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Abstract. Let R be a commutative noetherian local ring with residue field k. Denote
by Db(R) the bounded derived category of finitely generated R-modules. This article
gives a classification of the thick subcategories of Db(R) containing k when R has an
isolated singularity. If R is moreover Cohen–Macaulay and has minimal multiplicity, all
the standard thick subcategories of Db(R) are classified.
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1. Introduction

A thick subcategory of a triangulated category is by definition a full triangulated sub-
category closed under direct summands. The notion of a thick subcategory has been
introduced by Verdier [17] by the name of épaisse subcategory to develop the theory of
Verdier localizations.

Classifying thick subcategories of triangulated categories is one of the most important
subjects shared by homotopy theory, ring theory, algebraic geometry and representation
theory. Classifying thick subcategories is one of the most important problems shared by
homotopy theory, ring theory, algebraic geometry and representation theory. It was first
done by Devinatz, Hopkins and Smith [4, 8] in the 1980s; they classified the thick sub-
categories of the triangulated category of compact objects in the p-local stable homotopy
category. Later on, as an analogue of the Devinatz–Hopkins–Smith theorem for commu-
tative rings, Hopkins and Neeman [7, 10] classified the thick subcategories of the derived
category of perfect complexes over a commutative noetherian ring, and it was extended
to a quasi-compact quasi-separated scheme by Thomason [16]. As an analogue of the
Hopkins–Neeman theorem for finite groups, Benson, Carlson and Rickard [1] classified
the thick subcategories of the stable category of finite dimensional representations of a
finite p-group. It was extended to a finite group scheme by Friedlander and Pevtsova [6]
and further generalized to the derived category of a finite group by Benson, Iyengar and
Krause [2].

The celebrated Hopkins–Neeman theorem classifies the thick subcategories of perfect
complexes over a commutative noetherian ring. To apply this for the whole derived cat-
egory, let R be a regular local ring with maximal ideal m and residue field k. Then the
theorem states that there is a bijection between the thick subcategories of the bounded
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derived category Db(R) of finitely generated R-modules and the specialization-closed sub-
sets of SpecR. This theorem especially says that any nonzero thick subcategory of Db(R)
contains k. Since this fact is itself clear, the essential part of the Hopkins–Neeman theo-
rem asserts that for a regular local ring R taking the supports makes a bijection from the
thick subcategories of Db(R) containing k to the specialization-closed subsets of SpecR
containing m. The first main result of this article is the following theorem, which guatan-
tees that this consequence of the Hopkins–Neeman theorem remains valid for a much
wider class of rings, that is, the class of (catenary equidimensional) isolated singularities.

Theorem 1. Let (R,m, k) be a catenary equidimensional local ring with an isolated sin-
gularity. The assignments f : X 7→ SuppRX and g : S 7→ Supp−1

Db(R)
S make mutually

inverse bijections{
Thick subcategories of Db(R)

containing k

} f

1−1
//
{
Specialization-closed subsets of SpecR

containing m

}
.

g
oo

The assumption that R is catenary and equidimensional is quite weak; local rings
that appear in algebraic geometry usually satisfy this assumption. For example, one-
dimensional local rings, Cohen–Macaulay local rings, complete local domains and their
localizations at prime ideals are all catenary and equidimensional. Also, the assumption
that R has an isolated singularity is a mild condition; it is a standard assumption in
the representation theory of Cohen–Macaulay rings. For instance, this assumption is
indispensable to get the Auslander–Reiten quiver of the maximal Cohen–Macaulay R-
modules. Reduced local rings of dimension one and normal local rings of dimension
two are Cohen–Macaulay rings with an isolated singularity. Moreover, it turns out that
without the isolated singularity assumption, Theorem 1 is no longer true; see Remark 17.

