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τ-RIGID-FINITE ALGEBRAS WITH RADICAL SQUARE ZERO

TAKAHIDE ADACHI

Abstract. In this note, we study τ -rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional alge-
bra over an algebraically closed field K. By a module we mean a finite dimensional right
module. Let Λ be an algebra. For a Λ-module M with a minimal projective presentation

P−1 p→ P 0 → M → 0, we define a Λ-module τM by an exact sequence

0 → τM → νP−1 νp→ νP 0,

where ν := HomK(HomΛ(−,Λ), K) is the Nakayama functor.
The following module plays an important role in this note.

Definition 1. A Λ-module M is τ -rigid if HomΛ(M, τM) = 0. We denote by τ -rigidΛ
the set of isomorphism classes of indecomposable τ -rigid Λ-modules.

In 1980’s, Auslander-Smalo [4] have already studied τ -rigid modules from the viewpoint
of torsion theory. Recently, from the perspective of tilting mutation theory, the authors
in [2] introduced the notion of (support) τ -tilting modules as a special class of τ -rigid
modules. They correspond bijectively with many important objects in representation
theory, i.e., functorially finite torsion classes, two-term silting complexes and cluster-
tilting objects in a special cases. By the following proposition, finiteness of these objects
is induced by that of τ -rigidΛ.

Proposition 2. [5] Let Λ be an algebra. The following are equivalent:

(1) The set τ -rigidΛ is finite.
(2) There are finitely many isomorphism classes of basic support τ -tilting Λ-modules.

Definition 3. An algebra Λ is called τ -rigid-finite if it satisfies the equivalent conditions
in Proposition 2.

Our aim of this note is to study τ -rigid-finite algebras with radical square zero. In the
rest of this note, let Λ be an algebra with radical square zero and Q = (Q0, Q1) the quiver
of Λ, where Q0 is the vertex set and Q1 is the arrow set. Namely, Λ = ΛQ is the path
algebra of a quiverQmodulo the ideal generated by all paths of length 2. In representation
theory of algebras with radical square zero, the notion of the separated quiver play a
central role. For a quiver Q = (Q0, Q1), we define a new quiver Qs = (Qs

0, Q
s
1), called the

The detailed version of this paper will be submitted for publication elsewhere.
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separated quiver of Q, as follows:

Qs
0 := {i+, i− | i ∈ Q0}, Qs

1 := {i+ → j− | (i → j) ∈ Q1}.
Note that the separated quiver Qs is bipartite and not connected even if Q is connected.

Q : 2

��
�����
�

1

������

����
��

3
������

�� Qs : 2− 3+
����

�
��

1+
�����

����
� 1−

3− 2+
�����

��

Q : 1

��

�� 4

��

��

2

� �

�� 3

��

��

Qs : 1+

��

�� 4−

2− 3+

��

��

1− 4+

��

��

2+

��

�� 3−

The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let Λ be an algebra with radical square zero and KQs the path
algebra of the separated quiver of the quiver of Λ. Then two algebras Λ and KQs are
stably equivalent, that is, there is an equivalent between the associated module categories
modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The
following are equivalent:

(1) Λ is representation-finite.
(2) The separated quiver Qs is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for τ -rigid-finiteness. A full subquiver
Q′ of Qs is called a single subquiver if, for any i ∈ Q0, the vertex set Q′

0 contains at most
one of i+ or i−.

Theorem 6. [1] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The
following are equivalent:

(1) Λ is τ -rigid-finite.
(2) Each single subquiver of Qs is a disjoint union of Dynkin quivers.

We give some comment for loops of a quiver.

Remark 7. Let Q = (Q0, Q1) be a quiver with a loop ℓ, and Q′ = (Q′
0, Q

′
1) the quiver

with Q′
0 = Q0 and Q′

1 = Q1 \ {ℓ}. Then there is a natural bijection between the set of
single subquiver of Qs and those of Q′s. Hence ΛQ is τ -rigid-finite if and only if ΛQ′ is
τ -rigid-finite.

Q : 1
��

Qs : 1+ �� 1−

We give a main result of this note. Let G = (V,E) be a connected graph, where V is
the vertex set and E is the edge set. We define a quiver QG = ((QG)0, (QG)1), called the
double quiver of G, as follows:

(QG)0 := V, (QG)1 := {i → j, i ← j | (i− j) ∈ E}.
For non-negative integers ℓ1, ℓ2, . . . , ℓn, we define a graph G := ⟨ℓ1, . . . , ℓn⟩ as follows. G
is an n-cycle such that each vertex vi in the n-cycle is attached to a Dynkin graph Ali

and the degree of vi is at most three.

Theorem 8. Let G be a connected graph with no loop. Then the following are equivalent:
–2–
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(1) ΛQG
is τ -rigid-finite.

(2) G is one of the following graphs:
(a) Dynkin graphs of type A, D, and E,
(b) odd-cycles,
(c) ⟨1, 0, 0, 0, 0⟩,
(d) ⟨ℓ, 0, 0⟩ (1 ≤ ℓ),
(e) ⟨ℓ, 1, 0⟩ (1 ≤ ℓ ≤ 4),
(f) ⟨2, 2, 0⟩,
(g) ⟨1, 1, 1⟩.

⟨1, 0, 0, 0, 0⟩
⟨ℓ, 0, 0⟩ ⟨ℓ, 1, 0⟩ ⟨2, 2, 0⟩ ⟨1, 1, 1⟩

11

1
���

�
���
�

2 5

3 4

1ℓ

...

11

1
���

�
���
�

2 3

1ℓ

...

11

1
���

�
��
��

2 3

21

12

11

1
���

�
��
��

2 3

21

22

11

1
��

��
��
��

2 3

21 31

We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver Q of Λ has a loop. By Remark 7, if there exists a
graph G in Theorem 8 (2) such that QG is isomorphic to Q up to all loops, then ΛQ is
also τ -rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin
graphs from connected single subquivers of the separated quiver. First we remove ex-
tended Dynkin graphs of type Ã from the separated quiver. A graph is called an n-cycle
if it is a cycle with exactly n vertices. In particular, it is called an odd-cycle if n is odd,
and an even-cycle if n even. We write by Q the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there exists a
single subquiver Q′ of Qs

G such that Q′ is an extended Dynkin graph of type Ã.

Proof. Since Qs
G is bipartite, all cycles as a subgraph in Qs

G are even-cycles. Hence G
contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle
as a subgraph. By taking a minimal even-cycle G′ in G as a subgraph, Qs

G includes G′ as
a full subgraph. Hence the assertion follows. □

6

��
��

5

��
��
��
��
�

1
��

��
4

����

2 3

����

6− 5+��

���
��

�
��

����
��
��
��
�

3− 2+��

���
��

�

����
��
��
��
�

1+

������

���
��

� 4− 4+

������

���
��

� 1−

2− 3+��

������
�� 5− 6+��

������

By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G
is also bipartite, we have the following connection between G and Qs

G. A spanning tree of
–3–
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G is a subgraph of G that includes all of the vertices of G and is a tree. A subtree of G
is a connected full subgraph of a spanning tree of G.

Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G′ be a graph.
Then G′ is a subtree of G if and only if there exists a connected single subquiver Q′ of Qs

G

such that Q′ = G′. In particular, there is a naturally one-to-two correspondence between
the set of subtrees of G and the set of connected single subquivers of Qs

G.

Proof. If G′ is a subtree of G, then there exists a connected subquiver Q′ of Qs
G with

Q′ = G′. By Lemma 10, Q′ is clearly a full subquiver, and hence it is a single subquiver.
Conversely, assume that Q′ is a single subquiver Q′ of Qs

G with Q′ = G′. By Lemma 10,
Q′ is a tree. Since Q′ is a full subquiver, Q′ is a subtree of G by the definition of separated
quivers. □

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the sepa-
rated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we
have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:

(1) ΛQG
is τ -rigid-finite.

(2) G is a Dynkin graph.

Proof. Assume that G is a tree. G is Dynkin if and only if all subtrees of G are Dynkin.
Thus the assertion follows from Theorem 6 and Proposition 11. □

By Corollary 12, we may assume that G contains exactly one odd-cycle and no even-
cycles. Namely, G is an odd-cycle such that each vertex v in the odd-cycle is attached to
a tree Tv.

• • v1
��

��
��
��

• •

v2 v3 • •

We remove extended Dynkin graphs of type D̃ from the separated quiver Qs
G.

Lemma 13. Fix a positive integer k and n := 2k+1. Let G be an n-cycle such that each
vertex v in the n-cycle is attached to a tree Tv. Then G contains an extended Dynkin
graph of type D̃ as a subgraph if and only if it satisfies one of the following conditions:

(a) There is a vertex v in the n-cycle such that the degree is at least four.
(b) There is a vertex v in the n-cycle such that the degree is exactly three and Tv is

not Dynkin graph of type A.
(c) k > 1 and there are at least two vertices in the n-cycle such that the degrees are

at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an
extended Dynkin graph of type D̃. Conversely, assume that G contains an extended
Dynkin graph of type D̃. Then D̃4 has exactly one vertex whose degree is exactly four
and D̃l has exactly two vertices whose degree is exactly three for any integer ℓ > 4. We
can check that G satisfies one of (a), (b), and (c). □
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Fix a positive integer k and n := 2k + 1. By Lemma 13, we may assume that G is one
of the following graphs:

(a) ⟨ℓ1, 0 . . . , 0⟩ if k ≥ 2.
(b) ⟨ℓ1, ℓ2, ℓ3⟩ with ℓ1 ≥ ℓ2 ≥ ℓ3 if k = 1.

Finally, we remove extended Dynkin graphs of type Ẽ from the separated quiver Qs
G.

Lemma 14. Fix a positive integer k and n := 2k + 1. Assume that G = ⟨ℓ1, ℓ2, · · · , ℓn⟩.

(1) Assume that k ≥ 2. The following graphs (a), (b) and (c) are the minimal
graphs containing extended Dynkin graphs Ẽ6, Ẽ7, and Ẽ8 respectively in the forms
⟨ℓ1, 0, . . . , 0⟩.
(a) ⟨2, 0, . . . , 0⟩ (k ≥ 2)
(b) ⟨1, 0, . . . , 0⟩ (k ≥ 3)
(c) ⟨1, 0, . . . , 0⟩ (k ≥ 4)

(a) ℓ1 = 2 (b) ℓ1 = 1 if k ≥ 3 (c) ℓ1 = 1 if k ≥ 4

12

11

1

��
��

��

��
��

2 n

3 n− 1

11

1

��
��

��

��
��

2 n

3 n− 1

4 n− 2

11

1
���

���

���
���

2 n

3 n− 1

n− 5 n− 2

n− 4 n− 3

(2) Assume that k = 1. The following graphs (d), (e) and (f) are the minimal
graphs containing extended Dynkin graphs Ẽ6, Ẽ7, and Ẽ8 respectively in the forms
⟨ℓ1, ℓ2, ℓ3⟩.
(d) ⟨2, 1, 1⟩.
(e) ⟨3, 2, 0⟩, ⟨2, 2, 1⟩.
(f) ⟨5, 1, 0⟩, ⟨4, 2, 0⟩, ⟨4, 1, 1⟩.
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12

11

1
��

��
��
��

2 3

21 31
⟨2, 1, 1⟩

13

12

11

1
���

�
��
��

2 3

21

22

⟨3, 2, 0⟩

12

11

1
��

��
��
��

2 3

21 31

22

⟨2, 2, 1⟩

15

14

13

12

11

1
���

�
��
��

2 3

21 ⟨5, 1, 0⟩

14

13

12

11

1
���

�
��
��

2 3

21

22
⟨4, 2, 0⟩

14

13

12

11

1
��

��
��
��

2 3

21 31
⟨4, 1, 1⟩

Proof. We can check from the pictures above. □
Now we are ready to prove Theorem 8.

Proof of Theorem 8. If G is a tree, then the assertion follows from Corollary 12. We
assume that G is not a tree. By the argument above, we have the minimal set of graphs
including extended Dynkin graphs of type Ã, D̃, or Ẽ. Thus ΛQG

is τ -rigid-finite if and
only if G is one of nontrivial full subgraphs with the n-cycle of graphs in Lemma 14. The
assertion follows from that G is the desired graph. □
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ON SILTING-DISCRETE TRIANGULATED CATEGORIES

TAKUMA AIHARA

Abstract. The aim of this paper is to study silting-discrete triangulated categories.
We establish a simple criterion for silting-discreteness in terms of 2-term silting objects.
This gives a powerful tool to prove silting-discreteness of finite dimensional algebras.
Moreover, we will show Bongartz-type Lemma for silting-discrete triangulated categories.

1. Introduction

In the study of triangulated categories, the class of tilting objects is one of the most
important classes of objects, and tilting mutation for tilting objects often plays a crucial
role, e.g. categorification of cluster algebras [8, 10] and Broué’s conjecture in modular
representation theory of finite groups [11]. From viewpoint of mutation, it was pointed
out in [5] that one should deal with a more general class of silting objects than tilting
objects, and silting mutation for silting objects were introduced. Moreover, the set of
silting objects naturally has the structure of a partially orderd set which is closely related
with silting mutation [5]. When a silting object is fixed, the partial order yields the notion
of lengths of objects [3].

A problem is to understand the whole context of silting objects; e.g. to give a combi-
natorial description of silting objects. A triangulated category is called silting-connected
provided all silting objects are reachable each other by iterated silting mutation. In this
case, we can describe the combinatorial structure of the triangulated category in terms of
silting objects and the relationship given by silting mutation. The silting-discrete trian-
gulated categories are in some sense the simplest kinds of silting-connected triangulated
categories [3], that is, the triangulated category admits a silting object A such that for
any positive integer � > 0, there exist only finitely many silting objects of the length �
with respect to A: a finite dimensional algebra is also said to be silting-discrete if the
perfect derived category of the algebra is silting-discrete. For example, we know that local
algebras, path algebras of Dynkin type and representation-finite symmetric algebras are
silting-discrete [5, 3].

We investigate silting-discrete triangulated categories and study the following question:

Question 1. When is a triangulated category silting-discrete?

The first aim of this pape is to give an answer to this question. A triangulated category
is said to be 2-silting-finite if for every silting object T , there exist only finitely many
silting objects of the length 2 with respect to T .

A main result of this paper is the following theorem.

This work was partly supported by IAR Research Project, Institute for Advanced Research, Nagoya
University.

The detailed version of this paper will be submitted for publication elsewhere.
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Theorem 2 (Theorem 16). A triangulated category is silting-discrete if and only if it is
2-silting-finite.

A great advantage of this theorem is that we can let Question 1 come down to the
question of the finiteness of certain modules for algebras: For a silting object A, there is
a one-to-one correspondence between silting objects of the length 2 with respect to A and
support τ -tilting modules for the endomorphism algebra of A [2, 9].

Therefore, Theorem 2 gives a powerful tool to prove that a given finite dimensional
algebra is silting-discrete. In fact, Theorem 2 will be applied in [1] and [4] to show that
the following algebras are silting-discrete:

• Brauer graph algebras of type odd;
• Preprojective algebras of Dynkin type D2n, E7, E8.

The second aim of this paper is to study a generalization of famous Bongartz’s Lemma
[6], which says that every (classical) pretilting module is partial tilting. On the other hand,
a naive generalization of Bongartz’s Lemma for tilting objects in a triangulated category
fails: an easy example [12] shows that a pretilting object in a triangulated category is not
necessarily partial tilting. In the previous paper [3], we observed that it is reasonable to
consider Bongartz-type Lemma for silting objects in a triangulated category. Thus, we
discuss the following question:

Question 3. Is any presilting object partial silting?

