TILTING THEORY OF PREPROJECTIVE ALGEBRAS AND *c*-SORTABLE ELEMENTS

YUTA KIMURA

ABSTRACT. For a finite acyclic quiver Q and the corresponding preprojective algebra Π , the quotient algebra Π_w of Π associated with an element w in the Coxeter group of Qwas introduced by Buan-Iyama-Reiten-Scott [6]. The algebra Π_w is Iwanaga-Gorenstein and has the natural \mathbb{Z} -grading. Recently, the author showed that the stable category of the category of graded Cohen-Macaulay Π_w -modules has tilting objects when w is a c-sortable element. In this paper, we study the endomorphism algebra of a tilting object.

1. INTRODUCTION

The preprojective algebra Π of Q has been introduced by Gelfand-Ponomarev to study representation theory of the path algebra of Q. Preprojective algebras play important roles in many areas of mathematics. One of them is that preprojective algebras provide 2-Calabi-Yau triangulated categories (2-CY, for short) with cluster tilting objects which have been studied in the view point of categorification of cluster algebras.

In the case when Q is a Dynkin quiver, the preprojective algebra Π of Q is a finite dimensional selfinjective algebra. In this case, Geiss-Leclerc-Schröer showed that the stable category $\underline{\text{mod}} \Pi$ is a 2-CY category and $\underline{\text{mod}} \Pi$ has cluster tilting objects [7]. In the case when Q is non-Dynkin quiver, Π is an infinite dimensional algebra. In this case, Buan-Iyama-Reiten-Scott introduced and studied the factor algebra Π_w associated with an element w in the Coxeter group of Q [6]. They showed that Π_w is a finite dimensional Iwanaga-Gorenstein algebra of dimension at most one and the stable category of $\text{Sub} \Pi_w$ is a 2-CY category and has cluster tilting objects, where $\text{Sub} \Pi_w$ is the full subcategory of $\text{mod} \Pi_w$ of submodules of finitely generated free Π_w -modules.

There are other classes of 2-CY triangulated categories. Amiot introduced the generalized cluster category C_A for a finite dimensional algebra A of finite global dimension [1]. If C_A is Hom-finite, then C_A is a 2-CY category and has cluster tiling objects. There are close connections between 2-CY categories <u>Sub</u> Π_w and C_A . Amiot-Reiten-Todorov [3] showed that for any finite acyclic quiver Q and any element w of the Coxeter group, there is a triangle equivalence

$\underline{\mathsf{Sub}}\,\Pi_w\simeq \mathcal{C}_{A_w}$

for some finite dimensional algebra A_w of global dimension at most two.

The aim of this paper is to construct a derived category version of this equivalence. We regard Π_w as a \mathbb{Z} -graded algebra and consider the stable category $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$ of graded Π_w -submodules of graded free Π_w -modules. We construct a tilting object M in $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$ and calculate the endomorphism algebra of M.

The detailed version of this paper will be submitted for publication elsewhere.

Notation. Through out this paper, let k be an algebraically closed field and Q a finite acyclic quiver. By a module, we mean a left module. For a ring A, we denote by $\mathsf{mod}A$ the category of finitely generated A-modules and by $\mathsf{proj}A$ the category of finitely generated projective A-modules. For $X \in \mathsf{mod}A$, we denote by $\mathsf{Sub}X$ the full subcategory of $\mathsf{mod}A$ whose objects are submodules of finite direct sums of copies of X. For $X \in \mathsf{mod}A$, we denote by $\mathsf{add}X$ the full subcategory of $\mathsf{mod}A$ whose objects are direct summands of finite direct sums of copies of X. For $X \in \mathsf{mod}A$, we denote by $\mathsf{add}X$ the full subcategory of $\mathsf{mod}A$ whose objects are direct summands of finite direct sums of copies of X. For two arrows α , β of a quiver such that the target point of α is the start point of β , we denote by $\alpha\beta$ the composition of α and β .

2. Preliminaries

In this section, we give definitions used in this paper and recall some result of [6]. We first define preprojective algebras and Coxeter groups of Q.

Definition 1. Let Q be a finite acyclic quiver.