Several related results to Theorem 1 have been obtained so far. The author [14] clas-
sifies the thick subcategories of Db(R) containing R and k when R is a Gorenstein local
ring that is locally a hypersurface on the punctured spectrum. Stevenson [12] obtains
a complete classification of the thick subcategories of Db(R) in the case where R is a
complete intersection. Thus, our next goal is to classify the thick subcategories of Db(R)
for a non-complete-intersection local rings. However, this problem itself turns out to be
quite hard; indeed, there seems even to be no example of a non-complete-intersection ring
R such that all the thick subcategories of Db(R) are classified. So it would be a reason-
able approach to consider classifying the thick subcategories satisfying a certain condition
which all the thick subcategories satisfy over complete intersections. The standard con-
dition is such a one: We say that a thick subcategory of Db(R) is standard if it contains
a nonzero object of finite projective dimension. Dwyer, Greenlees and Iyengar [5] prove
that if R is a complete intersection, then every nonzero thick subcategory of Db(R) is
standard. As an application of Theorem 1, we obtain the following classification theorem
of standard thick subcategories.

Theorem 2. Let R be a nonregular local ring with an isolated singularity. Suppose that
R is either

(1) a hypersurface, or
(2) a Cohen–Macaulay ring with minimal multiplicity and infinite residue field.
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Then there is a one-to-one correspondenceStandard thick
subcategories
of Db(R)

 Λ

1−1
//

 Nonempty
specialization-closed
subsets of SpecR

 ⊔
 Nonempty
specialization-closed
subsets of SpecR

 .
Γ

oo

Here, the maps Λ and Γ are defined by:

Λ(X ) =

{
(SuppX , 1) if X ⊆ Dperf(R),

(SuppX , 2) if X ⊈ Dperf(R),

Γ((S, i)) =

{
(Supp−1 S) ∩ Dperf(R) if i = 1,

Supp−1 S if i = 2.

In the next Section 2 we make several necessary definitions and fundamental properties.
In Sections 3 and 4 we give some comments on the above two theorems.

2. Basic definitions

Let us begin with fixing our conventions.

Convention 3. Throughout (the rest of) this article, let R be a commutative noetherian
ring. We assume that all modules are finitely generated, and that all subcategories are
nonempty, full and closed under isomorphism.

We denote by modR the category of (finitely generated) R-modules, by Cb(R) the cat-
egory of bounded complexes of (finitely generated) R-modules and by Db(R) the bounded
derived category of modR. Note that modR and Cb(R) are abelian categories and Db(R)
is a triangulated category.

We make the definitions of thick subcategories of modR, Cb(R) and Db(R).

Definition 4. (1) A subcategory X of modR is called thick if it is closed under direct
summands and satisfies the 2-out-of-3 property for short exact sequences.

(2) A subcategory X of Cb(R) is called thick if it is closed under direct summands and
shifts and satisfies the 2-out-of-3 property for short exact sequences.

(3) A subcategory X of Db(R) is called thick if it is closed under direct summands and
satisfies the 2-out-of-3 property for exact triangles.

Let C be one of the categories modR, Cb(R) and Db(R). For each subcategoryM of C
we denote by thickCM the smallest thick subcategory of C containingM, and call it the
thick closure ofM in C.
Remark 5. (1) Every Serre subcategory of modR is thick.
(2) The category thickmodRR consists of the R-modules of finite projective dimension.
(3) A thick subcategory X of Db(R) is closed under shifts. In fact, each object M of

Db(R) admits exact triangles M → 0→ M [1]⇝ and M [−1]→ 0→ M ⇝ in Db(R).
Since X contains 0, this shows that if M is in X , then so is M [±1], and by induction
so is M [n] for all n ∈ Z.

(4) Let R be a local ring with residue field k. Then thickmodR k consists of the R-modules
of finite length. In particular, a thick subcategory X of modR contains k if and only
if X contains all the R-modules of finite length.
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Let us recall the relationships among the categories modR, Cb(R) and Db(R). Among
these three categories there are natural functors

modR
α−→ Cb(R)

β−→ Db(R).

