Almost Gorenstein Rees algebras

- K. Yoshida, 吉田健一(日本大学文理学部)
 - S. Goto, 後藤四郎 (明治大学理工学部)
- N.Taniguchi, 谷口直樹 (明治大学理工学部)
- N. Matsuoka, 松岡直之 明治大学理工学部)

第 48 回環論及び表現論シンポジウム 名古屋大学大学院多元数理科学研究科 2015 年 9 月 8 日 (火)

Notations

A: a commutative Noetherian local ring

• \mathfrak{m} : the unique maximal ideal, $k = A/\mathfrak{m}$

M: a finitely generated A-module (Note: A is an A-module)

• $\ell_A(M)$: the length of M

• $\mu_A(M)$: the minimal numbers of generators of M

• dim M: the Krull dimension of M

• $e_{I}^{0}(M)$: the multiplicity of M w.r.t. an ideal I

$$e_{l}^{0}(M) = \lim_{n \to \infty} \frac{\ell_{A}(M/l^{n+1}M)}{n^{d}} \times d!$$
, where $d = \dim M$

Basic notions

• $emb(A) := \mu_A(\mathfrak{m})$: the embedding dimension of A.

A is regular
$$\Leftrightarrow$$
 gldim $A < \infty \Leftrightarrow$ emb $(A) = \dim A$

Assume that A = S/I, where S is a regular local ring with emb(A) = dim S. Then one can choose a minimal free resolution of A over S:

$$0 \to S^{\beta_p} \to S^{\beta_{p-1}} \to \cdots \to S^{\beta_1} \to S \to A \to 0$$
 (ex)

A is Cohen-Macaulay $\Leftrightarrow p = htI$.

Let K_A denote the canonical module of A. When A is Cohen-Macaulay,

A is Gorenstein
$$\Leftrightarrow \beta_p = 1 \Leftrightarrow A \cong K_A$$

Almost Gorenstein local rings

Defn

R: an almost Gorenstein local ring

 $\stackrel{\text{def}}{\Longleftrightarrow} R$ is a Cohen-Macaulay local ring with canonical module K_R and there exists an exact sequence of R-modules:

$$0 \to R \xrightarrow{\varphi} K_R \to C \to 0$$
 s.t. $\mu_R(C) = e_m^0(C)$

- R is Gorenstein $\Leftrightarrow C = 0$
- $C \neq 0 \Rightarrow C$ is a Cohen-Macaulay R-module with $\mu_R(C) = e_m^0(C)$ (i.e. an Ulrich R-module) of dimension d-1.

Almost Gorenstein graded rings

Let $R = \bigoplus_{n \geq 0} R_n$ be a Cohen-Macaulay graded ring over a local ring $A = R_0$ with graded canonical module K_R . $a = a(R) = -\min\{n \in \mathbb{Z} \mid [K_R]_n \neq 0\}$: a-invariant of R

Defn

R: an almost Gorenstein graded ring

 $\overset{\text{def}}{\Longleftrightarrow}$ There exists an exact sequence of graded \emph{R} -modules:

$$0 \to R \xrightarrow{\varphi} K_R(-a) \to C \to 0$$
 s.t. $\mu_R(C) = e_m^0(C)$

Rmk. M(a) is a graded R-module with $[M(a)]_n = M_{n+a}$

Almost Gor. graded rings vs. almost Gor. local rings

Let $R=\oplus_{n\geq 0}R_n$ be a Cohen-Macaulay graded ring over a local ring $A=R_0$ with graded canonical module K_R . Set $\mathfrak{M}=\mathfrak{m}R+R_+$, the unique graded maximal ideal. Then

Fact

R: almost Gorenstein graded ring

⇒ R_M: almost Gorenstein local ring.

- The converse is not true in genaral.

Examples of almost Gorenstein rings (1)

- $\dim R = 0$ R: almost Gorenstein $\Leftrightarrow R$: Gorenstein.
- dim *R* = 1

K[[H]]: almost Gorenstein $\Leftrightarrow H$ is almost symmetric.

e.g. H = <3, a, b > with 3 < a < b and gcd(3, a, b) = 1.

Then $a < b \le 2a - 3$.

H is almost symmetric $\Leftrightarrow b = 2a - 3$.

R: finite Cohen-Macaulay representation type/ $\mathbf{k} = \mathbf{k}$

⇒ R: almost Gorenstein local ring

Examples of almost Gorenstein rings (2)

• dim *R* = 2

R: rational singulairty ⇒ **R**: almost Gorenstein local ring

• dim *R* ≥ 3

There are a few examples of almost Gorenstein rings (Higashitani, Murai-Matsuoka etc.)