In this paper, we give a positive answer to Question 3 for silting-discrete triangulated
categories.

Theorem 4 (Theorem 17). Any presilting object of a silting-discrete triangulated category
is partial silting.

A point for the proofs of Theorem 2 and Theorem 17 is to use a kind of induction on
the length � of a (pre)silting object T . To do this, we introduce the notion of “minimal
silting objects” for T , which is a minimal element in a poset consisting of certain silting
objects (see Definition 10 for details). The key result for the proofs of Theorem 2 and
Theorem 17 is the following theorem.

Theorem 5 (Theorem 11). Let A be a silting object and T a presilting object of the length
� with respect to A. If there exists a minimal silting object P for T , then the length of T
with respect to P is at most � − 1.

This paper is organized as follows. In section 2, we introduce the notion of minimal
silting objects and state a main theorem of this paper (Theorem 11). In section 3, we study
silting-discrete triangulated categories and give the theorems on equivalent conditions
of and Bongartz-type Lemma for silting-discrete triangulated categories (Theorem 16
and Theorem 17). In section 4, we give several examples of silting-discrete triangulated
categories. Furthermore, we will know from the final example (Example 23) that the
finiteness of silting objects of length 2 is not derived invariant.

Notation. Throughout this paper, let T be a Krull-Schmidt triangulated category and
assume that it satisfies the following property:

(F) For any object X of T , the additive closure add X is functorially finite in T .
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For example, let R be a complete local Noetherian ring and T an R-linear idempotent-
complete triangulated category such that HomT (X, Y ) is a finitely generated R-module
for any object X and Y of T . Then T is a Krull-Schmidt triangulated category satisfying
the property (F).

2. Minimal silting objects

In this section, we study silting mutation and a main theorem of this paper is stated.
Let us start with recalling the definition of silting objects.

Definition 6. (1) We say that an object T in T is presilting (pretilting) if it satisfies
HomT (T, T [i]) = 0 for any i > 0 (i �= 0).

(2) An object T is said to be silting (tilting) if it is presilting (pretilting) and generates
T by taking direct summands, mapping cones and shifts.

(3) A presilting object T is called partial silting provided it is a direct summand of some
silting object.

We denote by silt T the set of non-isomorphic basic silting objects in T .

In the rest of this paper, we assume that T has a silting object.
It is known that the number of non-isomorphic indecomposable summands of any silting

object does not depend on the choice of silting objects.

Proposition 7. [5] Let T and U be silting objects of T . Then the number of non-
isomorphic indecomposable summands of T coincides with that of U .

For objects M and N of T , we write M ≥ N if HomT (M, N [n]) = 0 for any n > 0.
Note that ≥ is not a partial order on T . According to [5], we have that ≥ gives a partial
order on silt T .

We also recall silting mutation for silting objects.

Definition 8. Let T be a basic silting object of T . For a decomposition T := X ⊕ M ,
we take a triangle

X
f �� M ′ �� Y �� X[1]

with a minimal left add M -approximation f of X. Then µ−
X(T ) := Y ⊕M is again silting,

and we call it the left mutation of T with respect to X. Dually, define the right mutation
µ+

X(T ). (Silting) mutation will mean either left or right mutation. Mutation is said to be
irreducible if X is indecomposable.

We get basic properties of silting mutation.

Proposition 9. [5, 3] With the notations as in Definition 8, the following hold:

(1) We have the inequality T > µ−
X(T ).

(2) The right mutation µ+
Y (µ−

X(T )) of µ−
X(T ) with respect to Y is isomorphic to T .

(3) If X is indecomposable, then there is no silting object U satisfying T > U > µ−
X(T ).
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(4) Let U be a presilting object with T ≥ U which does not belong to add T . For U0 := U ,
take triangles

U1
�� T0

f0 �� U0
�� U1[1]

· · ·
U�

�� T�−1

f�−1 �� U�−1
�� U�[1]

0 �� T�

f� �� U�
�� 0

where fi is a minimal right add T -approximation of Ui for 0 ≤ i ≤ �. Let X be an
indecomposable summand of T . If X belongs to add T�, then we have µ−

X(T ) ≥ U .

We always use the following terminology.

Definition 10. We define a subset of silt T as follows:

∇(A; T ) := {U ∈ silt T | A ≥ U ≥ A[1] and U ≥ T},
where A is a silting object and T is a presilting object with A ≥ T . We can take a
non-negative interger � such that T ≥ A[�]. Thus, one visualize such a U as follows:

A[1]

��������������

A U

������

���������������� A[�]

T

������

Now we state the main theorem of this paper.

Theorem 11. If there exists a minimal element P in the poset ∇(A; T ), then we have
T ≥ P [� − 1].

We can inductively get silting objects.

Corollary 12. With the notation as in Definition 10, assume that for any silting object
B with A ≥ B ≥ T , the poset ∇(B; T ) admits a minimal element. Then there exists a
silting object P in T satisfying P ≥ T ≥ P [1].

Proof. We may assume � ≥ 2. Since we have a minimal element A1 in ∇(A; T ), by
Theorem 11 it is obtained that A1 ≥ T ≥ A1[� − 1]. As our assumption, we can repeat
this argument and have a sequence

A ≥ A1 ≥ · · · ≥ A�−1 ≥ T ≥ A�−1[1] ≥ · · · ≥ A1[� − 1] ≥ A[�]

of silting objects with Ai+1 minimal in ∇(Ai; T ) for 0 ≤ i ≤ � − 2. Thus, we get the
desired silting object P := A�−1. �

From Corollary 12 and [3, Proposition 2.16], we immediately obtain the following corol-
lary.

Corollary 13. Under the assumption as in Corollary 12, T is a partial silting object.
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3. Silting-discrete triangulated categories

In this section, we discuss silting-discrete triangulated categories.
We begin with recalling the definition of silting-discrete triangulated categories.

Definition 14. A triangulated category T is said to be silting-discrete if there exists a
silting object A such that for any � > 0, the subset {T ∈ silt T | A ≥ T ≥ A[�]} of silt T
is a finite set.

For a silting object A of T , we denote by 2siltA T the subset of silt T consisting of all
basic silting objects T with A ≥ T ≥ A[1].

We can easily check the following lemma.

Lemma 15. Let A be a silting object of T . If 2siltA T is a finite set, then for every
presilting object T of T with A ≥ T , the poset ∇(A; T ) has a minimal element.

We say that T is 2-silting-finite if 2siltT T is a finite set for any silting object T of T .
Now the first main theorem of this section is stated.

Theorem 16. The following are equivalent:

(1) T is silting-discrete.
(2) It is 2-silting-finite.
(3) It admits a silting object A such that 2siltP T is a finite set for any iterated irreducible

left mutation P of A.

Proof. It is obvious that the implications (1)⇒(2)⇒(3) hold.
We show that the implication (3)⇒(1) holds. Let T be a silting object with A ≥ T ≥

A[�] for some � > 0. Since 2siltA T is a finite set, we observe that the poset ∇(A; T ) has
a minimal element P by Lemma 15. It follows from Theorem 11 that the inequalities
P ≥ T ≥ P [� − 1] hold, whence one has

{T ∈ silt T | A ≥ T ≥ A[�]} ⊆
⋃

P∈2siltA T
{U ∈ silt T | P ≥ U ≥ P [� − 1]}.

By [3, Theorem 3.5], the finiteness of 2siltA T leads to the conclusion that P can be
obtained from A by iterated irreducible left mutation. Therefore, our assumption yields
that 2siltP T is also a finite set. Repeating this argument leads to the assertion. �

We remark that the finiteness of 2siltP T depends on the choice of silting objects P :
For a left mutation P of a silting object A, the set 2siltP T is not necessarily a finite set
even if 2siltA T is finite (see Example 23).

Finally, we have the second main theorem of this section, which is a direct consequence
of Corollary 13.

Theorem 17. If T is silting-discrete, then every presilting object is partial silting.

4. Examples

This section is devoted to giving several examples of silting-discrete triangulated cate-
gories.
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The first example is an observation from the viewpoint of triangle dimensions in the
sense of Rouquier [13]: a triangulated category T has triangle dimension 0 (dim T = 0)
if T = add{M [i] | i ∈ Z} for some object M of T .

Example 18. If dim T = 0, then T is silting-discrete.

In the rest of this paper, let Λ be a finite dimensional algebra over an algebraically
closed field k which is indecomposable and basic. We denote by Kb(proj Λ) the bounded
homotopy category of finitely generated projective Λ-modules. Then it is a Krull-Schmidt
triangulated category satisfying the property (F).

An algebra Λ is said to be silting-discrete if Kb(proj Λ) is silting-discrete.
We give several examples of silting-discrete algebras. The most easiest example of

silting-discrete algebras is the class of local algebras [5].
We characterize silting-discrete hereditary algebras.

Example 19. Assume that Λ is hereditary. Then the following are equivalent:

(1) Λ is silting-discrete;
(2) It is of Dynkin type A,D,E;
(3) 2siltΛ(Kb(proj Λ)) is a finite set.

Proof. We can easily show the implications (2)
Ex.18
=⇒(1)

Def.
=⇒(3)

Easy
=⇒(2). �

A concept of derived-discrete algebras was introduced in [14]: an algebra Λ is said to
be derived-discrete if for every positive element x of K0(A)(Z), there exist only finitely
many isomorphism classes of indecomposable objects X of the bounded derived cate-
gory Db(mod Λ) such that (dimH i(X))i∈Z = x where K0(A), dimM and H i stand for
the Grothendieck group of mod Λ, the dimension vecter of a module M and the i-th
cohomological functor.

Recently, the following result was proved by Broomhead-Pauksztello-Ploog.

Example 20. [7]Any derived-discrete algebra with finite global dimension is silting-
discrete.

We know two classes of silting-discrete symmetric algebras.

Example 21. [3, 1] An algebra Λ is silting-discrete if it is either

(1) a representation-finite symmetric algebra or
(2) a Brauer graph algebra of type odd.

The following example was shown by a joint work with Y. Mizuno.

Example 22. [4] The preprojective algebra of Dynkin type D2n(n ≥ 2), E7, E8 is silting-
discrete.

We close this paper by giving an example which says that the finiteness of 2siltP T
depends on the choice of silting objects P .
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Example 23. Let Λ be the algebra presented by the quiver

2 x2

��������

1

x1
��������

y1 �������� 4

3
y2

��������

with relations x1x2 = 0 = y1y2. Then 2siltΛ(Kb(proj Λ)) is a finite set. Now, let T :=
µ−

P2
µ−

P3
µ−

P4
(Λ), which is isomorphic to a tilting module whose endomorphism algebra Γ is

the path algebra obtained by the quiver

2

��������

1

��������

�������� 4

3

��������

.

We conclude from Example 19 that 2siltΓ(Kb(proj Γ)), hence 2siltT (Kb(proj Λ)), is not a
finite set.
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TILTING COMPLEXES OVER PREPROJECTIVE ALGEBRAS OF

DYNKIN TYPE

TAKUMA AIHARA AND YUYA MIZUNO

Abstract. In this note, we explain a connection between braid groups and tilting com-
plexes over preprojective algebras of Dynkin (A,D,E) type. More precisely, we classify
all tilting complexes by giving a bijection with elements of the braid groups.

1. Introduction

Derived categories are nowadays considered as a fundamental object in many branches
of mathematics including representation theory and algebraic geometry. One of the im-
portant problems is to study their equivalences. By Rickard’s Morita theorem for derived
categories, it is known that derived equivalences are controlled by tilting complexes [28].
Tilting theory provides several useful methods for studying tilting complexes and, in par-
ticular, mutation plays a significant role. Roughly speaking, mutation is an operation,
for a certain class of objects, to obtain a new object from a given one by replacing a
summand. In the case of tilting modules, their mutation was formulated by Riedtmann-
Schofield and Happel-Unger [30, 16, 32]. For example, APR (Auslander-Platzeck-Reiten)
tilting modules [5] and Okuyama-Rickard complexes [29, 27, 18] can be regarded as a
special case of tilting mutation. One of the negative aspects of tilting mutation is that
some summands of a tilting complex can not be replaced to get a new one and hence we
can not repeat tilting mutation. To remove this disadvantage, Aihara-Iyama studied a
wider class of mutation, called silting mutation and it is shown that silting mutation is
always possible and it admits a combinatorial description [4].

We give a further development of tilting (silting) theory and we determine all tilting
complexes over preprojective algebras of Dynkin type.

2. Main results

2.1. Preprojective algebras. Preprojective algebras was first introduced by Gelfand-
Ponomarev [15], and later formulated and developed in [14, 7]. Since then, they are one
of the fundamental objects in the representation theory (refer to a survey paper [31]).

Let K be an algebraically closed field and Q a finite connected acyclic quiver. We
denote by Q the double quiver of Q, which is obtained by adding an arrow a∗ : j → i
for each arrow a : i → j in Q1. The preprojective algebra ΛQ = Λ associated to Q is the
algebra KQ/I, where I is the ideal in the path algebra KQ generated by the relations of

The detailed version of this paper will be submitted for publication elsewhere.
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the form: �

a∈Q1

(aa∗ − a∗a).

Let Q be a Dynkin quiver and ei the primitive idempotent of Λ associated with i ∈ Q0.
Then the preprojective algebra of Q is finite dimensional and selfinjective [11, Theorem
4.8]. We denote the Nakayama permutation of Λ by σ : Q0 → Q0 (i.e. D(Λeσ(i)) ∼= eiΛ,
where D := HomK(−, K)).

Note that ΛQ does not depend on the orientation of Q.

2.2. Weyl group. We refer to [8, 19] for basic properties of the Weyl (Coxeter) group.
Let Q be a quiver of type A, B(C), D, E and F . The Weyl group WQ associated to Q is
defined by the generators si (i ∈ Q0) and relations (sisj)

m(i,j) = 1, where

m(i, j) :=





1 if i = j;
2 if no edge between i and j;
3 if there is an edge i — j,

4 if there is an edge i
4
— j.

Each element w ∈ WQ can be written in the form w = si1 · · · sik . If k is minimal among
all such expressions for w, then k is called the length of w and we denote by l(w) = k. In
this case, we call si1 · · · sik a reduced expression of w.

Let σ be the Nakayama permutation of Λ. Then σ acts on an element of the Weyl group
WQ by σ(w) := sσ(i1)sσ(i2) · · · sσ(iℓ) for w = si1si2 · · · siℓ ∈ WQ. We define the subgroup
W σ

Q of WQ by
W σ

Q := {w ∈ W | σ(w) = w}.

Then we have the following result. (See [13, Chapter 13]).

Theorem 1. Let Q be a Dynkin (A,D,E) quiver and WQ the Weyl group of Q. Let
Q′ = Q if Q is type D2n, E7 and E8. Otherwise, let Q′ be a quiver, respectively, given by
the following type.

Q A2n−1, A2n D2n+1 E6

Q′ Bn B2n F4

Then W σ
Q is isomorphic to WQ′.

We call the quiver Q′ given in Theorem 1 the folding quiver of Q.

Example 2. Let Q be a quiver of type A5. Then one can check that W σ
Q is given by

�s1, (s2s4), (s3s5)� and this group is isomorphic to WQ′ , where Q′ is a quiver of type B3.

