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Abstract. A Fano algebra introduced by Minamoto is roughly speaking a finite dimen-
sional algebra of finite global dimension which is derived equivalent to a (noncommuta-
tive) Fano variety [3]. Over such an algebra, a notion of regular module was introduced
by Herschend, Iyama and Oppermann from the view point of representation theory of
finite dimensional algebras [2]. In this article, we will recall the definitions of a Fano alge-
bra and a regular module, and then explicitly calculate algebraic spaces parameterizing
isomorphism classes of simple regular modules over typical examples of Fano algebras,
namely, 2-dimensional quantum Beilinson algebras, using techniques of noncommutative
algebraic geometry [5].

1. Motivation

Throughout, let k be an algebraically closed field of characteristic 0. All algebras
in this article are algebras over k. For a finite dimensional algebra R, we denote by
modR the category of finite dimensional right R-modules, and Db(modR) the bounded
derived category of modR. If gldimR = d < ∞, then we define an autoequivalence νd of
Db(modR) by νd(X) := X ⊗L

R DR[−d] where DR = Homk(R, k).

Definition 1. [3] A finite dimensional algebra R is called d-dimensional Fano if

(1) gldimR = d < ∞, and
(2) ν−i

d (R) ∈ modR for all i ≥ 0.

If R is d-dimensional Fano as above, then we define the preprojective algebra of R by

ΠR := TR(ν
−1
d (R)) = TR(Ext

d
R(DR,R))

as a graded algebra.

Theorem 2. [3] A finite dimensional algebra is 1-dimensional Fano if and only if it is a
hereditary algebra of infinite representation type.

Remark 3. By the above theorem, Herschend, Iyama and Oppermann [2] call a d-dimensional
Fano algebra R a d-representation infinite algebra. Moreover, they call R d-representation
tame if ΠR is noetherian as an algebra.

For a hereditary algebra R of infinite representation type (that is, a 1-dimensional Fano
algebra by the above theorem), classifying regular modules is essential in understanding
modR. The notion of regular module was extended to a d-dimensional Fano algebra.

Definition 4. [2] Let R be a d-dimensional Fano algebra. A module M ∈ modR is called
d-regular if νi

d(M) ∈ modR for all i ∈ Z.
The detailed version of this paper has been published in [5].
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The purpose of this ongoing project is to find an algebraic space Reg(R) parameterizing
isomorphism classes of simple d-regular modules over a d-dimensional Fano algebra R.

2. Quantum Beilinson Algebras

Let A = ⊕∞
i=0Ai be a right noetherian graded algebra. We denote by grmodA the

category of finitely generated graded right A-modules. For M ∈ grmodA and n ∈ Z, we
define the truncation M≥n ∈ grmodA by M≥n = ⊕∞

i=nMi, and the shift M(n) ∈ grmodA
by M(n)i = Mn+i. We say that A is connected graded if A0 = k and, in this case,
k = A/A≥1 ∈ grmodA.

For a right noetherian connected graded algebra A, we denote by torsA the full sub-
category of grmodA consisting of finite dimensional modules over k, and tailsA :=
grmodA/ torsA the quotient category. Following [1], Projnc A is an imaginary geomet-
ric object whose category of “coherent sheaves” is tailsA since if A is commutative and
generated in degree 1, then tailsA is equivalent to the category of coherent sheaves on
ProjA.

Definition 5. A right noetherian connected graded algebra A is called d-dimensional
AS-regular if

(1) gldimA = d < ∞, and

(2) there exists ℓ ∈ N+ such that ExtiA(k,A)
∼=

{
k(ℓ) if i = d,

0 if i ̸= d.

If A is d-dimensional AS-regular as above, then we define the quantum Beilinson algebra
of A by

∇A :=


A0 A1 · · · Aℓ−1

0 A0 · · · Aℓ−2
...

...
. . .

...
0 0 · · · A0

 .

Remark 6. Every AS-regular algebra as above is a skew Calabi-Yau algebra so that there
exists a graded algebra automorphism µ ∈ AutA, called the Nakayama automorphism,
such that ExtdAe(A,Ae) ∼= µA(ℓ) as graded A-A bimodules where Ae = A ⊗k Aop, and

µA = A as a graded vector space with the new bimodule structure a ∗ x ∗ b = µ(a)xb.

Theorem 7. [4] If A is a d-dimensional AS-regular algebra, then

(1) ∇A is a (d− 1)-dimensional Fano algebra,
(2) grmodA ∼= grmodΠ(∇A), and
(3) Db(tailsA) ∼= Db(mod∇A).

By the above theorem, we call R a d-dimensional quantum Beilinson algebra if there
exists a (d+ 1)-dimensional AS-regular algebra A such that R ∼= ∇A.

Remark 8. If A is a d-dimensional AS-regular algebra, then Projnc A can be viewed as a
weighted quantum Pd−1 since a commutative d-dimensional AS-regular algebra is exactly
a weighted polynomial algebra in d variables. Since a (weighted) quantum projective
space is one of the main objects of study in noncommutative algebraic geometry, the
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above theorem provides strong interactions between noncommutative algebraic geometry
and representation theory of algebras.

