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Abstract. Let R be a prime Goldie ring and (σ, δ) be a skew derivation on R. It is
well known that if R is a maximal order, then the Ore extension R[x;σ, δ] is a maximal
order. It was a long standing open question that the convserse is true or not in case
σ ̸= 1 and δ ̸= 0. We give an example of non-maximal order R with a skew derivation
(σ, δ) on R (σ ̸= 1, δ ̸= 0) such that R[x;σ, δ] is a maximal order.

1. Introduction

Let σ be an automorphism of a ring R and let δ be a left σ-derivation of R. Then we
say (σ, δ) is a skew derivation on R. The aim of this paper is to obtain an example such
that the Ore extension R[x; σ, δ] is a maximal order but R is not a maximal order.

In case δ is trivial, the following example is known (see [1, Proposition 2.6]). Let D be
a hereditary Noetherian prime ring (an HNP ring for short) satisfying the following:

(a) there is a cycle m1, . . . ,mn (n ≥ 2) such that m1 ∩ · · · ∩mn = aD = Da for some
a ∈ D and

(b) any maximal ideal n different from mi (1 ≤ i ≤ n) is invertible.

We define a skew derivation (σ, δ) on D by σ(r) = ara−1 and δ(r) = 0 for all r ∈ D.
Then D is clearly not a maximal order and the Ore extension D[x;σ, 0] is a maximal
order. But in case σ and δ are both non-tirvial, we need to consider the Ore extension of
a polynomial ring over D and we must specify v-ideals of it.

Therefore let R = D[t] be the polynomial ring over D in an indeterminate t. Then
(σ, δ) on D is extended to a skew derivation on R by σ(t) = t and δ(t) = a (see [4, Lemma
1.2]) and it is proved that the Ore extension R[x;σ, δ] is maximal order but R is not a
maximal order (Theorem 12).

Section 2 contains preliminary results which are used in Section 3. In Section 3, we
describe the structure of prime invertible ideals of R[x;σ, δ] (Proposition 9) and Theorem
12 is proved by showing that any v-ideal is v-invertible.

We refer the readers to [12] and [13] for terminology not defined in the paper.

2. Preliminary results

Let S be a Noetherian prime ring with quotient ring Q and A be a fractional S-ideal.
We use the following notation:

(S : A)l = {q ∈ Q | qA ⊆ S}, (S : A)r = {q ∈ Q | Aq ⊆ S} and

Av = (S : (S : A)l)r ⊇ A and vA = (S : (S : A)r)l ⊇ A.

The detailed version of this paper will be submitted for publication elsewhere.
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A is called a v-ideal if vA = A = Av. A v-ideal A is said to be v-invertible (invertible) if

v((S : A)lA) = S = (A(S : A)r)v ((S : A)lA = S = A(S : A)r), respectively.
Note that if A is v-invertible, then it is easy to see that Or(A) = S = Ol(A) and

(S : A)l = A−1 = (S : A)r, where Ol(A) = {q ∈ Q | qA ⊆ A}, a left order of A,
Or(A) = {q ∈ Q | Aq ⊆ A}, a right order of A and A−1 = {q ∈ Q | AqA ⊆ A}.

Concerning invertible ideals and v-invertible ideals of S, the next lemma holds.

Lemma 1. A v-ideal is invertible if and only if it is v-invertible and projective (left and
right projective).

In the remainder of this section, let D be a hereditary Noetherian prime ring (an HNP
ring for short) with quotient ring K = Q(D) and R = D[t]. Let σ be an inner automor-
phism induced by a regular element a of D, that is, σ(r) = ara−1 for all r ∈ D and δ be
a trivial left σ-derivation on D, that is, δ(r) = 0 for all r ∈ D.

Put R = D[t], the polynomial ring over D in an indeterminate t. σ and δ are extended
to an automorphism σ of R and a left σ-derivation δ on R as follows ([4, Lemma 1.2]);

σ(t) = t and δ(t) = a.

It is well-known that a skew derivation (σ, δ) is naturally extended to a skew derivation
on K ([12, p. 132]). Also we note that σδ = δσ holds.

We put

Vr(R) = {a : ideals | a = av} ⊇ V(m,r)(R) = {a ∈ Vr(R) | a is maximal in Vr(R)},
Vl(R) = {a : ideals | a = va} ⊇ V(m,l)(R) = {a ∈ Vl(R) | a is maximal in Vl(R)} and

Spec0(R) = {b : prime ideals | b ∩D = (0) and b is a v-ideal}.

Note that for each fractional R-ideal a, a = av if and only if a is right projective by
[2, Proposition 5.2] and that there is a one-to-one correspondence between Spec0(R) and
Spec(K[t]) (see [12, Proposition 2.3.17]).

Using these facts, we can prove the following lemma.

Lemma 2. V(m,r)(R) = V(m,l)(R) and is equal to

Vm(R) = {m[t], b | m runs over all maximal ideals of D and b ∈ Spec0(R)}.