Theorem (GTT)

R: almost Gorenstein local ring with $emb(R) = e_m^0(R) + d - 1$

 \Rightarrow **G** = $\bigoplus_{n\geq 0} \mathfrak{m}^n/\mathfrak{m}^{n+1}$ is an almost Gorenstein graded ring

Fundamental properties of AG rings

Proposition (GTT)

R/fR: almost Gorenstein local ring

 $f \in \mathfrak{m}$: nonzero divisor

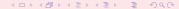
⇒ R: almost Gorenstein local ring

2 R: almost Gorenstein local ring with $d \ge 2$

f: superficial for C

⇒ R/fR: almost Gorenstein local ring

When f:NZD, R:CM (resp. Gor.) $\Leftrightarrow R/fR:CM$ (resp. Gor)



Rees algebras

 (A, \mathfrak{m}) : a Noetherian local domain

 $I(\neq 0)$ an ideal of A, t: an indeterminate over A

Defn

The graded ring

$$\mathcal{R} := \mathcal{R}(I) = \sum_{n \geq 0} \mathcal{R}_n := \sum_{n \geq 0} I^n t^n \subset A[t]$$

is called the Rees algebra of I.

- $\mathfrak{M} := \mathfrak{m} \mathcal{R} + \mathcal{R}_+$ is the unique graded maximal ideal of \mathcal{R} .
- \bullet dim $\mathcal{R} = d + 1$

Main Problem

Question

Let A be a Cohen-Macaulay local domain, and I an ideal of A. Set $\mathcal{R} = \mathcal{R}(I)$ and $\mathfrak{M} = \mathfrak{m}\mathcal{R} + \mathcal{R}_+$. Then

- 1 When is \mathcal{R} an almost Gorenstein graded ring?
- 2 When is $\mathcal{R}_{\mathfrak{M}}$ an almost Gorenstein local ring?

Answers:

parameter ideal · · · AG local but not AG graded

• p_q -ideal ··· AG graded (and thus AG local)

socle ideal · · · not AG local

Parameter ideals

Assume: (A, \mathfrak{m}) : a Cohen-Macaulay local ring of dimension d

- a₁, a₂,..., a₀: a system of parameters (s.o.p.)
 ⇔ A/(a₁,..., a₀) has finite length
- a₁, a₂, ..., ar: a subsystem of parameters (s.s.o.p.)
 ⇒ a part of a system of parameters

Fact

Put $\mathbf{Q} = (a_1, \dots, a_r)\mathbf{A}$, where a_1, a_2, \dots, a_r be a s.s.o.p. with $r \geq 2$. Then

- $oxedsymbol{1}$ $\mathcal{R}(oldsymbol{Q})$ is Cohen-Macaulay.
- **2** $\mathcal{R}(\mathbf{Q})$ is a Gorenstein $\Leftrightarrow \mathbf{A}$ is Gorenstein and $\mathbf{r} = \mathbf{2}$.

Rees algebras of an ideal generated by s.s.o.p. (AG local, r = 2)

First we consider the case r = 2.

Proposition

Let $\mathbf{Q} = (\mathbf{a_1}, \mathbf{a_2})$ be an ideal generated by s.s.o.p. Then TFAE:

- 1 A is Gorenstein.
- $\mathbf{2}$ $\mathcal{R}(\mathbf{Q})$ is Gorenstein.
- $\mathfrak{S}(Q)_{\mathfrak{M}}$ is an almost Gorenstein local ring.
- 4 R(Q) is an almost Gorenstein graded ring.

In fact, $\mathcal{R}(Q) \cong A[T_1, T_2]/(a_2T_1 - a_1T_2)$.

Rees algebras of an ideal generated by s.s.o.p. (AG local, $r \ge 3$)

The following theorem provides us many examples of higher dimensional almost Gorenstein local rings.

Theorem

Assume: A is Gorenstein.

Let $Q = (a_1, ..., a_r)$ be an ideal generated by a s.s.o.p. with

 $r \geq 3$

Then TFAE:

1 $\mathcal{R}(\mathbf{Q})_{\mathfrak{M}}$ is an almost Gorenstein local ring.

2 A is a regular local ring.

Rees alegbras of parameter ideals (graded AG)

Theorem

Assume: A is a Gorenstein local ring.

Let $\mathbf{Q} = (\mathbf{a}_1, \dots, \mathbf{a}_r)$ be an ideal generated by a s.s.o.p. with $r \geq 3$.

Then TFAE

- 1 $\mathcal{R}(\mathbf{Q})$ is an almost Gorenstein graded ring.
- 2 A is a regular local ring, and $a_1, ..., a_r$ is a part of a regular sytem of parameters.

Question

How about the case where **A** is a Cohen-Macaulay local ring?

Example: Rees algebra AG local but not AG graded

Ex.