Each object C in Cb(R) is sent by β to the same complex C, while each morphism

g : X → Y in Cb(R) is sent by β to the roof X
1←− X

g−→ Y in Db(R). For an object
M ∈ modR (resp. C ∈ Cb(R)) we often use the same letter M (resp. C) to denote α(M)
(resp. β(C)).

Next we recall the defintion of a specialization-closed subset.

Definition 6. A subset S of SpecR is called specialization-closed if S contains V(p) for
all p ∈ S. Here, for an ideal I of R we denote by V(I) the set of prime ideals of R
containing I.

Remark 7. (1) A specialization-closed subset of SpecR is nothing but a (possibly infinite)
union of closed subsets of SpecR in the Zariski topology.

(2) Let R be a local ring with maximal ideal m. Then a specialization-closed subset of
SpecR is nonempty if and only if it contains m.

Now we introduce the notion of supports for the module category modR.

Definition 8. (1) For each module M ∈ modR we denote by SuppRM the set of prime
ideals p of R such that Mp ̸∼= 0 in modRp, and call this the support of M in modR.

(2) For a subcategory X of modR we set SuppRX =
∪
X∈X SuppRX, and call this the

support of X .
(3) For a subset S of SpecR we denote by Supp−1

modR S the subcategory ofmodR consisting
of all modules whose supports are contained in S.

Remark 9. (1) For an exact sequence 0 → L → M → N → 0 in modR it holds that
SuppRM = SuppR L ∪ SuppRN .

(2) Let M be an R-module. Then SuppRM is a closed subset of SpecR in the Zariski
topology.

(3) Let S be a set of prime ideals of R. Then Supp−1
modR S is a Serre subcategory of modR,

and in particular, a thick subcategory of modR.

Next we introduce the notion of supports for the derived category Db(R).

Definition 10. (1) Let X be an object of Db(R). Then the following sets of prime ideals
of R are the same.
• SuppRH(X) = {p ∈ SpecR | H(X)p ̸∼= 0 in modRp}.
•
∪
i∈Z SuppRHi(X) = {p ∈ SpecR | Hi(X)p ̸∼= 0 in modRp for some i ∈ Z}.

• {p ∈ SpecR | Xp ̸∼= 0 in Db(Rp)}.
• {p ∈ SpecR | κ(p)⊗L

Rp
Xp ̸∼= 0 in D–(Rp)}.

Here D–(Rp) stands for the derived category of bounded-above Rp-complexes. We
denote these four sets by SuppRX and call it the support of X in Db(R).

(2) For a subcategory X of Db(R) we set SuppRX =
∪
X∈X SuppRX and call it the

support of X .
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(3) For a subset S of SpecR we denote by Supp−1
Db(R)

S the subcategory of Db(R) consisting

of objects whose supports are contained in S.

The supports for Db(R) have the same notation as those for modR, but there would be
no danger of confusion since the support of an object M of modR is equal to the support
of the object βα(M) of Db(R).

Remark 11. (1) (a) One has SuppR(X ⊕ Y ) = SuppRX ∪ SuppR Y for X,Y ∈ Db(R).
(b) One has SuppR(X[n]) = SuppRX for X ∈ Db(R) and n ∈ Z.
(c) Let X → Y → Z ⇝ be an exact triangle in Db(R). Then for any permutation

A,B,C of X, Y, Z one has SuppRA ⊆ SuppRB ∪ SuppR C.
(2) For X ∈ Db(R) the subset SuppRX of SpecR is closed in the Zariski topology.
(3) For a subset S of SpecR the subcategory Supp−1

Db(R)
S of Db(R) is thick.

(4) Let X be a subcategory of Db(R). Then SuppRX is a specialization-closed sub-
set of SpecR. Furthermore, it holds that SuppRX = SuppR(thickDb(R)X ), because
Supp−1(SuppX ) is a thick subcategory containing X , whence contains thickX .

Let us recall the defintion of (the derived category of) perfect complexes.