From Lemmas 1 and 2, we have the following.

Lemma 3. If b ∈ Spec0(R), then b is invertible.

Now we can determine the maximal invertible ideals of R by Lemmas 2 and 3.

Proposition 4. {p[t] = m1[t] ∩ · · · ∩ mk[t], b | m1, . . . ,mk is a cycle of D, k ≥ 1, b ∈
Spec0(R)} is the full set of maximal invertible ideals of R (ideals maximal amongst the
invertible ideals).

The following proposition follows from the proof of [3, Proposition 2.1 and Theorem
2.9].

Proposition 5. The invertible ideals of R generate an Abelian group whose generators
are maximal invertible ideals.

–135–



In case D has enough invertible ideals, it is shown in [9] that R = D[t] is a v-HC
order with enough v-invertible ideals, which is a Krull type generalization of HNP rings.
Recall the notion of v-HC orders: A Noetherian prime ring S is called a v-HC order if

v(A(S : A)l) = Ol(A) for any ideal A of S with A = vA and ((R : S)rB)v = Or(B) for any
ideal B of S with B = Bv. A v-HC order S is said to be having enough v-invertible ideals
if any v-ideal of S contains a v-ideal which is v-invertible. A v-ideal C is called eventually
v-idempotent if (Cn)v is v-idempotent for some n ≥ 1, that is, ((Cn)v

2)v = (Cn)v.
Ideal theory in HNP rings are generalized to one in v-HC orders with enough v-invertible

ideals. The following two lemmas are very useful to investigate the structure of v-ideals
of v-HC orders (for their proofs, see [8, Lemma 1.1] and [10, Lemma 1 and Proposition
3]).

Lemma 6. Let S be a prime Goldie ring and A,B be fractional S-ideals.

(1) (AB)v = (ABv)v.
(2) (AvB)v = (AB)v if B is v-invertible.
(3) (AB)v = AvB if B is invertible.

Lemma 7. Let S be a v-HC order with enough v-invertible ideals and A be a fractional
S-ideal.

(1) vA = Av.
(2) Av = (BC)v for some v-invertible ideal B and eventually v-idempotent ideal C.
(3) Let C be an eventually v-idempotent ideal and let M1, . . . ,Mk be the full set of

maximal v-ideals containing C. Then (Ck)v = ((M1 ∩ · · · ∩ Mk)
k)v and is v-

idempotent.

Remark. A v-ideal of S is eventually v-idempotent if and only if it is not contained in
any v-invertible ideals (see the proofs of [3, Propositions 4.3 and 4.5]).

3. Examples

Throughout this section,D is an HNP ring with quotient ring K satisfying the following:

(a) there is a cycle m1, . . . ,mn such that m1 ∩ · · · ∩mn = aD = Da for some a ∈ D.
(b) any maximal ideal n different from mi (1 ≤ i ≤ n) is invertible.

Examples of an HNP ring D satisfying the conditions (a) and (b) are found in [6] and

[1]. The simplest example is D =

(
Z pZ
Z Z

)
, where Z is the ring of integers and p is a

prime number.
Unless otherwise stated, R = D[t], σ is an automorphism of R and δ is a left σ-derivation

as in Section 1, that is, σ(r) = ara−1, δ(r) = 0 for all r ∈ D, σ(t) = t and δ(t) = a.
Note that σ(mi) = mi+1 (1 ≤ i ≤ n − 1), σ(mn) = m1 and σ(n) = n for all maximal

ideals n with n ̸= mi (1 ≤ i ≤ n) by [5, Theorem 14] and [9, Corollary 2.3]. Furthermore,
by Lemma 2 and Proposition 4,

Vm(R) = {mi[t], n[t], b | n ̸= mi and b ∈ Spec0(R)}
and

Im(R) = {p[t], n[t], b | p = m1 ∩ · · · ∩mn, n ̸= mi and b ∈ Spec0(R)}
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is the set of all maximal invertible ideals of R.
Note that a maximal ideal of K[t] is either tK[t] or ωK[t] for some ω = klt

l+ · · ·+k0 ∈
Z(K[t]) with kl ̸= 0, k0 ̸= 0, l ≥ 1, where Z(K[t]) is the center of K[t] (see [12, Theorem
2.3.10]) and so any b ∈ Spec0(R) is either b = tR or b = ωK[t] ∩ R, where ω ∈ Z(K[t])
and ωK[t] is a maximal ideal ([12, Proposition 2.3.17]).

A fractional R-ideal a is called σ-invariant if σ(a) = a and is called δ-stable if δ(a) ⊆ a.
A σ-invariant and δ-stable fractional R-ideal is said to be (σ, δ)-stable.

The following lemma is crutial to study ideals of R and is proved by using the results
obtained in section 2.

Lemma 8. (1) Any projective ideal of R is a product of an invertible ideal and an
eventually v-idempotent ideal.