Let A be a regular local ring with $d = \dim A \ge 3$, and

$$Q = (a_1, \dots, a_d) \neq \mathfrak{m}$$
 a parameter ideal. Then

- 1 $\mathcal{R}(Q)_{\mathfrak{M}}$ is an almost Gorenstein local ring.
- $2 \mathcal{R}(Q)$ is not an almost Gorenstein graded ring.

In particular, if $A = K[x_1, x_2, x_3]$, $Q = (x_1, x_2, x_3^k)$ $(k \ge 2)$, then

$$\mathcal{R}(Q) \cong K[x_1, x_2, x_3, y_1, y_2, y_3]/I_2\begin{pmatrix} x_1 & x_2 & x_3^k \\ y_1 & y_2 & y_3 \end{pmatrix}$$

is an almost Gorenstein normal local domain (after localization), but not an almost Gorenstein graded ring.

Idea of the proof

 $\mathbf{Q} = (\mathbf{a}_1, \dots, \mathbf{a}_r)\mathbf{A}$: generated by s.s.o.p. in a Gor. local ring \mathbf{A}

$$\Psi: S = R[X_1, \ldots, X_r] \rightarrow \mathcal{R} := \mathcal{R}(Q)$$

$$\operatorname{Ker}\Psi = I_2(\mathbb{A}), \text{ where } \mathbb{A} = \begin{pmatrix} X_1 & X_2 & \cdots & X_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix}$$

Eagon-Northcott complex associated with the matrix A

$$C_{\bullet}: 0 \rightarrow C_r \rightarrow C_{r-1} \rightarrow \cdots \rightarrow C_0 = S$$

gives a graded minimal free resolution of $\mathcal R$ over $\mathcal S$.

Taking S(-r)-Dual, we have the following presentation of K_R :

$$\bigoplus_{i=1}^{r-2} S(-(i+1))^{\oplus r} \to \bigoplus_{i=1}^{r-1} S(-i) \to K_{\mathcal{R}} \to 0(ex)$$

P_g -ideals (1)

Let **A** be a **2**-dimensional excellent normal local domain.

Assume that $\exists f : X \rightarrow \text{Spec } A$: resolution of singularities.

 $p_g(A) = \ell_A(H^1(X, O_X))$: the geometric genus of A.

Fact

Any \mathfrak{m} -primary integrally closed ideal I can be written as $I = I_Z := H^0(X, O_X(-Z))$ for some res. of sing. $X \to \operatorname{Spec} A$ and some anti-nef cycle Z on X such that $IO_X = O_X(-Z)$.

P_g -ideal (2)

Theorem (Okuma-Watanabe-Y.)

Assume that $O_X(-Z)$ has no fixed component. Then

$$\ell_A(H^1(X, \mathcal{O}_X(-Z)) \leq p_g(A).$$

If equality holds true, then $O_X(-Z)$ is generated.

Defn (OWY)

$$I = I_Z$$
 is an p_g -ideal $\Leftrightarrow \ell_A(H^1(X, \mathcal{O}_X(-Z))) = p_g(A)$.

Remark: Any excellent normal local domain of dimension **2** admits a p_q -ideal ([OWY]).

Basic results on p_g -ideals

Theorem (OWY2)

Let I be an m-primary ideal of A. Then TFAE

- 1 I is a p_q-ideal.
- **2** $I^2 = QI$ for some parameter ideal $Q \subset I$, and I^n is integrally closed for every $n \ge 1$.
- $\mathfrak{R}(I)$ is a Cohen-Macaulay normal domain.

Theorem (OWY2)

Assume that I, J are p_g -ideals.

Then there exist $\mathbf{a} \in I, \mathbf{b} \in J$ such that IJ = aJ + bI. In particular, the multi-Rees algebra R(I, J) is also a Cohen-Macaulay normal domain.

Rees algebras of p_g -ideals

Theorem

Assume that **A** is a Gorenstein excellent normal local domain of dimension **2**.

Let I be a p_q -ideal of A.

 $\Rightarrow \mathcal{R}(I)$ is an almost Gorenstein graded ring.

Question

How about non-Gorenstein case?

Rees algebra of rational singularities

A is a rational singularity $\Leftrightarrow p_g(A) = 0$.

Fact (cf. Lipman)

If **A** is a rational singularity, then any \mathfrak{m} -primary integrally closed ideal is a p_g -ideal.

Corollary

Assume that **A** is a Gorenstein rational singularity. Then $\mathcal{R}(I)$ is an almost Gorenstein normal graded ring for any \mathfrak{m} -primary integrally closed ideal $I \subset A$.

Example: Ress algebra that is AG graded

Ex.

Let A be a regular local ring with $\dim A = 2$. Then $\mathcal{R}(I)$ is an almost Gorenstein graded ring for any integrally closed ideal $I \subset A$.