2.3. Support τ-tilting modules. The notion of support τ -tilting modules was intro-
duced in [2], as a generalization of tilting modules. We refer to [2, 21] for several nice
properties of support τ -tilting modules.

Let Λ be a finite dimensional algebra and we denote by τ the AR translation [6].

Definition 3. We call a Λ-module X τ -tilting if X is HomΛ(X, τX) = 0 and |X| = |Λ|,
where |X| denotes the number of non-isomorphic indecomposable direct summands of X.

Moreover, we call a Λ-module X support τ -tilting if there exists an idempotent e of Λ
such that X is a τ -tilting (Λ/�e�)-module.

–2–
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We denote by sτ -tiltΛ the set of isomorphism classes of basic support τ -tilting Λ-
modules.

Remark 4. We note that support τ -tilting modules can be described as pairs. These
definition are essentially same.

Now let Q be a Dynkin quiver with Q0 = {1, . . . , n} and Λ the preprojective algebra of
Q. We denote by Ii := Λ(1 − ei)Λ for i ∈ Q0. We denote by �I1, . . . , In� the set of ideals
of Λ which can be written as

Ii1Ii2 · · · Iik

for some k ≥ 0 and i1, . . . , ik ∈ Q0.
Then following result plays an important role in this note.

Theorem 5. [9, 25] Under the above notation,

(a) There exists a bijection WQ → �I1, . . . , In�, which is given by w �→ Iw = Ii1Ii2 · · · Iik

for any reduced expression w = si1 · · · sik .
(b) It gives a bijection between the elements of the Weyl group WQ and the set sτ -tiltΛ

of isomorphism classes of basic support τ -tilting Λ-modules.

We remark that the above ideals Iw are tilting modules in the case of non-Dynkin type
in [20, 9].

2.4. Silting complexes. Silting complexes are a generalization of tilting complexes,
which were introduced by Keller-Vossieck [23]. They were originally invented as a tool for
studying tilting complexes. Nonetheless, silting complexes have turned out to have deep
connections with several important complexes such as t-structures [10, 24, 12, 22].

We recall the definition of silting complexes as follows.

Definition 6. Let Λ be a finite dimensional algebra and Kb(projΛ) the bounded homotopy
category of the finitely generated projective Λ-modules.

(a) We call a complex P in Kb(projΛ) is presilting (respectively, pretilting) if it satisfies
HomKb(projΛ)(P, P [i]) = 0 for any i > 0 (respectively, i �= 0).

(b) We call a complex P in Kb(projΛ) silting (respectively, tilting) if it is presilt-
ing (respectively, pretilting) and the smallest thick subcategory containing P is
Kb(projΛ).

We denote by silt Λ (respectively, tilt Λ) the set of non-isomorphic basic silting (respec-
tively, tilting) complexes in Kb(projΛ).

For complexes P and Q of Kb(projΛ), we write P ≥ Q if HomKb(projΛ)(P, Q[i]) = 0 for
any i > 0. Then the relation ≥ gives a partial order on silt Λ [4, Theorem 2.11] (cf. [17]).

Moreover, a complex T ∈ Kb(projΛ) is called 2-term provided it is concerned in the
degree 0 and −1. We denote by 2-silt Λ (respectively, 2-tilt Λ) the subset of silt Λ (respec-
tively, tilt Λ) consisting of 2-term complexes. Note that a complex T is 2-term if and only
if Λ ≥ T ≥ Λ[1].

Then we have the following nice correspondence.

Theorem 7. [2, Theorem 3.2] Let Λ be a finite dimensional algebra. There exists a
bijection

sτ -tiltΛ ↔ 2-silt Λ.
–3–
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By the above correspondence, we can give a description of 2-term silting complexes by
calculating support τ -tilting modules, which is much simpler than calculations of silting
complexes.

From now on, let Q be a Dynkin quiver and Λ the preprojective algebra of Q. Then,
as a corollary of Theorem 5 and 7, we have the following corollary.

Corollary 8. We have a bijection

WQ ↔ 2-silt Λ.

Thus we can parameterize 2-term silting complexes by the Weyl group. Moreover,
we can describe 2-term tilting complexes in terms of the Weyl group by the following
proposition.

Proposition 9. Let ν := D HomΛ(−, Λ) the Nakayama functor of Λ and σ : Q0 → Q0

the Nakayama permutation of Λ. Then ν(Iw) ∼= Iw if and only if σ(w) = w. In particular,
We have a bijection

W σ
Q ↔ 2-tilt Λ.

Then by Theorem 1, we can understand W σ
Q as another type of the Weyl group.

Example 10. Let Q be a quiver of type A3 and Λ the preprojective algebra of Q. Then
the support τ -tilting quiver of Λ ([2, Definition 2.29]) is given as follows.
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The framed modules indicate ν-stable modules [26] (i.e. Iw
∼= ν(Iw)), which is equivalent

to say that σ(w) = w by Proposition 9. Hence Theorem 1 implies that these modules
correspond to the subgroup W σ

Q = �(s1s3), s2� and it is isomorphic to the Weyl group of
type B2.
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Next we use (silting) mutation. Let Λ = X⊕Y . We denote by µX(Λ) the left mutation
of Λ with respect to X. It is not necessarily tilting in general (cf.[1]). However, if it is
tilting, then we have the following nice result.

Proposition 11. Assume that µX(Λ) is a tilting complex, then we have an isomorphism

EndKb(projΛ)(µX(Λ)) ∼= Λ.

Togher with this proposition, the finiteness of 2-silt Λ implies that tilting-discreteness
of Λ and we conclude that any tilting complex is obtained from Λ by iterated mutation
(see [3]). Then we extend Proposition 9 and obtain the following consequence.

Theorem 12. Let Q be a Dynkin quiver, Λ the preprojective algebra of Q and Q′ the
folding quiver of Q. We denote the braid group by BQ′. Then we have a bijection

BQ′ ↔ tilt Λ.

Thus we can parametrize any tilting complex by the braid group.
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GORENSTEINNESS ON THE PUNCTURED SPECTRUM

TOKUJI ARAYA AND KEI-ICHIRO IIMA

Abstract. In this article, we shall characterize torsionfreeness of modules with respect
to a semidualizing module in terms of the Serre’s condition (Sn). As an application we
give a characterization of Cohen-Macaulay rings R such that Rp is Gorenstein for all
prime ideals p with height less than n.

1. Introduction

Auslander and Bridger introduce a notion of n-torsionfree as generalization of reflexive
[1]. Evans and Griffith give a characterization of n-torsionfree modules [3].

The notion of n-torsionfree with respect to a semidualizing module has been intro-
duced by Takahashi [6]. In this article, we study an n-torsionfreeness of modules with
respect to a semidualizing module in terms of the Serre’s condition (Sn). Recently, Dibaei
and Sadeghi [2] give a similar property independently.

Proposition 1. Let n be a non-negative integer. Assume that R satisfies the conditions
(GC

n−1) and (Sn). Then the following statements are equivalent for an R-module M :

(1) M is n-C-torsionfree,
(2) There exists a exact sequence 0 → M → P 1

C → · · · → P n
C such that each P i

C is
a direct summand of direct sum of finite copies of C and that C-dual sequence

P n
C
† → · · · → P 1

C
† → M † → 0 is exact. Here, (−)† = Hom(−, C).

(3) M is n-C-syzygy,
(4) M satisfies the condition (Sn).

The following throrem is a main theorem of this article.

Theorem 2. Let R be a Cohen-Macaulay local ring with a dualizing module ω. For
non-negative integer n, the following conditions are equivalent:

(1) Cp is dualizing Rp-module for all prime ideal p of hight at most n,
(2) (Sn+1)(R) = Ωn+1

C (modR),
(3) ω ∈ Ωn+1

C (modR).

This theorem recovers a result of Leuschke and Wiegand [5] which gives a characteri-
zation of Cohen-Macaulay rings R such that Rp is Gorenstein for all prime ideals p with
height less than n.

The detailed version of this paper will be submitted for publication elsewhere.
The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 26400056.

–1–



― 20 ― ― 21 ―

2. Preliminaries

Throughout the rest of this article, let R be a commutative noetherian ring. All modules
are assumed to be finitely generated. In this section, we give some notions and properties.

An R-module C is called semidualizing if the homothety map R → HomR(C,C) is an
isomorphism and if ExtiR(C,C) = 0 for all i > 0. A rank 1 free module R and a dualizing
module ω over Cohen-Macaulay local rings are typical examples of semidualizing modules.
From now on, we fix a semidualizing module C and put (−)† = HomR(−, C).

Let · · · → P1
∂→ P0 → M → 0 be a projective resolution of an R-module M . We define

a C-transpose module TrCM of M the cokernel of P †
0

∂†
→ P †

1 . We remark that TrCM is
uniquely determined up to direct summands of finite direct sums of copy of C. Note that
if C is isomorphic to R then C-transpose coincides with ordinary (Auslander) transpose.
An R-module M is called n-C-torsionfree if ExtiR(TrCM,C) = 0 for all 1 ≤ i ≤ n.
We denote by λM the natural map M → M ††. n-C-torsionfreeness has following prop-

erties similar to ordinary n-torsionfreeness [1]. One can show this by diagram chasing
(c.f. [6]).

Proposition 3. Let M be an R-module.

(1) M is 1-C-torsionfree if and only if λM is a monomorphism,
(2) M is 2-C-torsionfree if and only if λM is an isomorphism,
(3) Let n ≥ 3. M is n-C-torsionfree if and only if λM is an isomorphism and if

ExtiR(M
†, C) = 0 for all 1 ≤ i ≤ n− 2.

An R-module M is called n-C-syzygy if there exists an exact sequence 0 → M → P 1
C →

P 2
C → · · · → P n

C such that each P i
C is a direct summand of finite direct sums of copy of

C. We set Ωn
C(modR) the class of n-C-syzygy modules.

We say that an R-module M satisfies the Serre’s condition (Sn) if depthRp
Mp ≥

min{n, dimRp} for each prime ideal p of R. We denote by (Sn)(R) the class of mod-
ules which satisfies (Sn)-condition.
We say that R satisfies the condition (GC

n ) if injective dimension of Cp (as an Rp-module)
is finite for all prime ideal p of height at most n. In this case, Rp is Cohen-Macaulay local
ring with canonical module Cp for all prime ideal p of height at most n. Note that R
satisfies (GR

n ) if and only if Rp is Gorenstein local ring for all prime ideal p of height at
most n.

3. Proofs

In this section, we give a proof of the Proposition 1 and the Theorem 2.

Proof of Proposition 1.
(1) ⇒ (2). We prove by induction on n. We assume n = 1. Let f : Rr → M † be a left

addR-approximation of M . Then f is epimorphism. Since M is 1-C-torsionfree, λM is
monomorphism and so is f †λM : M → M †† → (Rr)† = Cr. One can check (f †λM)† = f .

Assume n ≥ 2. Since M is 1-C-torsionfree, there exists a short exact sequence 0 →
M → P 1

C → N → 0 such that the daggar dual sequence 0 → N † → (P 1
C)

† → M † → 0 is
exact. Then we have a following commutative diagram:
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0 −−−→ M −−−→ P 1
C −−−→ N −−−→ 0

λM

� λ
P1
C

� λN

�
0 −−−→ M †† −−−→ P 1

C
†† −−−→ N †† −−−→ Ext1R(M

†, C) −−−→ 0.

Since ExtiR(N
†, C) ∼= Exti+1

R (M †, C) for each i > 0, N is (n − 1)-C-torsionfree. By
induction assumption, there exists a exact sequence 0 → N → P 2

C → · · · → P n
C such that

the daggar dual sequence (P n
C)

† → · · · → (P 2
C)

† → N † → 0 is exact. Conbining exact
sequences, we get an exact sequence 0 → M → P 1

C → P 2
C → · · · → P n

C such that the
daggar dual sequence (P n

C)
† → · · · → (P 1

C)
† → M † → 0 is exact.

The implication (2) ⇒ (3) is obvious by the definition.
Since depthRp

Cp = depthRp
Rp for all prime ideal p, C satisfies (Sn). Thus one can

check the implication (3) ⇒ (4) by using depth lemma.
We prove the implication (4) ⇒ (1) by induction n. Assume n = 1. Let p be an

associated prime ideal of M . Since M satisfies the condition (S1), we have dimRp = 0.
Furthermore, the assumption that R satisfies (GC

0 ) implies that Cp is a dualizing module
and that HomR(M,C)p ∼= HomRp(Mp, Cp) ̸= 0. In particular, HomR(M,C) ̸= 0.

Let f1, f2, . . . , fm be a generating system of Hom(M,C) and put f =t(f1, f2, . . . , fm) :
M → C⊕m. Suppose that N = ker f is not zero. Let q be an associated prime ideal of
N . Since q is also an associated prime ideal of M , we have dimRq = 0. Noting that Cq

is dualizing module over Rq, we see that fq is a monomorphism. This yields that Nq = 0.
This contradicts that q is an associated prime ideal of N . Hence f is a monomorphism.

Since f ††λM = λC⊕mf is a monomorphism, we obtain that λM is a monomorphism.
This means that M is 1-C-torsionfree by Proposition 3.

Assume n ≥ 2. SinceM satisfies the condition (S1), M is 1-C-torsionfree. In particular,
there exists a short exact sequence 0 → M → PC → N → 0 such that the daggar dual
sequence 0 → N † → (PC)

† → M † → 0 is exact. Then we get a following commutative
diagram:

0 −−−→ M −−−→ PC −−−→ N −−−→ 0

λM

� λPC

� λN

�
0 −−−→ M †† −−−→ P ††

C −−−→ N †† −−−→ Ext1R(M
†, C) −−−→ 0.

Note that ExtiR(N
†, C) ∼= Exti+1

R (M †, C) for each i > 0. It is enough to prove that N
satisfies the condition (Sn−1). Indeed, if N satisfies the condition (Sn−1), N is (n− 1)-C-
torsionfree by induction assumption. Then we can show that M is n-C-torsionfree by the
above commutative diagram.

From now on, we shall show that N satisfies the condition (Sn−1). Let p be a prime
ideal. If dimRp ≥ n, we have depthRp

Mp ≥ min{n, dimRp} = n. Therefore we obtain
depthRp

Np ≥ n− 1 by depth lemma.

Assume dimRp ≤ n− 1. Since R satisfies the condition (GC
n−1), Rp is Cohen-Macaulay

with canonical module Cp. Inequalities depthRp
Mp ≥ min{n, dimRp} = dimRp =

depthRp
Rp gives that Mp is a maximal Cohen-Macaulay Rp-module. Thus so are (Mp)

†p ,

Rp and (Np)
†p .
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It comes from a commutative diagram:

0 −−−→ Mp −−−→ (PC)p −−−→ Np −−−→ 0

λMp

�∼= λ(PC )p

�∼= λNp

�
0 −−−→ (Mp)

†p†p −−−→ (PC)
†p†p
p −−−→ (Np)

†p†p −−−→ 0,

we can see that λNp is an isomorphism and that Np
∼= (Np)

†p†p is a maximal Cohen-
Macaulay Rp-module. Therefore we have depthRp

Np = dimRp ≥ min{n − 1, dimRp}.
Thus N satisfies the condition (Sn−1). □

Now, we can prove the Main theorem.

Proof of Theorem 2.
(1) ⇒ (2) It is obvious by Proposition 1.
(2) ⇒ (3) A dualizing module ω satisfies the Serre’s condition (Sn), so we have ω ∈ Ωn

C(
mod R).