- (1) The double quiver \overline{Q} of Q is a quiver obtained from Q by adding an arrow α^* : $v \to u$ for each arrow $\alpha : u \to v$ of Q.
- (2) We define the preprojective algebra Π of Q by

$$\Pi := k\overline{Q} / \langle \sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha \rangle.$$

Let Q be a connected quiver. It is known that the preprojective algebra Π of Q is does not depend on the orientation of Q and that Π is finite dimensional and selfinjective if and only if Q is a Dynkin quiver.

Definition 2. The Coxeter group $W = W_Q$ of a quiver Q is the group generated by the set $\{s_u \mid u \in Q_0\}$ with relations

•
$$s_u^2 = 1$$

- $s_v s_u = s_u s_v$ if there exist no arrows between u and v,
- $s_u s_v s_u = s_v s_u s_v$ if there exists exactly one arrow between u and v.

An expression $w = s_{u_1}s_{u_2}\ldots s_{u_l}$ is reduced if for any other expression $w = s_{v_1}s_{v_2}\cdots s_{v_m}$, we have $l \leq m$. For a reduced expression $w = s_{u_1}s_{u_2}\ldots s_{u_l}$, let $\mathsf{Supp}(w) = \{u_1, \cdots, u_l\}$.

Note that, $\mathsf{Supp}(w)$ is independent of the choice of a reduced expression of w. Let Q be a connected quiver. It is known that W_Q is a finite group if and only if Q is a Dynkin quiver.

Next we define a two-sided ideal of Π and recall some result of [6]. For a vertex $u \in Q_0$, we define a two-sided ideal I_u of Π by

$$I_u = \Pi (1 - e_u) \Pi,$$

where e_u is the idempotent of Π for u. For a reduced expression $w = s_{u_1} s_{u_2} \dots s_{u_l}$, we define a two-sided ideal I_w of Π by

$$I_w := I_{u_1} I_{u_2} \cdots I_{u_l}.$$

Note that, an ideal I_w is independent of the choice of a reduced expression of w by [6].

A finite dimensional algebra A is said to be Iwanaga-Gorenstein of dimension at most one if $\operatorname{inj.dim}(_AA) \leq 1$. In this case, it is known that the category SubA is a Frobenius category.

-61-

Proposition 3. [6] For any element $w \in W_Q$, the algebra Π_w is finite dimensional and Iwanaga-Gorenstein of dimension at most one.

Next we introduce a grading of a preprojective algebra. The path algebra $k\overline{Q}$ is regarded as a \mathbb{Z} -graded algebra by the following grading:

$$\deg \beta = \begin{cases} 1 & \beta = \alpha^*, \alpha \in Q_1 \\ 0 & \beta = \alpha, \alpha \in Q_1. \end{cases}$$

Since the element $\sum_{\alpha \in Q_1} (\alpha \alpha^* - \alpha^* \alpha)$ in $k\overline{Q}$ is homogeneous of degree one, the grading of $k\overline{Q}$ naturally gives a grading on the preprojective algebra $\Pi = \bigoplus_{i \ge 0} \Pi_i$. Since Π_0 is spanned by all paths of degree zero, we have $\Pi_0 = kQ$. For any $w \in W$ the ideal I_w of Π is a graded ideal of Π since so is each I_w . In particular, the quotient algebra Π_w is a graded algebra.

For a graded module $X = \bigoplus_{i \in \mathbb{Z}} X_i$ and an integer j, we define a new graded module X(j)by $(X(j))_i = X_{i+j}$. For any integer j, we define a graded submodule $X_{\geq j}$ of M by

$$(X_{\geq j})_i = \begin{cases} X_i & i \geq j \\ 0 & \text{else} \end{cases}$$

and a graded quotient module of X by $X_{\leq j} = X/X_{\geq j+1}$.

Let $\mathsf{mod}^{\mathbb{Z}}\Pi_w$ be the category of finitely generated \mathbb{Z} -graded Π_w -modules with degree zero morphisms. We denote by $\mathsf{Sub}^{\mathbb{Z}}\Pi_w$ the full subcategory of $\mathsf{mod}^{\mathbb{Z}}\Pi_w$ of submodules of graded free Π_w -modules, that is,

$$\mathsf{Sub}^{\mathbb{Z}}\Pi_w = \bigg\{ X \in \mathsf{mod}^{\mathbb{Z}}\Pi_w \mid X \subset \bigoplus_{j=1}^m \Pi_w(i_j), \ i_j \in \mathbb{Z} \bigg\}.$$

Since Proposition 3, $\mathsf{Sub}^{\mathbb{Z}}\Pi_w$ is also a Frobenius category. Therefore we have a triangulated category $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$. In this paper, we get a tilting object in this category and calculate the endomorphism algebra of it.