The main observation in [5] claims that Reg(∇A) = |Projnc A| the set of closed points
of Projnc A, which is expected to have a structure of an algebraic stack. Instead of making
this claim more precise, we will give explicit examples below.

3. Hereditary Cases

The results in this section are well-known in representation theory of algebras. We will
recover these results using noncommutative algebraic geometry.

If A = k[x, y] is a weighted polynomial algebra with deg x = a, deg y = b ∈ N+ such
that gcd(a, b) = 1, then A is a 2-dimensional AS-regular algebra with ℓ = a + b, so ∇A
is a hereditary algebra of infinite representation type (a 1-dimensional Fano algebra). In

fact, ∇A = kQ is a path algebra where Q is a quiver of type Ãℓ−1.

Theorem 9. [5] In the above setting, Reg(∇A) =
[
(A2 \ {(0, 0)})/ ∼

]
the quotient stack

where (x, y) ∼ (λax, λby) for 0 ̸= λ ∈ k.

If a = b = 1, then
[
(A2 \ {(0, 0)})/ ∼

]
= P1 by the definition of P1. In general,[

(A2 \ {(0, 0)})/ ∼
]
is almost P1 but the point (0, 1) ∈ P1 splits into a points, and the

point (1, 0) ∈ P1 splits into b points.
Recall that if R is a hereditary algebra of infinite representation type (a 1-dimensional

Fano algebra), then two simple regular modules M,N ∈ modR are in the same regular
component if and only if they are in the same ν1 orbit, so the regular components of R
are parametrized by Reg(R)/⟨ν1⟩. In the above setting, the split a points are in the same
ν1 orbit and the split b points are in the same ν1 orbit, so we have the following result.

Theorem 10. [5] In the above setting, Reg(∇A)/⟨ν1⟩ = P1.

4. 2-dimensional Beilinson Algebras

Using the techniques in noncommutative algebraic geometry, we can show that 2-
dimensional quantum Beilinson algebras can be constructed as follows. Let g ∈ k[x, y, z]3
be a cubic polynomial, E = Proj k[x, y, z]/(g) ⊂ P2 and σ ∈ AutE. Define an algebra
R(E, σ) = kQ/I where Q is the Beilinson quiver

•

x1 //
y1 //
z1 //

•

x2 //
y2 //
z2 //

•

and
I = ({f ∈ kQ2 | f(p, σ(p)) = 0 for all p ∈ E}).

It can be shown that R(E, σ) is generically a 2-dimensional quantum Beilinson algebra.
Define

||σ|| := inf{i ∈ N+ | there exists τ ∈ AutP2 such that σi = τ}.
Note that ||σ|| ≤ |σ| the order of σ, and ||σ|| = 1 if and only if E = P2.

Proposition 11. Suppose that R(E, σ), R(E ′, σ′) are 2-dimensional quantum Beilinson
algebras. If R(E, σ) ∼= R(E ′, σ′), then E ∼= E ′ and ||σ|| = ||σ′||.
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Since R(E, σ) ∼= R(E ′, σ′) does not imply |σ| = |σ′|, ||σ|| is more important than |σ| to
study R(E, σ).

Theorem 12. [5] Let R(E, σ) be a 2-dimensional quantum Beilinson algebra. If ||σ|| =
∞, then

(1) RegR(E, σ) = E, and
(2) RegR(E, σ)/⟨ν2⟩ = E/⟨µσ3⟩ where µ is the Nakayama automorphism.

In the case of ||σ|| < ∞, we only have a partial result.

Theorem 13. [5] Let R(E, σ) be a 2-dimensional quantum Beilinson algebra such that
E ⊂ P2 is a triangle. Then ||σ|| < ∞ if and only if ΠR(E, σ) is finite over its center
(that is, R(E, σ) is 2-representation tame), and, in this case,

(1) RegR(E, σ) = E ⊔ (P2 \ E), and
(2) RegR(E, σ)/⟨ν2⟩ = E/⟨µσ3⟩ ⊔ (P2 \ E) where µ is the Nakayama automorphism.

Example 14. Let R = kQ/(y1z2 − αz1y2, z1x2 − βx1z2, x1y2 − γy1x2) where Q is the
Beilinson quiver

•

x1 //
y1 //
z1 //

•

x2 //
y2 //
z2 //

• .

If αβγ ̸= 0, 1, then R = R(E, σ) is a 2-dimensional quantum Beilinson algebra where
E = Proj k[x, y, z]/(xyz) = V (x)∪ V (y)∪ V (z) ⊂ P2 is a triangle and σ ∈ AutE is given
by

σ|V (x)(0, b, c) = (0, b, αc)

σ|V (y)(a, 0, c) = (βa, 0, c)

σ|V (z)(a, b, 0) = (a, γb, 0).

It is easy to see that
||σ|| = |αβγ| ≤ lcm(|α|, |β|, |γ|) = |σ|,

so if |αβγ| = ∞, then Reg(R) = E, and if |αβγ| < ∞, then Reg(R) = E ⊔ (P2 \ E).
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