Ex.

Let $p \ge 1$ be an integer.

- 1 Let $A = k[[x, y, z]]/(x^2 + y^3 + z^{6p+1})$. Then $I_k = (x, y, z^k)$ is a p_g -ideal for every k = 1, 2, ..., 3p.
- Let $A = k[[x, y, z]]/(x^2 + y^4 + z^{4p+1})$. Then $I_k = (x, y, z^k)$ is a p_g -ideal for every k = 2, ..., 2p. But $I_1 = \mathfrak{m}$ is not.

When this is the case, $p_g(A) = p$.

Sketch of the proof

Assume that I is a p_g -ideal. Then J=Q:I is also a p_g -ideal ([OWY3]). Hence we can choose $f\in\mathfrak{m}, g\in I$, and $h\in J$ such that

$$IJ = gJ + Ih$$
, $\mathfrak{m}J = fJ + \mathfrak{m}h$

since I, J are p_q -ideals and \mathfrak{m} is integrally closed.

This implies that $\mathfrak{M} \cdot J\mathcal{R} \subset (f, gt)J\mathcal{R} + \mathcal{R}h$.

On the other hand, $K_R = JR$ and a(R) = -1. Hence

$$\mathcal{R} \xrightarrow{\varphi} J\mathcal{R} \to C \to 0$$
 (ex)

As $\dim C_{\mathcal{M}} \leq 2 < \dim \mathcal{R}$, φ is injective.

Hence R is an almost Gorenstein graded ring.

Socle ideals

Let (A, \mathfrak{m}) be a regular local ring with dim $A = d \ge 2$.

Let Q be a parameter ideal of A and put I = Q: \mathfrak{m} . Such an ideal I is called a socle ideal.

Fact

Let $I = Q : \mathfrak{m} \subset A$ be a socle ideal. If $[d \geq 3]$ or [d = 2 and $Q \subset \mathfrak{m}^2]$, then $I^2 = QI$ holds true. In particular, $\mathcal{R}(I)$ is a Cohen-Macaulay domain.

• We can show that *R(I)* is not an almost Gorenstein graded ring in many cases.

Rees algebras of socle ideals, the case d = 2

Assume that A is a regular local ring of dimension 2 with $\mathfrak{m} = (x, y)$.

Let Q=(a,b) a parameter ideal, and put $I=Q:\mathfrak{m}$. Assume that $Q\subset\mathfrak{m}^2$. Then $I^2=QI$ and $\mu(I)=3$. So we can write I=(a,b,c). Since $xc,yc\in Q$, we have two equations

$$f_1a + f_2b + xc = 0$$
 and $g_1a + g_2b + yc = 0$.

Theorem

If $(f_1, f_2, g_1, g_2) \subset \mathfrak{m}^2$ (e.g. $Q \subset \mathfrak{m}^3$) then $\mathcal{R}_{\mathfrak{M}}$ is not an almost Gorenstein local ring.

Rees algebras of socle ideals, the case $d \ge 3$

Theorem

Assume **A** is a regular local ring of $d = \dim A \ge 3$. Let **Q** be a parameter ideal with $Q \ne \mathfrak{m}$, and set $I = Q : \mathfrak{m}$. Then TFAE

- 1 $\mathcal{R}(I)$ is an almost Gorenstein graded ring.
- 2 Either $I = \mathfrak{m}$, or d = 3 and $I = (x) + \mathfrak{m}^2$ for some $x \in \mathfrak{m} \setminus \mathfrak{m}^2$.

Example: Rees algebra that is not AG local

Ex.

Let A = K[[x, y]] and $Q = (x^m, y^n)$ with $2 \le m \le n$. Set I = Q: $m = (x^m, x^{m-1}y^{n-1}, y^n)$.

- $m \ge 3 \Rightarrow \mathcal{R}(I)$ is not an almost Gorenstein local ring.
- $m = 2 \Rightarrow \mathcal{R}(I)$ is an almost Gorenstein graded ring.

Rmk. If $Q = (x^2, y^4)$, then $I = Q : \mathfrak{m} = (x^2, xy^3, y^4)$ and $\overline{I} = (x^2, xy^2, y^4)$. Hence $\underline{\mathcal{R}(I)}$ is an almost Gorenstein graded ring but not normal. Indeed, $\overline{\mathcal{R}(I)} = \mathcal{R}((x^2, xy^2, y^4))$.

Problems

- 1 Examples of almost Gorenstein rings with higher dimension
 - Almost Gorenstein Rees algebras whose base ring is not Gorenstein
- 3 Almost Gorenstein property for toric algebras, invariant subrings, determinantal rings

Parameter ideals p_g -ideals Socle ideals

Thank you very much for your attention!