(3) ⇒ (1) There is an exact sequence

0 → ω → P 1
C → P 2

C → · · · → P n
C → M → 0

such that each P i
C is a direct summand of direct sum of finite copy of C. For any prime

ideal p of height less than n, (Ωn−1
C M)p is a maximal Cohen-Macaulay Rp-module. Then

the exact sequence 0 → ωp → (P 1
C)p → (Ωn−1

C M)p → 0 splits. This indicates ωp
∼= Cp.

Thus we have idRp Cp = idRp ωp < ∞. □

4. example

Jorgensen, Leuschke and Sather-Wagstaff [4] have been determined the structure of
rings which admits non-trivial semidualizing modules.

We give a class of Cohen-Macaulay local rings R which have a non-trivial semidualizing
module C by using their result. Moreover, Cp is a dualizing Rp-module for all non-maximal
prime ideal p of R.

Proposition 4. Let k be a field and S = k[[x1, x2, . . . , xm, y1, y2]] be a formal power series
ring. For f1, f2, . . . , fr ∈ k[[x1, x2, . . . , xm]] and ℓ ≥ 2, we set ideals I1 = (f1, f2, . . . , fr)S
and I2 = (y1, y2)

ℓS. Assume that T = S/I1 is a (d+2)-dimensional Cohen-Macaulay ring
which is not Gorenstein and that T satisfies the condition (GT

n+2). Putting R = T/I2 and
C = Ext2T (R, T ), then the followings hold:

(1) R is d-dimensional Cohen-Macaulay ring,
(2) C is neither R nor dualizing R-module,
(3) R satisfies the condition (GC

n ).

Proof. (1) is clear. (2) is comes from [4]. We show (3). Let p be a prime ideal of R with
height at most n. Since P = pS is a prime ideal of S with height at most n+ 2, we have
that Sp = SP is Gorenstein. Therefore Cp = Ext2SP

(Rp, SP ) is a canonical Rp-module. □
In the end of this article, we give examples of 1-dimensional Cohen-Macaulay rings R

and semidualizing module C such that R satisfies the condition (GC
0 ) but not the condition

(GR
n ) for all n.
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Example 5. Let k be a field and let S = k[[x1, x2, x3, y1, y2]]/(x
2
2 − x1x3, x2x3, x

2
3)

be a 3-dimensional Cohen-Macaulay local ring which is not Gorenstein. We set R =
S/(y21, y1y2, y

2
2) which is a 1-dimensional Cohen-Macaulay local ring. Note that all the

prime ideals of R are p = (x2, x3, y1, y2) and m = (x1, x2, x3, y1, y2). It is easy to see that
Sp is Gorenstein but Rp is not Gorenstein. In particular, R does not satisfy the condi-
tion (GR

0 ). Putting C = Ext2S(R, S), one can check that C is a semidualizing R-module
which is neither R nor canonical module. Since Sp is Gorenstein, we can see that Cp is a
canonical module over Rp. This yield that R satisfy the condition (GC

0 ).
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TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE

ALGEBRAS OF DYNKIN TYPE

HIDETO ASASHIBA AND KEN NAKASHIMA

Abstract. All algebras are assumed to be basic, connected finite-dimensional algebras
over an algebraically closed field. We give an easier way to calculate a bijection from the
set of isoclasses of tilted algebras of Dynkin type ∆ to the set of configurations on the
translation quiver Z∆.

Introduction

This work is a generalization of Hironobu Suzuki’s Master thesis [7] that dealt with
representation-finite self-injective algebras of type A in a combinatorial way. Throughout
this paper n is a positive integer and k is an algebraically closed field, and all algebras
considered here are assumed to be basic, connected, finite-dimensional associative k-
algebras.

Let ∆ be a Dynkin graph of type A, D, E with the set ∆0 := {1, . . . , n} of vertices. We
set Cn to be the set of configurations on the translation quiver Z∆ (see Definition 1.6),
and Tn to be the set of isoclasses of tilted algebras of type ∆. Then Bretscher, Läser and
Riedtmann have given a bijection c : Tn → Cn in [1]. But the map c is not given in a
direct way, it needs a long computation of a function on Z∆. In this paper we will give
an easier way to calculate the map c by giving a map sending each projective A-module
over a tilted algebra A in Tn to an element of the configuration c(A).

We fix an orientation of each Dynkin graph ∆ to have a quiver �∆ as in the following
table.

∆ An (n ≥ 1) Dn (n ≥ 4) En (n = 6, 7, 8)

�∆ ◦ ◦ · · · ◦�� �� ��
1 2 n

◦

◦ · · · ◦ ◦�� �� ��

��

1 n − 2 n − 1

n ◦

◦ · · · ◦ ◦ ◦�� �� �� ��

��

1 n − 3 n − 2 n − 1

n

m∆ n 2n − 3 11, 17, 29, respectively

This orientation of ∆ gives us a coordinate system on the set (Z∆)0 := Z×∆0 of vertices

of Z∆ := Z�∆ as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full

subquiver S of Z∆ consisting of {(0, i) | i ∈ ∆0} is isomorphic to �∆.
Let A be a tilted algebra of type ∆. Then by identify A with the (0, 0)-entry of the

repetitive category Â, the vertex set of AR-quiver ΓA is embedded into the vertex set
of the stable AR-quiver sΓÂ (∼= Z∆) of Â. Further the configuration C := c(A) of Z∆
computed in [1] is given by the vertices of Z∆ corresponding to radicals of projective

The detailed version of this paper will be submitted for publication elsewhere.
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indecomposable Â-modules. Note that the configuration C has a period m∆ listed in the
table, thus C = τm∆ZF for some subset F of C. By P = {(p(i), i) | i ∈ ∆0} we denote the
set of images of the projective vertices of ΓA in Z∆ and set

NP := {(m, i) ∈ (Z∆)0 | p(i) ≤ m, i ∈ ∆0}.

Since the mesh category k(Z∆) is a Frobenius category, it has the Nakayama permutation
ν̂ on (Z∆)0 that is defined by the isomorphism

k(Z∆)(x, -) ∼= Homk(k(Z∆)(-, ν̂x), k)

for all x ∈ (Z∆)0. The explicit formula of ν̂ is given in [3, pp. 48–50]. (Note that it
should be corrected as ν̂(p, q) = (p + q + 2, 6 − q) if q ≤ 5 when ∆ = E6 as pointed
out in [1, 1.1]). In this paper we will define a map ν ′ : P → NP using the supports of
starting functions dimk k(Z∆)(x, -) : NP → Z for x ∈ NP (cf. [3, Fig. 15]). Then ν ′ has
the following property.

Lemma 0.1. Let x ∈ P and P be the projective indecomposable A-module corresponding
to x. Then ν ′x corresponds to the simple module top P .

In this paper, we make use of modules over the algebra

B :=

[
A 0

DA A

]

to compute an F above (the configuration (see Definition 3.9) of B gives F .) We will
define a map ν := νB from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation ν̂ if A is hereditary.

Lemma 0.2. Assume that a vertex x ∈ Z∆ corresponds to a simple A-module S and let
Q be the injective hull of S over Â. Then ν(x) corresponds to rad Q, and hence ν(x) ∈ C.

Combining the lemmas above we obtain the following.

Proposition 0.3. If x ∈ P, then ν(ν ′x) ∈ C.

This leads us to the following definition.

Definition 0.4. We define a map cA : P → C by cA(x) := ν(ν ′x) for all x ∈ P .

The image of the map cA gives us an F above, namely we have the following.

Theorem 0.5. The map cA is an injection, and we have c(A) = τm∆Z Im cA.

Corollary 0.6. If A is hereditary, then cA = ν̂ν ′ and we have c(A) = τm∆Z Im ν̂ν ′.

Section 1 is devoted to preparations. In Section 2 we will give the complete list of inde-
composable projectives and indecomposable injectives over the triangular matrix algebra
B. In Section 3 we state our main results.
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1. Preliminaries

1.1. Algebras and categories. A category C is called a k-category if the morphism sets
C(x, y) are k-vector spaces, and the compositions C(y, z)×C(x, y) → C(x, z) are k-bilinear
for all x, y, z ∈ C0 (C0 is the class of objects of C, we sometimes write x ∈ C for x ∈ C0).
In the sequel all categories are assumed to be k-categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category cat A from an algebra A as
follows.

(1) We fix a decomposition 1 = e1 + · · · + en of the identity element 1 of A as a sum
of orthogonal primitive idempotents.

(2) We set the object class of cat A to be the set {e1, . . . , en}.
(3) For each pair (ei, ej) of objects, we set (cat A)(ei, ej) := ejAei.
(4) We define the composition of cat A by the multiplication of A.

The obtained category cat A is uniquely determined up to isomorphisms not depending on
the decomposition of 1. The category C = cat A is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C the algebra C(x, x) is local.
(3) For each pair (x, y) of objects of C the morphism space C(x, y) is finite-dimensional.

A small category with these three properties is called a spectroid1 and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category cat A is a finite spectroid. Conversely we can construct a matrix algebra
from a finite spectroid C as follows.

alg C := {(myx)x,y∈C | myx ∈ C(x, y), ∀x, y ∈ C}.

Here we have alg cat A ∼= A, cat alg C ∼= C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set {y ∈ C | C(x, y) �=
0 or C(y, x) �= 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

Remark 1.1. We can construct the “path-category” kQ from a locally finite quiver Q by
the same way as in the definition of the path-algebra. The only different part is in the
following definition of compositions: For paths µ, ν with2 s(µ) �= t(ν), it was defined as
µν = 0 in the path-algebra, but in contrast the composition µν is not defined in the
path-category.

A locally bounded spectroid C is also presented as the form kQ/I for some locally finite
quiver Q and for some ideal I of the path-category kQ such that I is included in the ideal

1a terminology used in [4]
2Here s(µ) and t(ν) stand for the source of µ and the target of ν and compositions are written from

the right to the left.

–3–



― 28 ―

of kQ generated by the set of paths of length 2. Here the quiver Q is uniquely determined
by C up to isomorphisms. This Q is called the quiver of C.

A (right) module over a spectroid C is a contravariant functor C → Mod k. From a usual
(right) module over an algebra A we can construct a contravariant functor cat A → Mod k
by the correspondence ei �→ Mei for each point ei in cat A, and f �→ (·f : Mej → Mei)
for each f ∈ ejAei = (cat A)(ei, ej). Conversely, from a contravariant functor F : cat A →
Mod k we can construct an A-module

⊕n
i=1 F (ei); and these constructions are inverse to

each other. In this way we can identify A-modules and modules over cat A.
The set of projective indecomposable modules over a spectroid C is given by {C(-, x)}x∈C

up to isomorphism, and finitely generated projective C-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C by the same way as those over algebras.

The dimension of a C-module M is defined to be the dimension of
⊕

x∈C M(x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents {e1, . . . , en}.
(1) The repetitive category Â of A is a spectroid defined as follows.

Objects: Â0 := {x[i] := (x, i) | x ∈ {e1, . . . , en}, i ∈ Z}.
Morphisms: Let x[i], y[j] ∈ Â0. Then we set

Â(x[i], y[j]) :=




{f [i] := (f, i) | f ∈ A(x, y)} (j = i)

{ϕ[i] := (ϕ, i) | ϕ ∈ DA(y, x)} (j = i + 1)

0 otherwise．

Compositions: The composition Â(y[j], z[k]) × Â(x[i], y[j]) → Â(x[i], z[k]) is de-
fined as follows.

(i) If j = i, k = j, then we use the composition of A:

A(y, z) × A(x, y) → A(x, z).

(ii) If j = i, k = j+1, then we use the right A-module structure of DA(-, ?):

DA(z, y) × A(x, y) → DA(z, x).

(iii) If j = i + 1, k = j, then we use the left A-module structure of DA(-, ?):

A(y, z) × DA(y, x) → DA(z, x).

(iv) Otherwise the composition is zero.

(2) For each i ∈ Z, we denote by A[i] the full subcategory of Â whose object class is
{x[i] | x ∈ {e1, . . . , en}}.

(3) We define the Nakayama automorphism νA of Â as follows: for each i ∈ Z, x, y ∈
A, f ∈ A(x, y) and φ ∈ DA(y, x)，

νA(x[i]) := x[i+1], νA(f [i]) := f [i+1], νA(ϕ[i]) := ϕ[i+1].
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Remark 1.3. (1) If a spectroid A is locally bounded, then so is Â.
(2) When A is an algebra, the set of all Z × Z-matrices with only a finite number of

nonzero entries whose diagonal entries belong to A, (i + 1, i) entries belong to DA for all
i ∈ Z, and other entries are zero forms an infinite-dimensional algebra without identity
element, which is called the repetitive algebra of A. The repetitive category Â is nothing
but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra
(= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free3 action of
a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C/G are the G-orbits Gx of objects x of C.
(2) For each pair Gx,Gy of objects of C/G we set

(C/G)(Gx,Gy) :=


(bfa)a,b ∈

∏
(a,b)∈Gx×Gy

C(a, b)
��� gbfga = g(bfa), for all g ∈ G


 .

(3) The composition is defined by

(dhc)c,d · (bfa)a,b :=

(∑
b∈Gy

dhb · bfa

)

a,d

.

for all (bfa)a,b ∈ (C/G)(Gx,Gy), (dhc)c,d ∈ (C/G)(Gy,Gz). Note that each entry
of the right hand side is a finite sum because C is locally bounded.

A functor F : C → C ′ is called a Galois covering with group G if it is isomorphic to
the canonical functor π : C → C/G, namely if there exists an isomorphism H : C/G → C ′

such that F = Hπ.

Remark 1.5. If A is an algebra and a group G acts freely on the category Â, then Â/G

turns out to be a self-injective spectroid. In particular, when Â/G is a finite spectroid,
it becomes a self-injective algebra. In this way we can construct a great number of self-
injective algebras.

Definition 1.6. From a quiver Q we can construct a translation quiver ZQ as follows.

• (ZQ)0 := Z × Q0,
• (ZQ)1 := Z × Q1 ∪ {(i, α′) | i ∈ Z, α ∈ Q1},
• We define the sources and the targets of arrows by

(i, α) : (i, s(α)) → (i, t(α)), (i, α′) : (i, t(α)) → (i + 1, s(α))

for all (i, α) ∈ Z × Q1.
• We take the bijection τ : (ZQ)0 → (ZQ)0, (i, x) �→ (i − 1, x) as the translation.

In addition, we can define a polarization by (i + 1, α) �→ (i, α′), (i, α′) �→ (i, α). Note
that by construction the translation quiver ZQ does not have any projective or injective
vertices.

31 �= g ∈ G, x ∈ C0 implies gx �= x
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For example,

Q =

1

2

3

α
��������

β ���
��

��
� gives ZQ =

· · · (−1, 1) (0, 1) (1, 1) · · ·

· · · (−1, 2) (0, 2) (1, 2) · · ·

· · · (−1, 3) (0, 3) (1, 3) · · ·

(−1,α)
��������

(−1,β) ��������

(0,α)
��������

(0,β) ����
��

��

(1,α)
��������

(1,β) ����
��

��

(−1,α′)
��

����

(−1,β′)��

����

(0,α′)

��

����

(0,β′)��

����

������ ����� ����� ��

�� ������ ����� �����

������ ����� ����� ��

.

Remark 1.7. When Q is a Dynkin quiver with the underlying graph ∆, the isoclass of ZQ
does not depend on orientations of ∆, therefore we set Z∆ := ZQ.