Definition 12. A perfect complex is by defintion a bounded complex of finitely generated
projective modules. We denote by Dperf(R) the subcategory of Db(R) consisting of perfect
complexes. This is a thick subcategory of Db(R), and hence a triangulated category. For
each subset S of SpecR we set Supp−1

Dperf(R) S = (Supp−1
Db(R)

S) ∩ Dperf(R).

Remark 13. (1) Every thick subcategory of Dperf(R) is a thick subcategory of Db(R).
(2) One has thickDb(R)R = Dperf(R).

(3) For a set S of prime ideals of R, the subcategory Supp−1
Dperf(R) S of Dperf(R) is thick.

Finally, we recall the definitions of a hypersurface, a Cohen–Macaulay ring with minimal
multiplicity and a disjoint union of sets.

Definition 14. (1) A local ring R is called a hypersurface if the completion of R is
isomorphic to a quotient of a regular local ring by a nonzero element.

(2) Let R be a Cohen–Macaulay local ring. Then R satisfies the inequality

(2.1) e(R) ≥ edimR− dimR + 1,

where e(R) and edimR denote the multiplicity of R and the embedding dimension
of R, respectively. We say that R has minimal multiplicity (or maximal embedding
dimension) if the equality of (2.1) holds.

(3) Let A1, A2 be sets whose intersection is possibly nonempty. The disjoint union of A1

and A2 is defined as

A1 ⊔ A2 = (A1 × {1}) ∪ (A2 × {2}) = {(x, 1), (y, 2) | x ∈ A1, y ∈ A2}.

In the case where A1∩A2 is empty, the set A1⊔A2 is identified with the union A1∪A2,
namely, it is the usual disjoint union.
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3. Comments on Theorem 1

The essentail part of the proof of Theorem 1 is played by the following result. This
is shown by using contradiction, considering complexes of objects in Cb(R) and applying
the Hopkins–Neeman theorem [10, Theorem 1.5].

Proposition 15. Let (R,m, k) be a catenary equidimensional local ring with an isolated
singularity. Let X be a non-acyclic bounded complex of R-modules. Then one has

thickDb(R){k,X} = thickDb(R){R/p | p ∈ SuppRX}.

Remark 16. The equality in Proposition 15 is no longer true if we remove k from the
left-hand side; the equality

thickDb(R)X = thickDb(R){R/p | p ∈ SuppRX}

holds for X = R if and only if Dperf(R) = Db(R), if and only if R is regular. This is one
of the reasons why we consider thick subcategories containing k.

We should remark that unless R has only an isolated singularity, Theorem 1 does not
necessarily hold. To be more precise, if R does not have an isolated singularity, then there
may exist a thick subcategory X of Db(R) containing k such that X ̸= Supp−1 S for all
nonempty specialization-closed subsets S of SpecR.

Remark 17. Let (R,m, k) be a local ring, and suppose that R does not have an isolated
singularity. Set X = thickDb(R){k,R}. Then X is a thick subcategory of Db(R) containing

k, but X ̸= Supp−1
Db(R)

S for all subsets S of SpecR.

Note that in the above remark X ̸= Supp−1
Db(R)

S for all subsets S of SpecR, not neces-

sarily nonempty specialization-closed ones.
As a consequence of Theorem 1, we obtain the following one-to-one correspondence

without prime ideals.

Corollary 18. Let R be a catenary equidimensional local ring with an isolated singularity.
Then one has a one-to-one correspondence{

Thick subcategories of Db(R)
containing k

} ϕ

1−1
//
{
Nonzero thick subcategories

of Dperf(R)

}
,

ψ
oo

where ϕ, ψ are defined by ϕ(X ) = X ∩ Dperf(R) and ψ(Y) = thickDb(R)(Y ∪ {k}) for

subcategories X of Db(R) and Y of Dperf(R).

