-idempotent ideal C.
- (3) Let C be an eventually v-idempotent ideal and let M_1, \ldots, M_k be the full set of maximal v-ideals containing C. Then $(C^k)_v = ((M_1 \cap \cdots \cap M_k)^k)_v$ and is v-idempotent.

Remark. A v-ideal of S is eventually v-idempotent if and only if it is not contained in any v-invertible ideals (see the proofs of [3, Propositions 4.3 and 4.5]).

3. Examples

Throughout this section, D is an HNP ring with quotient ring K satisfying the following:

- (a) there is a cycle $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ such that $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n = aD = Da$ for some $a \in D$.
- (b) any maximal ideal \mathfrak{n} different from \mathfrak{m}_i $(1 \leq i \leq n)$ is invertible.

Examples of an HNP ring D satisfying the conditions (a) and (b) are found in [6] and [1]. The simplest example is $D = \begin{pmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix}$, where \mathbb{Z} is the ring of integers and p is a prime number.

Unless otherwise stated, R = D[t], σ is an automorphism of R and δ is a left σ -derivation as in Section 1, that is, $\sigma(r) = ara^{-1}$, $\delta(r) = 0$ for all $r \in D$, $\sigma(t) = t$ and $\delta(t) = a$.

Note that $\sigma(\mathfrak{m}_i) = \mathfrak{m}_{i+1}$ $(1 \leq i \leq n-1)$, $\sigma(\mathfrak{m}_n) = \mathfrak{m}_1$ and $\sigma(\mathfrak{n}) = \mathfrak{n}$ for all maximal ideals \mathfrak{n} with $\mathfrak{n} \neq \mathfrak{m}_i$ $(1 \leq i \leq n)$ by [5, Theorem 14] and [9, Corollary 2.3]. Furthermore, by Lemma 2 and Proposition 4,

$$V_m(R) = \{ \mathfrak{m}_i[t], \ \mathfrak{n}[t], \ \mathfrak{b} \mid \mathfrak{n} \neq \mathfrak{m}_i \text{ and } \mathfrak{b} \in \operatorname{Spec}_0(R) \}$$

and

$$I_m(R) = \{ \mathfrak{p}[t], \ \mathfrak{n}[t], \ \mathfrak{b} \mid \mathfrak{p} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n, \mathfrak{n} \neq \mathfrak{m}_i \text{ and } \mathfrak{b} \in \operatorname{Spec}_0(R) \}$$

is the set of all maximal invertible ideals of R.

Note that a maximal ideal of K[t] is either tK[t] or $\omega K[t]$ for some $\omega = k_l t^l + \cdots + k_0 \in Z(K[t])$ with $k_l \neq 0, k_0 \neq 0, l \geq 1$, where Z(K[t]) is the center of K[t] (see [12, Theorem 2.3.10]) and so any $\mathfrak{b} \in \operatorname{Spec}_0(R)$ is either $\mathfrak{b} = tR$ or $\mathfrak{b} = \omega K[t] \cap R$, where $\omega \in Z(K[t])$ and $\omega K[t]$ is a maximal ideal ([12, Proposition 2.3.17]).

A fractional *R*-ideal \mathfrak{a} is called σ -invariant if $\sigma(\mathfrak{a}) = \mathfrak{a}$ and is called δ -stable if $\delta(\mathfrak{a}) \subseteq \mathfrak{a}$. A σ -invariant and δ -stable fractional *R*-ideal is said to be (σ, δ) -stable.

The following lemma is crutial to study ideals of R and is proved by using the results obtained in section 2.

Lemma 8. (1) Any projective ideal of R is a product of an invertible ideal and an eventually v-idempotent ideal.