2. Triangular Matrix Algebras

Definition 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a category
C = C(R, S, M) as follows.

Objects: C0 := {(X, Y, f) | XR ∈ mod R, YS ∈ mod S, f ∈ HomA(Y ⊗S M, X)}.
Morphisms: Let (X, Y, f), (X ′, Y ′, f ′) ∈ C0. Then we set

C((X, Y, f), (X ′, Y ′, f ′)) :=




(φ0, φ1) ∈ HomR(X,X ′) × HomS(Y, Y ′)

����������

Y ⊗S M

�

X

Y ′ ⊗S M X ′

φ1⊗1M

��

f ′
��

f ��

φ0

��




.

Compositions: Let (X,Y, f), (X ′, Y ′, f ′), (X ′′, Y ′′, f ′′) ∈ C0 and let

(φ0, φ1) ∈ C((X, Y, f), (X ′, Y ′, f ′)), (φ′
0, φ

′
1) ∈ C((X ′, Y ′, f ′), (X ′′, Y ′′, f ′′)).

Then we set

(φ′
0, φ

′
1)(φ0, φ1) := (φ′

0φ0, φ
′
1φ1) ∈ C((X, Y, f), (X ′′, Y ′′, f ′′)).

Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule. Then

mod

[
R 0
M S

]
� C(R, S,M).

Recall that an equivalence F : mod

[
R 0
M S

]
→ C(R, S,M) is given as follows.

Objects: For each L ∈ (mod T )0,

F (L) := (Lε1, Lε2, fL),

where ε1 :=

[
1R 0
0 0

]
, ε2 :=

[
0 0
0 1S

]
and fL : Lε2 ⊗S M → Lε1 is defined by

fL(lε2 ⊗ m) := l

[
0 0
m 0

]
for all l ∈ L and m ∈ M .

Morphisms: For each α ∈ HomT (L,L′),

F (α) := (α |Lε1 , α |Lε2).
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Let A be a tilted algebra of type ∆, and set B :=

[
A 0

DA A

]
, C := C(A,A, DA).

Then we have mod B � C by Proposition 2.2. By this equivalence, we identify mod B
with C.

Let {e1, . . . , en} be a complete set of orthogonal local idempotents of A. Then as is
easily seen

{e[0]
1 , . . . , e

[0]
n , e

[1]
1 , . . . , e

[1]
n } is a complete set of orthogonal local idempotents of B, and

{e[0]
1 B, . . . , e

[0]
n B, e

[1]
1 B, . . . , e

[1]
n B} is a complete set of isoclasses of projective indecompos-

able B-modules. The following is immediate.

Proposition 2.3. For each i = 1, . . . , n, we have

F (e
[0]
i B) ∼= (eiA, 0, 0),

F (e
[1]
i B) ∼= (ei(DA), eiA, can).

In addition {D(Be
[0]
1 ), . . . , D(Be

[0]
n ), D(Be

[1]
1 ), . . . , D(Be

[1]
n )} is a complete set of iso-

classes of injective indecomposable B-modules. The following two statements are obvious.

Lemma 2.4. For each i = 1, . . . , n, we have

(1) D

[
Aei 0

(DA)ei 0

]
∼=

[
0 0

D(Aei) eiA

]
, and

(2) D

[
0 0
0 Aei

]
∼=

[
0 0
0 D(Aei)

]
.

Proposition 2.5. For each i = 1, . . . , n, we have

F (D(Be
[0]
i )) ∼= (ei(DA), eiA, can) ∼= e

[1]
i B,

F (D(Be
[1]
i )) ∼= (0, ei(DA), 0).

3. Configurations

Definition 3.1. Let Λ be a standard representation-finite self-injective algebra. Then we
set

CΛ := {[rad P ] ∈ ΓΛ | P : projective(-injective) Λ-module},
which is called a configuration of Λ.

Definition 3.2. Let Γ be a stable translation quiver, and C be a subset of Γ0. Then we
define a translation quiver ΓC by

(ΓC)0 := Γ0 � {px | x ∈ C},
(ΓC)1 := Γ1 � {x → px, px → τ−1x},

where the translation of ΓC is the same as that of Γ. In particular, px are projective-
injective4 vertices for all x ∈ C.

4The word “projective-injective” stands for projective and injective.
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Remark 3.3. The quiver of mod Λ is the full subquiver sΓΛ of ΓΛ with

(sΓΛ)0 := {x | x is a stable vertex of ΓΛ}
(namely sΓΛ is obtained from ΓΛ by removing all projective vertices), which is a stable
translation quiver. Then it holds that CΛ ⊆ (sΓΛ)0, and we have

(sΓΛ)CΛ
∼= ΓΛ. (3.1)

Theorem 3.4. Let Λ be a standard representation-finite self-injective algebra and ∆ the
Dynkin type of Λ. Then the following hold.

(1) (Waschbüsch [5, 8]) There exist a tilted algebra A of type ∆ and an automorphism

φ of Â without fixed vertices such that Λ ∼= Â/�φ�.
(2) (Riedtmann [6]) There is an isomorphism f : sΓÂ → Z∆. Denote also by φ the

automorphism of sΓÂ induced from φ canonically, and define an automorphism φ′

of Z∆ by the following commutative diagram:

sΓÂ

�

f ��

φ
��

Z∆

φ′

��
sΓÂ f

�� Z∆.

Then we have sΓΛ
∼= sΓÂ/�φ� ∼= Z∆/�φ′�.

By the formula (3.1) to compute ΓΛ, it is enough to solve the following problem.

Problem 1. Let Λ be a standard representation-finite self-injective algebra, which has
the form Â/�φ� for some tilted algebra A of Dynkin type and an automorphism φ of Â
by Theorem 3.4. Then compute CΛ from A.

Remark 3.5. Let f ′ : sΓΛ → Z∆/�φ′� be an isomorphism, and set C := f ′(CΛ). Then we
have

ΓΛ
∼= (sΓΛ)CΛ

∼= (Z∆/�φ′�)C.
Thus we can compute ΓΛ by Theorem 3.4(2) if we can obtain the set C.

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let R be a locally representation-finite and locally bounded k-
category, and G be a group consisting of automorphisms of R that acts freely on R. Then
the AR-quiver ΓR of R has an induced G-action, and we have ΓR/G ∼= ΓR/G.

Definition 3.7. Let A be a tilted algebra of Dynkin type. Then we set

CÂ := {[rad P ] ∈ ΓÂ | P : projective(-injective) Â-module},

which is called the configuration of Â.

Corollary 3.8. Let A be a tilted algebra of Dynkin type, and φ be an automorphism of Â
without fixed vertices. Then we have

CÂ/�φ� ∼= CΛ.

Therefore to solve Problem 1, it is enough to consider the following.
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Problem 2. In the same setting as in Problem 1, compute CÂ from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type ∆, and set

(2) B :=

[
A 0

DA A

]
.

By (1), ΓA has a section S whose underlying graph is isomorphic to ∆.

Definition 3.9. We call the following set the configuration of B:

CB := {[rad P ] ∈ ΓB | P : projective-injective B-module}.

3.1. Relationship among Â, B and A. We set as follows:

I0,1 = �e[i]
j | i ∈ Z \ {0, 1}, j ∈ {1, . . . , n}�,

I0 = �e[i]
j | i ∈ Z \ {0}, j ∈ {1, . . . , n}�,

I1 = �e[i]
j | i ∈ Z \ {1}, j ∈ {1, . . . , n}�.

Then Â/I0,1
∼= B, Â/I0

∼= A[0](∼= A) and Â/I1
∼= A[1](∼= A). We also have

B
/[

0 0
DA 0

]
∼= A[0] × A[1].

We have the following surjective algebra homomorphisms

A[0]

Â

�� ��������������������������������� �� ��

�� ��������������������������������� B �� �� A[0] × A[1]

�� ������������

�� ������������

A[1],

which induce the following embeddings of categories

mod A[0]

mod Â � σ � �mod B
�

� ������������

�

� ������������

mod A[1].
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We regard mod A ⊆ mod B by the embedding mod A = mod A[0] � � �� mod B . The em-
beddings above give us the following embeddings of vertex sets of AR-quivers:

(ΓA[0])0 = (ΓA)0

(ΓÂ)0
� σ � �(ΓB)0

�

σ0

� ������������

�

� ������������

(ΓA[1])0.

We define an ideal k(Z∆)+ of the mesh category k(Z∆) as follows:

k(Z∆)+ := �(Z∆)1 + IZ∆�.

Then the values of m∆ := min{m ∈ N | (k(Z∆)+)i = 0, ∀i ≥ m} are known as follows:

m∆ =




n (∆ = An)

2n − 3 (∆ = Dn)

11 (∆ = E6)

17 (∆ = E7)

29 (∆ = E8)

.

We see the following by [1].

Proposition 3.10. Let i = 0, 1.

(1) The full subquiver S [i]
B of ΓB with the vertex set σi(S0) forms a section of sΓB.

(2) The full subquiver S [i]

Â
of ΓÂ with the vertex set σσi(S0) forms a section of sΓÂ.

Remark 3.11. A quiver Q without oriented cycles will be regarded as a poset by the order
defined as follows:

For each x, y ∈ Q0, x � y :⇔there is a path in Q from x to y.

Definition 3.12. (1) We set HB to be the full subquiver of ΓB defined by the set

(HB)0 := {x ∈ (ΓB)0 | a � x � b for some a ∈ (S [0]
B )0, b ∈ (S [1]

B )0}

of vertices.
(2) We set H[0,1]

Â
to be the full subquiver of ΓÂ defined by the set

(H[0,1]

Â
)0 := {x ∈ (ΓÂ)0 | a � x � b for some a ∈ (S [0]

Â
)0, b ∈ (S [1]

Â
)0}

of vertices.

Proposition 3.13. (1) The map σ : (ΓB)0 → (ΓÂ)0 is uniquely extended to a quiver

isomorphism HB → H[0,1]

Â
.

(2) We have S [1]

Â
= τ−m∆S [0]

Â
. We set S [n]

Â
:= τ−nm∆S [0]

Â
for all n ∈ Z.
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(3) Set H[n,n+1]

Â
:= τ−nm∆(H[0,1]

Â
) for all n ∈ Z. Then for each i = 0, 1

(ΓÂ)i =
∪
n∈Z

(H[n,n+1]

Â
)i

(S [n+1]

Â
)i = (H[n,n+1]

Â
)i ∩ (H[n+1,n+2]

Â
)i

Roughly speaking, ΓÂ is obtained by connecting infinite copies of HB on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

1[0] �� 2[0] �� 3[0]

Then ΓA is given as follows (double arrows present a section).

[

„

2[0]

1[0]

«

]

��
��

��
��

��

[
`

1[0]
´

������
`

2[0]
´

��
��

��
��

��

`

3[0]
´

]

[

„

3[0]

2[0]

«

]

������

Therefore A is a tilted algebra of type A3. Moreover B =

[
A 0

DA A

]
=

[
A[0] 0

(DA)[0] A[1]

]
is

an algebra given by following quiver with relations.

1[0] �� 2[0]

�
����

��
��

��
�� 3[0]

����
��

��
��

1[1] �� 2[1] �� 3[1]
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Then ΓB is given as follows (elements of CB are encircled).

[

0

@

1[1]

2[0]

1[0]

1

A]

���
��

��
�

[

0

@

2[1]

1[1]3[0]

2[0]

1

A]

���
��

��
��

��
��

��
��

��

��������[

„

2[0]

1[0]

«

�������

��
��

��
��

�

��
��

��
�

„

1[1]

2[0]

«

���
��

��
��

`

3[0]
´

���
��

��
��

��

„

2[1]

1[1]

«

]

��
��

��
��

��

��
��

��
��

[
`

1[0]
´

���������
`

2[0]
´

����������

��
��

��
��

�

��
��

��
�

��������
„

1[1]3[0]

2[0]

«

������������������

�����������

���
��

��
��

��

„

2[1]

1[1]3[0]

«

���������

���
��

��
��

`

2[1]
´

��
��

��
��

�

��
��

��
�

`

3[1]
´

]

[

„

3[0]

2[0]

«

���������
`

1[1]
´

����������� ��������
„

2[1]

3[0]

«

����������

���
��

��

„

3[1]

2[1]

«

]

����������

[

0

@

3[1]

2[1]

3[0]

1

A]

��������

In the above, HB is given by the full subquiver consisting of vertices between the left
section and the right section. Â is given by the following quiver with relations.

�
�
�

�
�
�

�
�
�

1[−1] �� 2[−1]

�

���������

�� 3[−1]


���������

1[0] �� 2[0]

�

���������

�� 3[0]


���������

1[1] �� 2[1] �� 3[1]
�
�
�

�
�
�

�
�
�
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Then ΓÂ is follows（each element of CÂ is encircled by a broken or solid line, in particular
solid circles present elements of CB). In this case we have m∆ = 3.

���
��

��
��

��
��

��
��

[

0

B

B

B

@

1[1]

2[0]

1[0]

1

C

C

C

A

]

���
��

��
�

[

0

B

B

B

@

2[1]

1[1]3[0]

2[0]

1

C

C

C

A

]

���
��

��
��

��
��

��
��

[

0

B

B

B

@

1[2]

2[1]

1[1]

1

C

C

C

A

]

���
��

��
�

“

3[−1]
”

���
��

��
��

�
��������0

@

2[0]

1[0]

1

A

�������

��
��

��
��

��
��

��

0

@

1[1]

2[0]

1

A

���
��

��
�

“

3[0]
”

���
��

��
��

�

��
� �

��
�
�

�� �
�

0

@

2[1]

1[1]

1

A

��������

��
��

��
��

�

��
��

��
�

0

@

1[2]

2[1]

1

A

���
��

��
�

“

3[1]
”

0

@

2[0]

1[0]3[−1]

1

A

��������

���
��

��
��

“

2[0]
”

��








��
��

��
��

�

��
��

��
�

��������0

@

1[1]3[0]

2[0]

1

A

�����������������

��









��	
		

		
		

	

0

@

2[1]

1[1]3[0]

1

A

���������

���
��

��
�

“

2[1]
”

���������

��
��

��
��

�

��
��

��
�

��
� �

��

�
�

�� �
�

0

@

1[2]3[1]

2[1]

1

A

�����������������

����������

���
��

��
��

�

“

1[0]
”

����������
��

� �
��

�
�

� � �
�

0

@

2[0]

3[−1]

1

A

���������

���
��

��
�

0

@

3[0]

2[0]

1

A

��������
“

1[1]
”

���������� ��������0

@

2[1]

3[0]

1

A

���������

���
��

��

0

@

3[1]

2[1]

1

A

��������
“

1[2]
”

[

0

B

B

B

@

3[0]

2[0]

3[−1]

1

C

C

C

A

]

��







[

0

B

B

B

@

3[1]

2[1]

3[0]

1

C

C

C

A

]

��������

The following is immediate from Proposition 3.13.

Corollary 3.15. We have CÂ = τZm∆σ(CB).

By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type ∆, and B as above. Then give the
configuration CB from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal PI of mod B as follows and set m̃od B :=
(mod B)/PI. For each X,Y ∈ (mod B)0

PI(X, Y ) := {f ∈ HomB(X,Y ) |f factors through a projective-injective B-module}

Let ˜(?) : mod B → m̃od B be the canonical functor and set

H̃omB(X̃, Ỹ ) := (m̃od B)(X̃, Ỹ )

for all X, Y ∈ mod B. Thus X̃ = X for all X ∈ (mod B)0 and f̃ = f + PI(X, Y ) for all
f ∈ HomB(X, Y ).