3. *c*-sortable elements and tilting modules

In this section, we define c-sortable elements. Throughout this section, we denote by W the Coxeter group of Q.

Definition 4. Let Q be a finite acyclic quiver with $Q_0 = \{1, 2, ..., n\}$.

- (1) An element c in W is called a *Coxeter element* if c has an expression $c = s_{u_1} s_{u_2} \dots s_{u_n}$, where u_1, \dots, u_n is a permutation of $1, \dots, n$.
- (2) A Coxeter element $c = s_{u_1} s_{u_2} \dots s_{u_n}$ in W is said to be admissible with respect to the orientation of Q if c satisfies $e_{u_i}(kQ)e_{u_i} = 0$ for i < j.

Since Q is acyclic, W has a Coxeter element c admissible with respect to the orientation of Q. There are several expressions of $c = s_{u_1}s_{u_2}\ldots s_{u_n}$ satisfying $\{u_1,\ldots,u_n\} = \{1,\ldots,n\}$ and $e_{u_j}(kQ)e_{u_i} = 0$ for i < j. However, it is shown that c is uniquely determined as an element of W. From now on, we call a Coxeter element admissible with respect to the orientation of Q simply a Coxeter element. We define a c-sortable elements.

Definition 5. Let c be a Coxeter element of W. An element $w \in W$ is said to be csortable if there is a reduced expression $w = s_{u_1} \cdots s_{u_l} = c^{(0)} c^{(1)} \cdots c^{(m)}$, where each $c^{(i)}$ is subsequence of c and

$$\mathsf{Supp}(c^{(m)}) \subset \mathsf{Supp}(c^{(m-1)}) \subset \cdots \subset \mathsf{Supp}(c^{(0)}) \subset Q_0.$$

Example 6. Let Q = 1. A Coxeter element is $c = s_1 s_2 s_3$. Then an element $w = s_1 s_2 s_3 s_1 s_2 s_1$ is a *c*-sortable element. Actually, $c^{(0)} = s_1 s_2 s_3$, $c^{(1)} = s_1 s_2$, and $c^{(2)} = s_1$. The element $w' = s_1 s_2 s_3 s_1 s_3$ is also a *c*-sortable element. Actually, $c^{(0)} = s_1 s_2 s_3$, $c^{(0)} = s_1 s_2 s_3$ and $c^{(1)} = s_1 s_3$.

4. A TILTING OBJECT IN $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$

In this section, we construct a tilting object in $\underline{Sub}^{\mathbb{Z}}\Pi_w$. Let \mathcal{T} be a triangulated category. An object M in \mathcal{T} is called a *tilting object* if the following holds.

- $\operatorname{Hom}_{\mathcal{T}}(M, M[j]) = 0$ for any $j \neq 0$,
- thick $M = \mathcal{T}$, where thick M is the smallest triangulated full subcategory of \mathcal{T} containing M and closed under direct summands.

Let \mathcal{T} be the stable category of a Frobenius category, and assume that \mathcal{T} is Krull-Schmidt. If there is a tilting object M in \mathcal{T} , then it follows from [8, (4.3)] that there exists a triangle equivalence

$$\mathcal{T} \simeq \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,\underline{\mathsf{End}}_{\mathcal{T}}(M)),$$

where $\mathsf{K}^{\mathsf{b}}(\mathsf{proj} \operatorname{End}_{\mathcal{T}}(M))$ is the homotopy category of bounded complexes of projective $\operatorname{End}_{\mathcal{T}}(M)$ -modules.

For a reduced expression $w = s_{u_1} \cdots s_{u_l}$ and $1 \le i \le l$, let m_i be the number of elements in $\{1 \le j \le i-1 \mid u_j = u_i\}$, that is,

$$u_i = \sharp \{ 1 \le j \le i - 1 \mid u_j = u_i \}, \quad \text{for } 1 \le i \le l.$$

Moreover, for $1 \leq i \leq l$, put

$$M^{i} = (\Pi/I_{u_{1}...u_{i}})e_{u_{i}}(m_{i}),$$
$$M = \bigoplus_{i=1}^{l} M^{i}.$$

Then we have the following theorem.