- (2) Any eventually v-idempotent ideal is not σ -invariant.
- (3) $\mathfrak{n}[t]$ and $\mathfrak{p}[t]$ are (σ, δ) -stable.
- (4) Let $\omega = t$ or $\omega \in Z(K[t])$ and let $\mathfrak{b} = \omega K[t] \cap R$, which is a maximal invertible ideal of R. Then
 - (i) \mathfrak{b}^n is σ -invariant for any $n \geq 1$.
 - (ii) \mathfrak{b}^n is δ -stable if and only if $\omega^n K[t]$ is δ -stable if and only if $\delta(\omega^n) = 0$.
 - (iii) (a) If char K = 0, then \mathfrak{b}^n is not δ -stable for any n.
 - (b) If char $K = p \neq 0$ and $\delta(\omega) \neq 0$, then \mathfrak{b}^p is (σ, δ) -stable and \mathfrak{b}^i is not (σ, δ) -stable $(1 \leq i < p)$.
 - (c) If char $K = p \neq 0$ and $\delta(\omega) = 0$, then \mathfrak{b}^n is (σ, δ) -stable for all $n \geq 1$.

In the remainder of this section, let $S = R[x; \sigma, \delta]$, an Ore extension in an indeterminate x and $T = Q[x; \sigma, \delta]$, where Q = Q(R), the quotient ring of R. We will prove that S is a maximal order. To prove maximality of S, it is enough to show that each v-ideal of S is v-invertible. For this purpose, we will describe all v-ideals of S.

Note that for an ideal \mathfrak{a} of R, $\mathfrak{a}[x; \sigma, \delta]$ is an ideal of S if and only if \mathfrak{a} is (σ, δ) -stable.

From Lemma 8, we have the following Proposition 9 and we can prove invertibility of a v-ideal A of S such as $A \cap R \neq (0)$ by using Proposition 9.

Proposition 9. Under the same notations as in Lemma 8, let A be an ideal of S such that $A = A_v$ and is maximal in $\{B : \text{ ideal } | B = B_v\}$. If $A \cap R = \mathfrak{a} \neq (0)$, then A is equal to one of $P = \mathfrak{p}[t][x; \sigma, \delta]$, $N = \mathfrak{n}[t][x; \sigma, \delta]$, $B = \mathfrak{b}[x; \sigma, \delta]$ (in case \mathfrak{b} is (σ, δ) -stable) or $C = \mathfrak{b}^p[x; \sigma, \delta]$ (in case \mathfrak{b} is σ -invariant but not δ -stable) and each of these is a prime invertible ideal of S.

Lemma 10. Let A be an ideal of S such that $A = A_v$ and $\mathfrak{a} = A \cap R \neq (0)$. Then \mathfrak{a} is a (σ, δ) -stable invertible ideal and $A = \mathfrak{a}[x; \sigma, \delta]$.

Outline of Proof. Assume that $A \supset \mathfrak{a}[x; \sigma, \delta]$ and that it is maximal for this property. Then, by Proposition 9, there is a $P_0 = \mathfrak{p}_0[x; \sigma, \delta] \supset A$, where $\mathfrak{p}_0 = \mathfrak{p}_{[}t]$ or $\mathfrak{n}[t]$ or \mathfrak{b} or \mathfrak{c} and $S \supseteq AP_0^{-1} \supset A$. Then $AP_0^{-1} = \mathfrak{a}'[x; \sigma, \delta]$ for some (σ, δ) -stable v-ideal \mathfrak{a}' , and $A = ((AP_0^{-1})P_0)_v = (\mathfrak{a}'\mathfrak{p}_0)_v[x; \sigma, \delta]$, which is a contradiction. \Box

By Lemma 10, we can prove also v-invertibility of a v-ideal A such as $A \cap R = (0)$.

Lemma 11. Let A be an ideal of S such that $A = A_v$ and $A \cap R = (0)$. Then A is *v*-invertible.

Outline of Proof. $T = (S : A)_l A T$ holds and so $(S : A)_l A \cap R \neq (0)$. Then $v((S : A)_l A)$ is invertible by the left version of Lemma 10. Suppose $v((S : A)_l A) \subset S$. Then there is a maximal invertible ideal P_0 which is prime and $P_0 \supseteq v((S : A)_l A)$. Then the localization S_{P_0} is a local Dedekind prime ring and

$$S_{P_0} = (S_{P_0} : AS_{P_0})_l AS_{P_0} \subseteq S_{P_0}(S : A)_l AS_{P_0} \subseteq S_{P_0}P_0S_{P_0} = J(S_{P_0}),$$

the Jacobson radical of S_{P_0} , which is a contradiction.