(2) We denote by modPI B the full subcategory of mod B consisting of B-modules
without projective-injective direct summands.

(3) Let X and Y ∈ modPI B. Then it is well known that PI(X, Y ) ⊆ radB(X,Y ). We

set r̃adB(X, Y ) := radB(X, Y )/PI(X, Y ).

Definition 3.17. For AR-quiver ΓB of B, we define the full translation subquiver Γ̃B as
follows.

(Γ̃B)0 := {X ∈ (ΓB)0 | X is not projective-injective. }
Moreover we set

supp(sX) := {Y ∈ (Γ̃B)0 | sX(Y ) �= 0},
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where the map sX : (Γ̃B)0 → Z≥0 is defined by sX(Y ) := dim H̃omB(X̃, Ỹ ) (Y ∈ (Γ̃B)0)

for all X ∈ (Γ̃B)0.

Definition 3.18. Let P be a projective indecomposable A-module, and rad P =
⊕r

i=1 Ri

with Ri indecomposable for all i. Then we define a full subquiver RP of Γ̃B by

(RP )0 := supp(sP ) \

(
r∪

i=1

supp(sRi
)

)
.

Definition 3.19. We regard the subquiver RP as a poset by Remark 3.11. For a projec-
tive indecomposable A-module P , we set

ν ′(P ) := minRP .

Example 3.20. In the following figure, the vertices inside broken lines form supp(sP )
and those inside doted lines form (

∪r
i=1 supp(sRi

)). Therefore the subquiver RP consists
of the vertices inside solid lines, and ν ′(P ) is the minimum element of RP . Projective
vertices are presented by white circles ◦.

◦
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��
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We have the following the proof of which is omitted.

Proposition 3.21. Let P be a projective indecomposable A-module. then ν ′(P ) ∼= top P .

We will give an alternative definition of the map ν ′ below, which is easier to compute
than the first one.

Definition 3.22. Let P ∈ mod B be projective.
(1) Let PP be the full subcategory of mod B consisting of projective modules Q such

that P is not a direct summand of Q.
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(2) We define an ideal IP of mod B and the factor category modP B := mod B/IP of
mod B by setting

IP (X, Y ) := {f ∈ HomB(X, Y ) |f factors through an object in PP } ,

and set
HomP

B(X, Y ) := HomB(X,Y )/IP (X,Y )

for all X,Y ∈ mod B. Let (?) : mod B → modP B be the canonical functor. Thus X = X

for all X ∈ (mod B)0 and f = f + IP (X,Y ) for all f ∈ HomB(X,Y ).

supp(s′P ) := {X ∈ (Γ̃B)0 | s′P (X) �= 0} ⊆ (Γ̃B)0

where the map s′P : (Γ̃B)0 → Z≥0 is defined by sP (X) := dim HomP
B(P,X) (X ∈ (Γ̃B)0)

for all P ∈ (Γ̃B)0.
The easier way to compute ν ′ is given by the following three statements, which we state

without proofs.

Lemma 3.23. Let Q and X be in mod B. If Q is projective and there is an epimorphism
Q → X, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If f : X → top P is nonzero in mod B, then f �= 0.

Proposition 3.25. Let P be a projective indecomposable A-module. Then we have

max supp(s′P ) ∼= top P.

Thus ν ′(P ) = max supp(s′P ).

Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q the injective hull of S in mod B. Then

the left (m̃od B)-module H̃omB(S, -) has a simple socle, and

soc H̃omB(S,−) ∼= H̃omB(rad Q,−)/r̃ad(rad Q,−).

It follows by the lemma above that the poset supp(sS) has the maximum element for
each simple A-module S. We then set νB(S) to be the maximum element. The following
is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B.
Then we have νB(S) ∼= rad Q.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let P be a complete set of representatives of isoclass of indecomposable
projective A-modules. Then we have

CB = νB(ν ′(P)).

Hence as is stated before, CΛ is obtained as follows.

Theorem 3.29.

CΛ = CÂ/�φ� = (τZm∆σ(CB))/�φ� = (τZm∆σνBν ′(P))/�φ�.
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[8] Waschbüsch, J.: Universal coverings of self-injective algebras, Representations of algebras (Puebla,
1980), 331–349, Lecture Notes in Math., 903, Springer, Berlin-New York, 1981.

Department of Mathematics,
Graduate School of Science,
Shizuoka University, 836 Ohya, Suruga-ku,
Shizuoka, 422-8529, Japan

E-mail address: asashiba.hideto@shizuoka.ac.jp

Department of Mathematics,
Graduate School of Science and Technology,
Shizuoka University, 836 Ohya, Suruga-ku,
Shizuoka, 422-8529, Japan

E-mail address: gehotan@gmail.com

–16–



― 40 ― ― 41 ―

ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY
GROUP OF A MONOMIAL ALGEBRA SATISFYING A

SEPARABILITY CONDITION

AYAKO ITABA, TAKAHIKO FURUYA AND KATSUNORI SANADA

Abstract. This paper is based on [14]. In this paper, we consider the finite connected

quiver Q having two subquivers Q(1) and Q(2) with Q = Q(1)∪Q(2) = (Q
(1)
0 ∪Q

(2)
0 , Q

(1)
1 ∪

Q
(2)
1 ). Suppose that Q(i) is not a subquiver of Q(j) where {i, j} = {1, 2}. For a monomial

algebra Λ = kQ/I obtained by the quiver Q, when the set AP (n) (n ≥ 0) of overlaps
constructed inductively by linking generators of I satisfies a certain separability condi-
tion, we propose the method so that we easily construct a minimal projective resolution
of Λ as a right Λe-module and calculate the Hochschild cohomology group of Λ.

Key Words: Monomial algebra, associated sequence of path, Hochschild cohomology,
path algebra.

2010 Mathematics Subject Classification: 16E40, 16G20.

1. Introduction

For a finite-dimensional algebra A over a field k, the Hochschild cohomology groups
HHn(A) of A is defined by

HHn(A) := ExtnAe(A,A) (n ≥ 0),

where Ae:=Aop ⊗k A is the enveloping algebra of A. Note that there is a natural one to
one correspondence between the family of A-A-bimodules and that of right Ae-modules.
Moreover, the Hochschild cohomology rings HH∗(A) of A is the graded algebra defined by

HH∗(A) := Ext∗Ae(A,A) =
⊕
i≥0

ExtiAe(A,A)

with the Yoneda product.
The low-dimensional Hochschild cohomology groups are described as follows:

• HH0(A) = Z(A) is the center of A.
• HH1(A) is the space of derivations modulo the inner derivations. A derivation is
a k-linear map f : A → A such that f(ab) = af(b) + f(a)b for all a, b ∈ A. A
derivation f : A → A is an inner derivation if there is some x ∈ A such that
f(a) = ax− xa for all a ∈ A.

One important property of Hochschild cohomology is its invariance under Morita equiv-
alence, stable equivalence of Morita type and derived equivalence.

The detailed version of this paper has been submitted for publication elsewhere.
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Let k be an algebraically closed field and Q a finite connected quiver. Then kQ denotes
the path algebra of Q over k in this paper. Let I be an admissible ideal of kQ. If I is gen-
erated by a finite number of paths in Q, then I is called a monomial ideal and Λ := kQ/I a
monomial algebra. For a finite-dimensional monomial algebra Λ = kQ/I, using a certain
set AP (n) of overlaps constructed inductively by linking generators of I, Bardzell gave a
minimal projective Λe-resolution (P•, ϕ•) of Λ in [3] (so called Bardzell’s resolution). By
using Bardzell’s resolution, the Hochschild cohomology of monomial algebras are studied
in the following papers [11], [12], [9], etc.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional
algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can
we use calculations of the Hochschild cohomology groups of quiver algebras obtained by
subquivers of the original quiver?

In this paper, for a finite-dimensional monomial algebra Λ, we propose a method so that
we easily calculate the Hochschild cohomology groups of Λ under some conditions. Let Q
be a finite connected quiver andQ(i) (i = 1, 2) a subquiver ofQ such thatQ = Q(1)∪Q(2) =

(Q
(1)
0 ∪Q

(2)
0 , Q

(1)
1 ∪Q

(2)
1 ). Let I(1) = ⟨X⟩ (resp. I(2) = ⟨Y ⟩) be a monomial ideal of kQ(1)

(resp. kQ(2)) for X (resp. Y ) a set of paths of kQ(1) (resp. kQ(2)) and I = ⟨X, Y ⟩ a
monomial ideal of kQ. We assume that I and I(i) (i = 1, 2) are admissible ideals. Then
we define Λ = kQ/I, Λ(1) = kQ(1)/I(1) and Λ(2) = kQ(2)/I(2). Hence Λ and Λ(i) are
finite-dimensional monomial algebras for i = 1, 2. For the monomial algebra Λ, under a

separability condition (i.e. Q
(1)
1 ∩ Q

(2)
1 = ∅), we investigate the minimal projective Λe-

module resolution of Λ given by Bardzell ([3]). Moreover, under an additional condition,
we show that, for n ≥ 2, the Hochschild cohomology group HHn(Λ) of Λ is isomorphic to
the direct sum of the Hochschild cohomology groups HHn(Λ(1)) and HHn(Λ(2)).

Throughout this paper, for all arrows a of Q, we denote the origin of a by o(a) and the
terminus of a by t(a). Also, for simplicity, we denote ⊗k by ⊗.

2. The set AP (n) of overlaps and Bardzell’s resolution

2.1. The set AP (n) of overlaps. In this section, following [3] and [11], we will summa-
rize the definition of the set AP (n) (n ≥ 0) of overlaps.

Definition 1. A path q ∈ kQ overlaps a path p ∈ kQ with overlap pu if there exist u, v
such that pu = vq and 1 ≤ l(u) ≤ l(q), where l(x) denotes the length of a path x ∈ kQ.
Note that we allow l(x) = 0 here.

A path q properly overlaps a path p with overlap pu if q overlaps p and l(v) ≥ 1.

Let Λ = kQ/I be a finite-dimensional monomial algebra where I = ⟨ρ⟩ has a minimal
set of generators ρ of paths of length at least 2.

Definition 2. For n = 0, 1, 2, we set

• AP (0) := Q0 =(the set of all vertices of Q);
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• AP (1) := Q1 =(the set of all arrows of Q);
• AP (2) := ρ.

For n ≥ 3, we define the set AP (n) of all overlaps Rn formed in the following way: We
say that R2 ∈ AP (2) maximally overlaps Rn−1 ∈ AP (n− 1) with overlap Rn = Rn−1u if

(1) Rn−1 = Rn−2p for some path p and Rn−2 ∈ AP (n− 2);
(2) R2 overlap p with overlap pu;
(3) there is no element of AP (2) which overlaps p with overlap being a proper prefix of

pu.

The construction of the paths in AP (n) may be illustrated with the following picture
of Rn:

In short, overlaps are constructed by linking generators of an admissible monomial ideal
I. A sequence of those generators of I is called the associated sequence of paths ([10]).

2.2. Bardzell’s resolution. For a monomial algebra Λ = kQ/I, by using the set AP (n),
Bardzell determined a minimal projective Λe-resolution (P•, ϕ•) of Λ in [3].

Definition 3. Let (P•, ϕ•) be the minimal projective Λe- resolution of Λ in [3]. Then, for
n ≥ 0, we set

Pn =
⨿

Rn∈AP (n)

Λo(Rn)⊗ t(Rn)Λ.

From [3], if R2n+1 ∈ AP (2n + 1), then there uniquely exist R2n
j , R2n

k ∈ AP (2n) and

some paths aj, bk such that R2n+1 = R2n
j aj = bkR

2n
k .

For even degree elements R2n ∈ AP (2n), there exist r ≥ 1, R2n−1
l ∈ AP (2n − 1) and

paths pl, ql for l = 1, 2, . . . , r such that R2n = p1R
2n−1
1 q1 = · · · = prR

2n−1
r qr.

Remark 4. Note that o(R2n
j ) ⊗ aj ∈ Λo(R2n

j ) ⊗ t(R2n
j )Λ and bk ⊗ t(R2n

k ) ∈ Λo(R2n
k )⊗

t(R2n
k )Λ. Also, note that pl ⊗ ql ∈ Λo(R2n−1

l )⊗ t(R2n−1
l )Λ.
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Definition 5. The map ϕ2n+1 : P2n+1 −→ P2n is given as follows. If R2n+1 = R2n
j aj

= bkR
2n
k ∈ AP (2n+ 1), then

o(R2n+1)⊗ t(R2n+1) �−→ o(R2n
j )⊗ aj − bk ⊗ t(R2n

k ).

The map ϕ2n : P2n −→ P2n−1 is given as follows. If R2n = p1R
2n−1
1 q1 = · · · = prR

2n−1
r qr,

then

o(R2n)⊗ t(R2n) �−→
r∑

l=1

pl ⊗ ql.

The following result is the main theorem in [3].
Bardzell’s Theorem ([3, Theorem 4.1]) Let Q be a finite quiver, and suppose that
Λ = kQ/I is a monomial algebra with an admissible ideal I. Then the sequence

· · · → Pn+1
ϕn+1−→ Pn

ϕn−→ · · · ϕ2−→ P1
ϕ1−→ P0

π−→ Λ → 0

is a minimal projective resolution of Λ as a right Λe-module, where π is the multiplication
map.

3. The decomposition of Hochschild cohomology groups

We recall our setting.

• Q = Q(1) ∪Q(2),
• I(1) = ⟨X⟩ be a monomial ideal generated by X a set of paths of kQ(1),
• I(2) = ⟨Y ⟩ a monomial ideal generated by Y a set of paths of kQ(2),
• I = ⟨X, Y ⟩ a monomial ideal of kQ,
• Λ = kQ/I, Λ(1) = kQ(1)/I(1), Λ(2) = kQ(2)/I(2): finite-dimensional algebras,

• AP (2) := X ∪ Y , AP (1)(2) := X, AP (2)(2) := Y .

Then, as in the definition of AP (n) of overlaps, we define AP (1)(n), AP (2)(n). Moreover,
we define projective Λe-modules as follows:

P (1)
n =

⨿
Rn∈AP (1)(n)

Λo(Rn)⊗ t(Rn)Λ,

P (2)
n =

⨿
Rn∈AP (2)(n)

Λo(Rn)⊗ t(Rn)Λ,

Pn =
⨿

Rn∈AP (n)

Λo(Rn)⊗ t(Rn)Λ.

To prove our main result, we need the following lemma. As mentioned in Introduction,
we consider the separability condition AP (1)(1) ∩ AP (2)(1) = ∅.

Lemma 6. Let i ∈ {1, 2}. If we assume AP (1)(1) ∩ AP (2)(1) = ∅, then we have the
following:

(a) For all n ≥ 1, AP (n) = AP (1)(n) ∪ AP (2)(n).

(b) For all n ≥ 1, AP (1)(n) ∩ AP (2)(n) = ∅.
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(c) Let n ≥ 1 and pn ∈ AP (n). Then Rn is a path of kQ(i) if and only if Rn ∈
AP (i)(n).

By Bardzell’s Theorem and Lemma 6, we have the following proposition.