Theorem 7. [9] Let $w = s_{u_1} \cdots s_{u_l}$ be a *c*-sortable element. Then the object *M* is a tilting object in <u>Sub^Z</u> Π_w .

5. The endomorphism algebra of a tilting object

In this section, we calculate the endomorphism algebra of a tilting object which is constructed in Section 4. Throughout this section, for simplicity, assume that a *c*-sortable element *w* satisfies $\text{Supp}(w) = Q_0$. Since $\Pi_0 = kQ$, for any graded Π_w -module *X*, X_0 is a *kQ*-module. The following theorem is one of the main theorem of [2]. **Theorem 8.** [2] Let $w = s_{u_1} \cdots s_{u_l}$ be a c-sortable element and M be a tilting object in <u>Sub</u>^Z Π_w which is constructed in Section 4. Then there exists an unique tilting kQ-module T_w which satisfies $\operatorname{add} M_0 = \operatorname{Sub} T_w$.

Using Theorem 8, we calculate the endomorphism algebra $\underline{\mathsf{End}}_{\Pi_w}^{\mathbb{Z}}(M)$. We have the following morphism of algebras:

 $F: \operatorname{End}_{\Pi_w}^{\mathbb{Z}}(M) \to \operatorname{End}_{kQ}(M_0) \quad f \mapsto f|_{M_0}.$

Theorem 9. [9] Let $w = s_{u_1} \cdots s_{u_l}$ be a *c*-sortable element. Then the morphism *F* induces an isomorphism of algebras:

$$\underline{F}: \underline{\mathsf{End}}_{\Pi_w}^{\mathbb{Z}}(M) \xrightarrow{\sim} \mathsf{End}_{kQ}(M_0)/[T_w],$$

where $[T_w]$ is an ideal consisting of morphisms which factors through $\operatorname{add} T_w$.

We can show that the global dimension of the algebra $\operatorname{End}_{kQ}(M_0)/[T_w]$ is at most two. Actually, we can show the following theorem. Let A be a finite dimensional algebra and T a cotilting A-module of finite injective dimension. We denote by $^{\perp>0}T$ the full subcategory of modA consisting of modules X satisfying $\operatorname{Ext}^i_A(X,T) = 0$ for any i > 0.

Theorem 10. [9] Assume that the global dimension of A is at most n and that $^{\perp_{>0}}T$ has an additive generator N. Then the global dimension of $\operatorname{End}_A(N)/[T]$ is at most 3n-1.

Note that $\operatorname{End}_A(M)$ and $\operatorname{End}_A(M)/[T]$ are relative version of Auslander algebras and stable Auslander algebras. It is known that Auslander algebras have global dimension at most two [5], and that stable Auslander algebras have global dimension at most 3n - 1 [4, Proposition 10.2]. We apply Theorem 10 to our endomorphism algebra.

Corollary 11. Let $w = s_{u_1} \cdots s_{u_l}$ be a c-sortable element. Then the global dimension of $\operatorname{End}_{kQ}(M_0)/[T_w]$ is at most two.

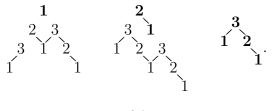
Finally, we have the following theorem.

Theorem 12. Let $w = s_{u_1} \cdots s_{u_l}$ be a *c*-sortable element. Then we have a triangle equivalence $\underline{Sub}^{\mathbb{Z}} \Pi_w \simeq D^{\mathrm{b}}(\operatorname{\mathsf{mod}} \underline{\operatorname{\mathsf{End}}}_{\Pi_w}^{\mathbb{Z}}(M)).$

6. Examples

In this section, we calculate some examples.