(2) Any eventually v-idempotent ideal is not σ-invariant.
(3) n[t] and p[t] are (σ, δ)-stable.
(4) Let ω = t or ω ∈ Z(K[t]) and let b = ωK[t] ∩ R, which is a maximal invertible

ideal of R. Then
(i) bn is σ-invariant for any n ≥ 1.
(ii) bn is δ-stable if and only if ωnK[t] is δ-stable if and only if δ(ωn) = 0.
(iii) (a) If char K = 0, then bn is not δ-stable for any n.

(b) If char K = p ̸= 0 and δ(ω) ̸= 0, then bp is (σ, δ)-stable and bi is not
(σ, δ)-stable (1 ≤ i < p).

(c) If char K = p ̸= 0 and δ(ω) = 0, then bn is (σ, δ)-stable for all n ≥ 1.

In the remainder of this section, let S = R[x; σ, δ], an Ore extension in an indeterminate
x and T = Q[x;σ, δ], where Q = Q(R), the quotient ring of R. We will prove that S is a
maximal order. To prove maximality of S, it is enough to show that each v-ideal of S is
v-invertible. For this purpose, we will describe all v-ideals of S.

Note that for an ideal a of R, a[x;σ, δ] is an ideal of S if and only if a is (σ, δ)-stable.
From Lemma 8, we have the following Proposition 9 and we can prove invertibility of

a v-ideal A of S such as A ∩R ̸= (0) by using Proposition 9.

Proposition 9. Under the same notations as in Lemma 8, let A be an ideal of S such
that A = Av and is maximal in {B : ideal | B = Bv}. If A ∩ R = a ̸= (0), then A is
equal to one of P = p[t][x; σ, δ], N = n[t][x;σ, δ], B = b[x;σ, δ] (in case b is (σ, δ)-stable)
or C = bp[x;σ, δ] (in case b is σ-invariant but not δ-stable) and each of these is a prime
invertible ideal of S.

Lemma 10. Let A be an ideal of S such that A = Av and a = A ∩R ̸= (0). Then a is a
(σ, δ)-stable invertible ideal and A = a[x;σ, δ].

Outline of Proof. Assume that A ⊃ a[x; σ, δ] and that it is maximal for this property.
Then, by Proposition 9, there is a P0 = p0[x; σ, δ] ⊃ A, where p0 = p[t] or n[t] or b or c
and S ⊇ AP−1

0 ⊃ A. Then AP−1
0 = a′[x;σ, δ] for some (σ, δ)-stable v-ideal a′, and

A = ((AP−1
0 )P0)v = (a′p0)v[x;σ, δ], which is a contradiction. 2

By Lemma 10, we can prove also v-invertibility of a v-ideal A such as A ∩R = (0).

Lemma 11. Let A be an ideal of S such that A = Av and A ∩ R = (0). Then A is
v-invertible.
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Outline of Proof. T = (S : A)lAT holds and so (S : A)lA ∩ R ̸= (0). Then v((S : A)lA)
is invertible by the left version of Lemma 10. Suppose v((S : A)lA) ⊂ S. Then there is a
maximal invertible ideal P0 which is prime and P0 ⊇ v((S : A)lA). Then the localizaion
SP0 is a local Dedekind prime ring and

SP0 = (SP0 : ASP0)lASP0 ⊆ SP0(S : A)lASP0 ⊆ SP0P0SP0 = J(SP0),

the Jacobson radical of SP0 , which is a contradiction. 2

Now we obtain the main theorem of this paper by Lemmas 10 and 11.

Theorem 12. S = R[x;σ, δ] is a maximal order and R is not a maximal order.

Proof. Let A be any non-zero ideal of S. Since S ⊆ Ol(A) ⊆ Ol(Av), in order to prove
Ol(A) = S, we may assume that A = Av. By Lemmas 10 and 11, A is (v)-invertible .
Hence Ol(A) = S and similarly Or(A) = S, that is, S is a maximal order. Of course R is
not a maximal order. □

As an application of Theorem 12, we give the example related to unique factorization
rings. A Noetherian prime ring R is called a unique factorization ring (a UFR for short) if
each prime ideal P with P = Pv (or P = vP ) is principal, that is, P = bR = Rb for some
b ∈ R. We note that R is a UFR if and only if R is a maximal order and each v-ideal is
principal, and if R is a maximal order, then every prime v-ideal is a maximal v-ideal.

Then we have the following.

Proposition 13. Suppose char D = 0 and any maximal ideal n different from mi (1 ≤
i ≤ n) is principal. Then S = R[x; σ, δ] is a UFR but R is not a UFR.

At the end, we state an open problem concerning Ore extensions.

Problem. Let R be a prime Goldie ring and consider the Ore extension R[x;σ, δ] of R,
where (σ, δ) is a skew derivation on R. Then what is necessary and sufficient condition
for R[x;σ, δ] to be a maximal order or unique factorization ring?
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