Proposition 7. ([14, Proposition 3.2]) If the condition Q
(1)
1 ∩ Q

(2)
1 = ∅ holds, then, in

the following minimal projective resolution of Λ:

· · · → Pn+1
ϕn+1−→ Pn

ϕn−→ Pn−1 → · · · ϕ3−→ P2
ϕ2−→ P1

ϕ1−→ P0
π−→ Λ −→ 0,

for any n ≥ 1, Pn is isomorphic to P
(1)
n ⊕P

(2)
n as right Λe-modules and ϕn+1 = ϕ

(1)
n+1⊕ϕ

(2)
n+1,

where ϕ
(i)
n+1 : P

(i)
n+1 → P

(i)
n (i = 1, 2) is the restriction of ϕn+1.

Remark 8. For i = 1, 2, bk ∈ Λ(i)o(R
2n
k ), aj ∈ t(R2n

j )Λ(i), pl ∈ Λ(i)o(R
2n+1
j ) and ql ∈

t(R2n+1
l )Λ(i) actually hold. So, for n ≥ 1, ϕ

(i)
n+1 sends

⨿
Rn+1∈AP (i)(n+1) Λ(i)o(R

n+1)⊗
t(Rn+1)Λ(i) to

⨿
Rn∈AP (i)(n) Λ(i)o(R

n)⊗t(Rn)Λ(i) (not just to
⨿

Rn∈AP (n) Λo(R
n)⊗t(Rn)Λ).

Therefore, (
⨿

Rn∈AP (i)(n) Λ(i)o(R
n)⊗ t(Rn)Λ(i);ϕ

(i)
n+1)n≥1 is exactly a part of degree n ≥ 1

for the minimal projective resolution of Λ(i) (i = 1, 2).

The following theorem is our main result.

Theorem 9. ([14, Theorem 3.3]) If the condition Q
(1)
1 ∩ Q

(2)
1 = ∅ holds and, for each

i = 1, 2, o(Rn)Λt(Rn) = o(Rn)Λ(i)t(R
n) holds for any n ≥ 1 and any Rn ∈ AP (i)(n), then

we have the direct sum decomposition of Hochschild cohomology groups

HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2))

for any n ≥ 2.

Remark 10. For n = 0, 1, the above equation fails in general (see Example 14 for the case
n = 1).

If Q
(1)
0 ∩Q

(2)
0 = {v0} and v0Λv0 = kv0, then we have Q

(1)
1 ∩Q

(2)
1 = ∅. Also, by Lemma

6 and Theorem 9, we have the following corollary.

Corollary 11. ([14, Corollary 3.4]) In the case Q
(1)
0 ∩ Q

(2)
0 = {v0} and v0Λv0 = kv0, we

have the direct sum decomposition of the Hochschild cohomology groups

HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2))

for any n ≥ 2.

Remark 12. Hence, for a finite dimensional monomial algebra obtained by linking some
quivers bound by monomial relations successively, we can also decompose the Hochschild
cohomology groups as in Corollary 11.
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4. Examples

In this section, we give two examples of monomial algebras satisfying the condition
AP (1)(1) ∩ AP (2)(1) = ∅.

Example 13. Let Q be a quiver

bound by

I =⟨a1a2 · · · am, a2a3 · · · am+1, . . . , ana1 · · · a−n+m+1,

b1b2 · · · bm′ , b2b3 · · · bm′+1, . . . , bn′b1 · · · b−n′+m′+1⟩

for any integers m, m′ ≥ 2 with m ≤ n and m′ ≤ n′. We set the algebra Λ = kQ/I. Let
Q(1) be the subquiver ofQ bound by I(1) = ⟨a1a2 · · · am, a2a3 · · · am+1, . . . , ana1 · · · a−n+m+1⟩
and Q(2) be the subquiver of Q bound by I(2) = ⟨b1b2 · · · bm′ , b2b3 · · · bm′+1, . . . , bn′b1
· · · b−n′+m′+1⟩, where Q

(1)
0 ∩ Q

(1)
0 = {v0} and Q

(1)
1 ∩ Q

(2)
1 = ∅. We set Λ(i) = kQ(i)/I(i)

Q(1) : Q(2) :

for i = 1, 2. Then the condition of Corollary 11 is satisfied. Applying Corollary 11,
we obtain the direct sum decomposition of the Hochschild cohomology groups HHn(Λ) ∼=
HHn(Λ(1))⊕HHn(Λ(2)) for any n ≥ 2. Also, since Λ(i) (i = 1, 2) is a self-injective Nakayama
algebra, we know the dimension of HHn(Λ(i)) from [5, Propositions 4.4, 5.3] for i = 1, 2,
and so we have the dimension of HHn(Λ) by the decomposition above.

Example 14. Let Q be a quiver
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bound by I = ⟨a1a2, a2a3, a3a4, a4a1, b1b2, b2b3, b3b4, b4b1⟩. We set the algebra Λ = kQ/I.
Let Q(1) be the subquiver of Q bound by I(1) = ⟨a1a2, a2a3, a3a4, a4a1⟩ and Q(2) be the

subquiver of Q bound by I(2) = ⟨b1b2, b2b3, b3b4, b4b1⟩, where Q
(1)
0 ∩ Q

(1)
0 = {v0, v1} and

Q
(1)
1 ∩Q

(2)
1 = ∅.

We set Λ(i) = kQ(i)/I(i) for i = 1, 2. Then AP (1)(1) ∩ AP (2)(1) = ∅ holds and for each

i = 1, 2, o(Rn)Λt(Rn) = o(Rn)Λ(i)t(R
n) holds for any n ≥ 1 and any Rn ∈ AP (i)(n). Ap-

plying Theorem 9, we obtain the direct sum decomposition of the Hochschild cohomology
groups HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2)) for any n ≥ 2.

Q(1) : Q(2) :

On the other hand, by direct computations, we have dimk HH
1(Λ) = 3 and dimk

HH1(Λ(i)) = 1 (i = 1, 2). Hence the above decomposition does not hold for n = 1.
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DUALITIES IN STABLE CATEGORIES

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

Abstract. We provide a sufficient condition for a left and right noetherian ring A to
have finite selfinjective dimension on one side and, as a corollary to it, we also provide
a necessary and sufficient condition for A to have finite selfinjective dimension on both
sides.

Let A be a left and right coherent ring. We denote by Mod-A the category of right
A-modules and by mod-A the full subcategory of Mod-A consisting of finitely presented
right A-modules. We consider left A-modules as right Aop-modules, where Aop denotes
the opposite ring of A. For each n > 0 we denote by Gn

A the full subcategory of mod-A
consisting of X ∈ mod-A with ExtiA(X,A) = 0 for 1 ≤ i ≤ n and, for convenience’s sake,
we set G0

A = mod-A. We set CA = ⊕ EA(S), where S runs over the non-isomorphic simple
modules in Mod-A. Such a module CA is unique up to isomorphism and called a minimal
cogenerator for Mod-A. Extending [9, Lemma A] to coherent rings, we showed in [5] that
if flat dim CAop < ∞ and flat dim CA < ∞ then flat dim CAop = flat dim CA.

In this note, we first show that for any n ≥ 0 we have flat dim CAop = flat dim CA ≤ n
if and only if for any X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0
in mod-A with Y Gorenstein projective and proj dim Z ≤ n− 1.

Next, we provide a condition which implies flat dim CAop ≤ n. It is obvious that CAop

is flat if and only if G0
A = G1

A. Since for any X ∈ mod-A there exists an exact sequence
0 → Z → Y → X → 0 in mod-A with Y ∈ G1

A and Z projective, it follows that
flat dim CAop ≤ 1 if and only if G1

A = G2
A. So, in the following, we assume n ≥ 2.

We denote byD(−) bothRHom•
A(−, A) andRHom•

Aop(−, A). Our main theorem states
that flat dim CAop ≤ n if the following three conditions are satisfied: (a) Gn

A = Gn+1
A ; (b)

Hi(Dσ′
≥n−1(σ≤n(DX))) = 0 for all X ∈ Gn−2

A and i ≤ −2; (c) for any X ∈ mod-A

there exists an exact sequence 0 → Z → Y → X → 0 in mod-A with Y ∈ Gn−2
A and

proj dim Z ≤ n − 1. In the above, the condition (c) is always satisfied for n = 2 and 3.
Also, as a corollary to this theorem, we show that flat dim CAop = flat dim CA ≤ n if
and only if the following three conditions are satisfied: (a) Gn

A consists only of Gorenstein
projectives; (b) Hi(Dσ′

≥n−1(σ≤n(DX))) = 0 for all X ∈ Gn−2
A and i ≤ −2; (c) for any

X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0 in mod-A with
Y ∈ Gn−2

A and proj dim Z ≤ n− 1.

The detailed version of this paper will be submitted for publication elsewhere.
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1. Stable module theory

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by PA the full
subcategory of mod-A consisting of projective modules. We denote by Aop the oppo-
site ring of A and consider left A-modules as right Aop-modules. In particular, we de-
note by HomA(−,−) (resp., HomAop(−,−)) the set of homomorphisms in Mod-A (resp.,
Mod-Aop).

In this note, complexes are cochain complexes and modules are considered as complexes
concentrated in degree zero. We denote by K(Mod-A) the homotopy category of com-
plexes over Mod-A, by K−(PA) the full triangulated subcategory of K(Mod-A) consisting
of bounded above complexes over PA and by K−,b(PA) the full triangulated subcategory
of K−(PA) consisting of complexes with bounded cohomology. We denote by D(Mod-A)
the derived category of complexes over Mod-A. Also, we denote by Hom•

A(−,−) the
associated single complex of the double hom complex and by RHom•

A(−, A) the right
derived functor of Hom•

A(−, A). We refer to [2], [4] and [8] for basic results in the theory
of derived categories.

Definition 1. For a complex X• and an integer n ∈ Z, we denote by Zn(X•), Z′n(X•)
and Hn(X•) the nth cycle, the nth cocycle and the nth cohomology, respectively, and
define the following truncations:

σ≤n(X
•) : · · · → Xn−2 → Xn−1 → Zn(X•) → 0 → · · · ,

σ′
≥n(X

•) : · · · → 0 → Z′n(X•) → Xn+1 → Xn+2 → · · · .

Note that for each n ∈ Z we have additive functors

σ≤n(−), σ′
≥n(−) : D(Mod-A) → D(Mod-A)

which are not exact.

Definition 2 ([3]). A module X ∈ Mod-A is said to be coherent if it is finitely generated
and every finitely generated submodule of it is finitely presented. A ring A is said to be
left (resp., right) coherent if it is coherent as a left (resp., right) A-module.

Throughout the rest of this note, A is assumed to be a left and right coherent ring. Note
that mod-A consists of coherent modules and is a thick abelian subcategory of Mod-A in
the sense of [4].

We denote by Db(mod-A) the full triangulated subcategory of D(Mod-A) consisting
of complexes over mod-A with bounded cohomology. Note that the canonical func-
tor K(Mod-A) → D(Mod-A) gives rise to an equivalence of triangulated categories

K−,b(PA)
∼→ Db(mod-A).

We denote by D(−) both RHom•
A(−, A) and RHom•

Aop(−, A). There exists a bifunc-
torial isomorphism

θM•,X• : HomD(Mod-Aop)(M
•, DX•)

∼→ HomD(Mod-A)(X
•, DM•)

for X• ∈ D(Mod-A) and M• ∈ D(Mod-Aop). For each X• ∈ D(Mod-A) we set

ηX• = θDX•,X•(idDX•) : X• → D2X• = D(DX•).
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Definition 3 ([1] and [7]). A complex X• ∈ Db(mod-A) is said to have finite Goren-
stein dimension if DX• ∈ Db(mod-Aop) and if ηX• is an isomorphism. We denote by
Db(mod-A)fGd the full triangulated subcategory of Db(mod-A) consisting of complexes of
finite Gorenstein dimension.

For a module X ∈ Db(mod-A)fGd, we set

G-dim X = sup{ i ≥ 0 | ExtiA(X,A) ̸= 0}
if X ̸= 0, and G-dim X = 0 if X = 0. Also, we set G-dim X = ∞ for a module
X ∈ mod-A with X /∈ Db(mod-A)fGd. Then G-dim X is called the Gorenstein dimension
of X ∈ mod-A. A module X ∈ mod-A is said to be Gorenstein projective if it has
Gorenstein dimension zero.

Note that a module X ∈ mod-A is Gorenstein projective if and only if it is reflexive,
i.e., the canonical homomorphism

X → HomAop(HomA(X,A), A), x �→ (f �→ f(x))

is an isomorphism and ExtiA(X,A) = ExtiAop(HomA(X,A), A) = 0 for i ̸= 0.

Definition 4. For each X ∈ mod-A, taking a projective resolution P • → X in mod-A,
we set ΩnX = Z′−n(P •) for n ≥ 0 and TrX = Z′1(Hom•

A(P
•, A)).

We denote by mod-A the residue category mod-A/PA and by HomA(−,−) the mor-
phism set in mod-A. Then we have additive functors

Tr : mod-A → mod-Aop and Ωn : mod-A → mod-A

for n ≥ 0. We set Ω = Ω1. Then Ωn is the nth power of Ω for n ≥ 0.

Proposition 5. For any n ≥ 0 there exists a bifunctorial isomorphism

HomAop(Tr(ΩnX),M)
∼→ HomA(Tr(Ω

nM), X)

for X ∈ mod-A and M ∈ mod-Aop.

For each n > 0 we denote by Gn
A the full subcategory of mod-A consisting of X ∈ mod-A

with ExtiA(X,A) = 0 for 1 ≤ i ≤ n and, for convenience’s sake, we set G0
A = mod-A.

Corollary 6 (cf. [6, Proposition 1.1.1]). For any n ≥ 0 the pair of functors

Tr ◦ Ωn : Gn
A/PA → Gn

Aop/PAop and Tr ◦ Ωn : Gn
Aop/PAop → Gn

A/PA

defines a duality.

Lemma 7. For any n ≥ 0 the following are equivalent.

(1) Gn
A = Gn+1

A .
(2) Gn

Aop consists only of torsionless modules.

Lemma 8. For any n ≥ 1 and X ∈ mod-A the following are equivalent.

(1) G-dim X ≤ n.
(2) There exists an exact sequence 0 → Z → Y → X → 0 in mod-A with Y Gorenstein

projective and proj dim Z ≤ n− 1.

Lemma 9. For any X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0
in mod-A with Y ∈ G1

A and Z ∈ PA.
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2. Applications

In the following, we denote by EA(−) an injective envelope of a module in Mod-A and
set CA = ⊕ EA(S), where S runs over the non-isomorphic simple modules in Mod-A.
Such a module CA is unique up to isomorphism and called a minimal cogenerator for
Mod-A. We have seen in [5] that if flat dim CAop < ∞ and flat dim CA < ∞ then
flat dim CAop = flat dim CA.

According to Lemma 8, [5, Theorem 3.6] implies the following.

Proposition 10. For any n ≥ 0 the following are equivalent.

(1) flat dim CAop = flat dim CA ≤ n.
(2) For any X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0 in

mod-A with Y Gorenstein projective and proj dim Z ≤ n− 1.

Remark 11. For any n ≥ 0, flat dim CAop ≤ n if and only if Extn+1
A (−, A) vanishes on

mod-A. In particular, CAop is flat if and only if G0
A = G1

A. Also, Lemma 9 implies that
flat dim CAop ≤ 1 if and only if G1

A = G2
A.

Throughout the rest of this note, we fix an integer n ≥ 2.