Example 13. Let Q be a quiver $2 \xrightarrow{1}$. Let $w = s_1 s_2 s_3 s_1 s_2 s_1$. This is a c-sortable element. Then we have a graded algebra $\Pi_w = \Pi_w e_1 \oplus \Pi_w e_2 \oplus \Pi_w e_3$,



-64-

and a tilting module

$$M = \mathbf{1} \oplus \mathbf{2} \bigoplus \begin{pmatrix} \mathbf{1} \\ 2 & 3 \\ 1 & 2 \\ 1 & 2 \\ 1 \end{pmatrix}$$

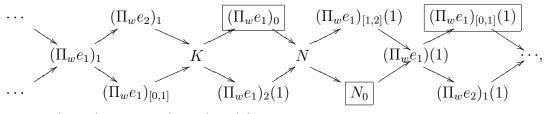
in $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$, where graded projective Π_w -modules are removed, and the degree zero parts are denoted by bold numbers. The endomorphism algebra $\underline{\mathsf{End}}_{\Pi_w}^{\mathbb{Z}}(M)$ of M is given by the following quiver with relations

$$\Delta = \bullet \xrightarrow{a} \bullet \xrightarrow{b} \bullet \qquad ab = 0.$$

We can describe the Auslander-Reiten quiver of $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$. Let K be the kernel of the canonical epimorphism $\Pi_w e_2 \to S_2$, where S_2 is a simple module associated with the vertex 2, and N be the cokernel of an inclusion $(\Pi_w e_1)_1 \to \Pi_w e_2$:

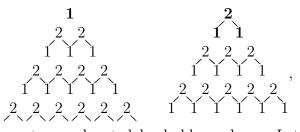
$$K = 1 2 3$$
, $N = 3 1$.

Then the Auslander-Reiten quiver of $\underline{\mathsf{Sub}}^{\mathbb{Z}}\Pi_w$ is the following one:



where $M = (\Pi_w e_1)_0 \oplus N_0 \oplus (\Pi_w e_1)_{[0,1]}(1)$.

Example 14. Let Q be a quiver $1 \implies 2$. Then we have a graded algebra $\Pi = \Pi e_1 \oplus \Pi e_2$, and these are represented by their radical filtrations as follows:



where the degree zero parts are denoted by bold numbers. Let $c = s_1 s_2$. This is a Coxeter element. Let $w = c^{n+1} = s_1 s_2 s_1 \cdots s_1 s_2$. This is a *c*-sortable element. We have $(\Pi/I_{c^i})e_1 = (\Pi/J^{2i-1})e_1$, and $(\Pi/I_{c^i})e_2 = (\Pi/J^{2i})e_2$, where *J* is the Jacobson radical of Π . The object $M = \bigoplus_{i=1}^{n} (\Pi/I_{c^i})(i-1)$ is a tilting object in $\underline{\mathsf{Sub}}^{\mathbb{Z}} \Pi_w$, where graded projective Π_w -modules are removed. The endomorphism algebra $\underline{\mathsf{End}}_{\Pi_w}^{\mathbb{Z}}(M)$ of *M* is given by the following quiver with relations

$$\Delta = 1 \xrightarrow[b]{a} 2 \xrightarrow[b]{a} 3 \xrightarrow[b]{a} \cdots \cdots \xrightarrow[b]{a} 2n - 1 \xrightarrow[b]{a} 2n, \quad aa = bb.$$

The algebra $k\Delta/\langle aa - bb \rangle$ has global dimension two.

-65-

References

- C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525-2590.
- [2] C. Amiot, O. Iyama, I. Reiten, G. Todorov, Preprojective algebras and c-sortable words, Proc. Lond. Math. Soc. (3) 104 (2012), no. 3, 513-539.
- [3] C. Amiot, I. Reiten, G. Todorov, The ubiquity of the generalized cluster categories, Adv. Math. 226 (2011), no. 4, 3813-3849.
- [4] M. Auslander, I. Reiten, Stable equivalence of dualizing R-varieties, Adv. Math. 12 (1974), 306-366.
- [5] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995.
- [6] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035-1079.
- [7] C. Geiss, B. Leclerc, J. Schröer, *Rigid modules over preprojective algebras*, Invent. Math. 165 (2006), no. 3, 589-632.
- [8] B. Keller, Deriving DG categories, Ann. Sci. Ècole Norm. Sup. (4) 27 (1994), no. 1, 63-102.
- [9] Y. Kimura, Tilting theory of preprojective algebras and c-sortable elements, arXiv: 1405.4087.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FROCHO, CHIKUSAKU, NAGOYA, 464-8602, JAPAN *E-mail address*: m13025a@math.nagoya-u.ac.jp