Now we obtain the main theorem of this paper by Lemmas 10 and 11.

Theorem 12. $S = R[x; \sigma, \delta]$ is a maximal order and R is not a maximal order.

Proof. Let A be any non-zero ideal of S. Since $S \subseteq O_l(A) \subseteq O_l(A_v)$, in order to prove $O_l(A) = S$, we may assume that $A = A_v$. By Lemmas 10 and 11, A is (v)-invertible. Hence $O_l(A) = S$ and similarly $O_r(A) = S$, that is, S is a maximal order. Of course R is not a maximal order.

As an application of Theorem 12, we give the example related to unique factorization rings. A Noetherian prime ring R is called a *unique factorization ring* (a UFR for short) if each prime ideal P with $P = P_v$ (or $P = {}_v P$) is principal, that is, P = bR = Rb for some $b \in R$. We note that R is a UFR if and only if R is a maximal order and each v-ideal is principal, and if R is a maximal order, then every prime v-ideal is a maximal v-ideal. Then we have the following

Then we have the following.

Proposition 13. Suppose char D = 0 and any maximal ideal \mathfrak{n} different from \mathfrak{m}_i $(1 \le i \le n)$ is principal. Then $S = R[x; \sigma, \delta]$ is a UFR but R is not a UFR.

At the end, we state an open problem concerning Ore extensions.

Problem. Let R be a prime Goldie ring and consider the Ore extension $R[x; \sigma, \delta]$ of R, where (σ, δ) is a skew derivation on R. Then what is necessary and sufficient condition for $R[x; \sigma, \delta]$ to be a maximal order or unique factorization ring?

References

- G. Q. Abbasi, S. Kobayashi, H. Marubayashi and A. Ueda, Non commutative unique factorization rings, Comm. in Algebra, 19(1) (1991), 167–198.
- [2] H. Bass, Finitistic dimension and homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1969), 466-488.
- [3] D. Eisenbud and J.C. Robson, Hereditary Noetherian prime rings, J. of Algebra 16 (1970), 86-104.
- [4] K.R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J. of Algebra 150 (1992), 324-377.
- [5] K.R. Goodearl and R.B. Warfield Jr., Simple modules over hereditary Noetherian prime rings, J. of Algebras 57 (1979), 82 - 100.
- [6] M. Harada, Structure of hereditary orders over local rings, J. Math Osaka City Univ. 14 (1963), 1-22.
- [7] A. Leory and J. Matczek, The extended centroid and X-inner automorphisms of Ore extensions, J. Algebra 145 (1992), 143-177.
- [8] H. Marubayashi, A Krull type generalization of HNP rings with enough invertible ideals, Comm. in Algebra 11(5) (1983), 469-499.
- [9] _____, H. Marubayashi, A skew polynomial ring over a v-HC order with enough v-invertible ideals, Comm. in Algebra 12 (13) (1984), 1567 - 1593.

- [10] _____, H. Marubayashi, On a v-ideals in a VHC order, Proc. the Japan Academy 59 Ser. A, No. 7 (1983), 339-342, 1983.
- [11] H.Marubayashi, H.Miyamoto and A.Ueda, Non-commutative Valuation Rings and Semi-hereditary Orders, Kluwer Academic Publishers, 3, 1997.
- [12] H. Marubayashi and F. Van Oystaeyen, Prime Divisors and Non-commutative Valuation Rings, Lecture Notes in Math. 2059 Springer, 2012.
- [13] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.

FACULTY OF SCIENCES AND ENGINEERING TOKUSHIMA BUNRI UNIVERSITY SANUKI, KAGAWA, 769-2193, JAPAN *E-mail address*: marubaya@kagawa.bunri-u.ac.jp

DEPARTMENT OF MATHEMATICS SHIMANE UNIVERSITTY MATSUE, SHIMANE, 690-8504, JAPAN *E-mail address*: ueda@riko.shimane-u.ac.jp