Proof. Let S be a specialization-closed subset of SpecR containing m. Take a sequence
x of elements of R which generates m. Then Supp−1

Dperf(R) S contains the Koszul complex

K(x, R), and hence it is a nonzero thick subcategory of Db(R). Conversely, for any
nonzero thick subcategory Y of Dperf(R), the support SuppR Y contains m. Thus, the
Hopkins–Neeman theorem [10, Theorem 1.5] implies that SuppR and Supp−1

Dperf(R) make

mutually inverse bijections between the nonzero thick subcategories of Dperf(R) and the
specialization-closed subsets of SpecR containing m.
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Let X be a thick subcategory of Db(R) containing k, and let Y be a nonzero thick
subcategory of Dperf(R). Combining our Theorem 1 with the above one-to-one correspon-
dence, one has only to verify the equalities

(1) Supp−1
Dperf(R) SuppX = X ∩ Dperf(R),

(2) Supp−1
Db(R)

SuppY = thickDb(R)(Y ∪ {k}).
We have X ∩ Dperf(R) ⊆ Supp−1

Dperf(R)(SuppX ) ⊆ Supp−1
Db(R)

(SuppX ) = X , where the last

equality follows from Theorem 1. This shows the equality (1). On the other hand, it holds
that SuppY = Supp(Y ∪ {k}) = Supp(thickDb(R)(Y ∪ {k})), where the second equality

follows from the fact that Y is nonzero. Applying Supp−1
Db(R)

and using Theorem 1, we

obtain the equality (2). □

4. Comments on Theorem 2

The stable derived category Dsg(R) of R, which is also called the singularity category
of R, is defined as the Verdier quotient of Db(R) by Dperf(R). This has been introduced
by Buchweitz [3] in relation to maximal Cohen–Macaulay modules over Gorenstein rings,
and explored by Orlov [11] in relation to the Homological Mirror Symmetry Conjecture.

The essential part of the proof of Theorem 2 is played by the following result on the
stable derived category. The assertion immediately follows from [13, Main Theorem] in
the case (1). As for the case (2), it is shown by taking a minimal reduction of the maximal
ideal.

Proposition 19. Let R be a local ring with an isolated singularity. Suppose that R is
either

(1) a hypersurface, or
(2) a Cohen–Macaulay ring with minimal multiplicity and infinite residue field.

Then Dsg(R) has no nontrivial thick subcategory.

Let us give some examples of a ring satisfying Theorem 2(2).

Example 20. Let k be an infinite field, and let x, y be indeterminates over k. Then
it is easy to observe that k[[x, y]]/(x2, xy, y2), k[[x, y, z]]/(x2 − yz, y2 − zx, z2 − xy) and
k[[x3, x2y, xy2, y3]] are non-Gorenstein rings satisfying the condition (2) in Theorem 2. In
general, normal local domains of dimension two with rational singularities satisfy Theorem
2(2); see [9, Theorem 3.1].

Remark 21. (1) Theorem 2(1) can also be deduced from [12, Theorem 4.9].
(2) Theorem 2(2) especially says the following.

Let R be a Cohen–Macaulay local ring with an isolated singularity and
infinite residue field, and assume that R has minimal multiplicity. Let X
be a standard thick subcategory of Db(R) which is not contained in Dperf(R).
Then X contains the residue field of R.

This statement is no longer true without the assumption that R has minimal multiplicity.
Indeed, let R = k[x, y]/(x2, y2) with k a field, and let X be the thick closure of R and

R/(x) in Db(R). Then R is an artinian complete intersection local ring, and X is a thick
subcategory of Db(R). As X contains R, it is standard. As R/(x) has infinite projective
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dimension as an R-module, X is not contained in Dperf(R). Note that both R and R/(x)
have complexity at most one. Since the subcategory of Db(R) consisting of objects having
complexity at most one is thick, every object in X have complexity at most one. Since k
has complexity two, X does not contain k.

Consequently, the assumption in Theorem 2(2) that R has minimal multiplicity is
indispensable.
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