Theorem 12. We have flat dim CAop ≤ n if the following three conditions are satisfied:

(a) Gn
A = Gn+1

A ;
(b) Hi(Dσ′

≥n−1(σ≤n(DX))) = 0 for all X ∈ Gn−2
A and i ≤ −2;

(c) for any X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0 in
mod-A with Y ∈ Gn−2

A and pd Z ≤ n− 1.

In the above, the condition (c) is trivially satisfied if n = 2. Also, it follows by Lemma
9 that the condition (c) is satisfied for n = 3.

Corollary 13. We have flat dim CAop = flat dim CA ≤ n if and only if the following
three conditions are satisfied:

(a) Gn
A consists only of Gorenstein projectives;

(b) Hi(Dσ′
≥n−1(σ≤n(DX))) = 0 for all X ∈ Gn−2

A and i ≤ −2;
(c) for any X ∈ mod-A there exists an exact sequence 0 → Z → Y → X → 0 in

mod-A with Y ∈ Gn−2
A and pd Z ≤ n− 1.
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BRAUER INDECOMPOSABILITY OF SCOTT MODULES

HIROKI ISHIOKA

Abstract. Let p be a prime number and k an algebraically closed field of characteristic
p. Let G be a finite group and P a p-subgroup of G. In this article, we study the
relationship between the fusion system FP (G) and the Brauer indecomposability of the
Scott kG-module in the case that P is not necessarily abelian. We give an equivalent
condition for the Scott kG-module with vertex P to be Brauer indecomposable.

1. Introduction

Let p be a prime number, G a finite group, and k an algebraically closed field of prime
characteristic p. For a kG-module M and a p-subgroup Q of G, we denote by M(Q) the
Brauer quotient of M with respect to Q. The Brauer quotient M(Q) has naturally the
structure of a kNG(Q)-module.

Definition 1. A kG-module M is said to be Brauer indecomposable if M(Q) is indecom-
posable or zero as a kQCG(Q)-module for any p-subgroup Q of G.

Brauer indecomposability of p-permutation modules is important for constructing stable
equivalences of Morita type between blocks of finite groups (see [2]).

Let P be a p-subgroup of G. We denote by FP (G) the fusion system of G over P .
In [1], a relationship between fusion system FP (G) and Brauer indecomposability of p-
permutation modules with vertex P was given. One of the main result in [1] is the
following.

Theorem 2 ([1, Theorem 1.1]). Let P be a p-subgroup of G and M an indecomposable
p-permutation kG-module with vertex P . If M is Brauer indecomposable, then FP (G) is
a saturated fusion system.

In the special case that P is abelian and M is the Scott kG-module S(G,P ), the
converse of the above theorem holds.

Theorem 3 ([1, Theorem 1.2]). Let P be an abelian p-subgroup of G. If FP (G) is
saturated, then S(G,P ) is Brauer indecomposable.

In general, the above theorem does not hold for non-abelian P . However, there are
some cases in which the Scott kG-module S(G,P ) is Brauer indecomposable, even if P is
not necessarily abelian.

We study the condition that S(G,P ) to be Brauer indecomposable where P is not
necessarily abelian. The following result gives an equivalent condition for Scott kG-
module with vertex P to be Brauer indecomposable.

The detailed version of this paper will be submitted for publication elsewhere.
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Theorem 4. Let G be a finite group and P a p-subgroup of G. Suppose that M = S(G,P )
and that FP (G) is saturated. Then the following are equivalent.

(i) M is Brauer indecomposable.

(ii) For each fully normalized subgroup Q of P , the module Res
NG(Q)
QCG(Q)S(NG(Q), NP (Q))

is indecomposable.

If these conditions are satisfied, then M(Q) ∼= S(NG(Q), NP (Q)) for each fully normalized
subgroup Q ≤ P .

The following theorem shows that Res
NG(Q)
QCG(Q)S(NG(Q), NP (Q)) is indecomposable if Q

satisfies some conditions.

Theorem 5. Let G be a finite group, P a p-subgroup of G and Q a fully normalized
subgroup of P . Suppose that FP (G) is saturated. Moreover, we assume that there is a
subgroup HQ of NG(Q) satisfying following two conditions:

(i) NP (Q) ∈ Sylp(HQ)
(ii) |NG(Q) : HQ| = pa (a ≥ 0)

Then Res
NG(Q)
QCG(Q)S(NG(Q), NP (Q)) is indecomposable.

The following is a consequence of above two theorems.

Corollary 6. Let G be a finite group and P a p-subgroup of G. Suppose that FP (G) is
saturated. If for every fully normalized subgroup Q of P there is a subgroup HQ of NG(Q)
satisfies the conditions of 5, then S(G,P ) is Brauer indecomposable.

Throughout this article, we denote by L ∩G H the set {gL ∩H | g ∈ G} for subgroups
L and K of G.

2. Preliminaries

2.1. Scott modules. First, We recall the definition of Scott modules and some of its
properties:

Definition 7. For a subgroup H of G, the Scott kG-module S(G,H) with respect to H
is the unique indecomposable summand of IndGHkH that contains the trivial kG-module.

If P is a Sylow p-subgroup of H, then S(G,H) is isomorphic to S(G,P ). By definition,
the Scott kG-module S(G,P ) is a p-permutation kG-module.

By Green’s indecomposability criterion, the following result holds.

Lemma 8. Let H be a subgroup of G such that |G : H| = pa(for some a ≥ 0). Then
IndG

HkH is indecomposable. In particular, we have that

S(G,H) ∼= IndG
H .

Hence, for p-subgroup P of G, if there is a subgroup H of G such that P is a Sylow
p-subgroup of H and |G : H| = pa, then we have that

S(G,P ) ∼= IndG
HkH .

The following theorem gives us information of restrictions of Scott modules.
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Theorem 9 ([3, Theorem 1.7]). Let H be a subgroup of G and P a p-subgroup of G. If
Q is a maximal element of P ∩G H, then S(H,Q) is a direct summand of ResGHS(G,P ).

2.2. Brauer quotients. Let M be a kG-module and H a subgroup of G. Let MH be
the set of H-fixed elements in M . For subgroups L of H, we denote by TrGH the trace map
TrHL : ML −→ MH . Brauer quotients are defined as follows.

Definition 10. Let M be a kG-module. For a p-subgroup Q of G, the Brauer quotient
of M with respect to Q is the k-vector space

M(Q) := MQ/(
∑
R<Q

TrQR(M
R)).

This k-vector space has a natural structure of kNG(Q)-module.

Proposition 11. Let P be a p-subgroup of G and M = S(G,P ). Then M(P ) ∼=
S(NG(P ), P ).

Proposition 12. Let M be an indecomposable p-permutation kG-module with vertex P .
Let Q be a p-subgroup of G. Then Q ≤G P if and only if M(Q) ̸= 0.

2.3. Fusion systems. For a p-subgroup P of G, the fusion system FP (G) of G over P is
the category whose objects are the subgroups of P , and whose morphisms are the group
homomorphisms induced by conjugation in G.

Definition 13. Let P be a p-subgroup of G

(i) A subgroup Q of P is said to be fully normalized in FP (G) if |NP (
xQ)| ≤ |NP (Q)|

for all x ∈ G such that xQ ≤ P .
(ii) A subgroup Q of P is said to be fully automized in FP (G) if p ∤ |NG(Q) :

NP (Q)CG(Q)|.
(iii) A subgroup Q of P is said to be receptive in FP (G) if it has the following property:

for each R ≤ P and φ ∈ IsoFP (G)(R,Q), if we set

Nφ := {g ∈ NP (Q) | ∃h ∈ NP (R), cg ◦ φ = φ ◦ ch},
then there is φ ∈ HomFP (G)(Nφ, P ) such that φ |R= φ.

Saturated fusion systems are defined as follows.

Definition 14. Let P be a p-subgroup of G. The fusion system FP (G) is saturated if
the following two conditions are satisfied:

(i) P is fully normalized in FP (G).
(ii) For each subgroup Q of P , if Q is fully normalized in FP (G), then Q is receptive

in FP (G).

For example, if P is a Sylow p-subgroup of G, then FP (G) is saturated.

3. Sketch of Proof

In this section, let P be a p-subgroup of G and M the Scott module S(G,P ).

Lemma 15. If Q ≤ P is fully normalized in FP (G), then NP (Q) is a maximal element
of P ∩G NG(Q).
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By above lemma, we can show that S(NG(Q), NP (Q)) is a direct summand of M(Q)
for each fully normalized subgroup Q of P . Therefore, we have that Theorem 4 (i) implies
4 (ii).

Assume that Theorem 4 (ii) holds. We prove that Res
NG(Q)
QCG(Q)(M(Q)) is indecomposable

for each Q ≤ P by induction on |P : Q|. Without loss of generality, we can assume that
Q is fully normalized. If M(Q) is decomposable, then by the following lemma, we can

show that there is a subgroup R such that Q < R ≤ P and Res
NG(R)
RCG(R) is decomposable,

this contradicts the induction hypothesis.

Lemma 16. Suppose that a subgroup Q of P is fully automized and receptive. Then for
any g ∈ G such that Q ≤ gP , we have that NgP (Q) ≤NG(Q) NP (Q).

Hence, M(Q) is indecomposable, and isomorphic to S(NG(Q), NP (Q)). Consequently,
Theorem 4 (ii) implies 4 (i).

Theorem 5 is proved by using properties of Scott modules and the following lemma.

Lemma 17. If Q is fully automized subgroup of P , and there is a subgroup HQ ≤ NG(Q)
containing NP (Q) such that |NG(Q) : HQ| = pa, then CG(Q)HQ = NG(Q).

4. Example

We set p = 2 and

G := ⟨a, x, y |a4 = x2 = e, a2 = y2,

xax = a−1, ay = ya, xy = yx⟩,
P := ⟨a, xy⟩.

Then G is a finite group of order 16, and P is isomorphic to the quaternion group of order
8. Hence, P is a non-abelian p-subgroup of G. One can easily show that G and P satisfy
the hypothesis of the Corollary 6. Therefore, S(G,P ) is Brauer indecomposable.
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NOTES ON THE HOCHSCHILD HOMOLOGY DIMENSION AND
TRUNCATED CYCLES

TOMOHIRO ITAGAKI AND KATSUNORI SANADA

Abstract. In this paper, we show that if an algebra KQ/I with an ideal I of KQ
contained in Rm

Q for an integer m ≥ 2 has an m-truncated cycle, then this algebra has
infinitely many nonzero Hochschild homology groups, where RQ denotes the arrow ideal.
Consequently, such an algebra of finite global dimension has no m-truncated cycles and
satisfies an m-truncated cycles version of the no loops conjecture.

1. Introduction

In [8], Happel remarks that if all the higher Hochschild cohomology groups vanish for
a finite dimensional algebra, then does the algebra have finite global dimension? This is
called “Happel’s question”. It is shown in [3] that this does not hold in general.

On the other hand, in [7], Han conjectures the homology version of Happel’s question,
that is, if all the higher Hochschild homology groups of a finite dimensional algebra vanish,
then is the algebra of finite global dimension? Moreover, he shows that the counter
example of Happel’s question in [3] satisfies Han’s conjecture in [7].

In [4], Han’s conjecture is approached with focusing on the combinatorics of quiv-
ers of algebras. Specifically, it is shown that all algebras having a 2-truncated cycle in
which the product of two consecutive arrows is always zero, have infinitely many nonzero
Hochschild homology groups. Consequently, 2-truncated cycles version of the well-known
“no loops conjecture”holds: algebras of finite global dimension have no 2-truncated cy-
cles. In addition, for arbitrary integer m ≥ 2, an m-truncated cycles version of the “no
loops conjecture”is conjectured. In particular, it is shown that monomial algebras satisfy
an m-truncated cycles version of the “no loops conjecture”. For finite dimensional ele-
mentary algebras, in [9], it is shown that the no loops conjecture can be derived from an
earlier result of Lenzing in [12] (cf. [10]).

In this paper, we show the following assertion: Let K be a field, Q a finite quiver,
RQ the arrow ideal of KQ and m ≥ 2 a positive integer. If an algebra KQ/I with an
ideal I ⊂ KQ contained in Rm

Q has an m-truncated cycle, then KQ/I has infinitely many
nonzero Hochschild homology groups (Theorem 6). Consequently, in the case I is an
admissible ideal of KQ which is contained in Rm

Q , then KQ/I satisfies an m-truncated
cycles version of the “no loops conjecture”. That is, if KQ/I has finite global dimension,
then it contains no m-truncated cycles (Corollary 7). This result generalizes the result
[4, Corollary 3.3].

The detailed version of this paper has been published in Archiv der Mathematik.
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2. Preliminaries

Let K be a commutative ring and A a unital K-algebra. Thus, there exists a nonzero
ring homomorphism K → A, whose image is contained in the center of A. We assume
that A is finitely generated as a K-module. Throughout the paper, ⊗ denotes ⊗K for the
sake of simplicity.

For each n ≥ 1, we denote the n-fold tensor product A⊗ · · · ⊗ A of A over K by A⊗n

and the enveloping algebra of A by Ae.

Definition 1 ([13]). The Hochschild complex is the following complex:

· · · → M ⊗ A⊗n b→ M ⊗ A⊗n−1 b→ · · · b→ M ⊗ A⊗2 b→ M ⊗ A
b→ M,

where M is a left Ae-module, the module M ⊗ A⊗n is in degree n, and the map b :
M ⊗ A⊗n → M ⊗ A⊗n−1 is given by the formula

b(x⊗ a1 ⊗ · · · ⊗ an) := xa1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)i(x⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) + (−1)nanx⊗ a1 ⊗ · · · ⊗ an−1.

The n-th Hochschild homology group HHn(A,M) of A with coefficients in the left Ae-
module M is defined by the n-th homology group of the Hochschild complex above. In
particular, HHn(A,A) is simply called the n-th Hochschild homology group of A, which
is denoted by HHn(A).

It is well known that if the unital K-algebra A is a projective K-module, then the
n-th Hochschild homology group HHn(A) is given by TorA

e

n (A,A). Now we recall the
definition of the bar resolution of A.

Definition 2 ([13]). Let A be a unital K-algebra. The following resolution of the left
Ae-module A denoted by Cbar is called the bar resolution:

Cbar :−→ A⊗n+1 b′−→ A⊗n −→ · · · −→ A⊗3 b′−→ A⊗2 µ−→ A −→ 0,

where µ is multiplication and b′ is defined by b′(a0 ⊗ · · · ⊗ an) =
∑n−1

i=0 (−1)i(a0 ⊗ · · · ⊗
aiai+1 ⊗ · · · ⊗ an).

Let A and B be two K-algebras and suppose that f : A → B is a K-algebra homo-
morphism. Then f is a homomorphism of rings, the composition map of f and the map
K → A giving the K-algebra structure of A is equal to the map K → B giving the
K-algebra structure of B. This implies that bf⊗(n+1) = f⊗nb, therefore {f⊗n}n∈N is a
chain map between the Hochschild complex of A and the one of B. For each n ≥ 0, this
map of Hochschild complexes induces a map f⊗(n+1) : HHn(A) → HHn(B) of Hochschild
homology groups. The following fact is the key of the main theorem in [4]: if we can
show that the image of HHn(A) → HHn(B) is nonzero, then this forces HHn(A) to be
nonzero. This fact is also important for our main theorem.

Finally, in [4], the Hochschild homology dimension of the algebra A is defined by

HHdimA = sup{n ∈ Z |HHn(A) ̸= 0},
which is treated in the main theorem.
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3. The Hochschild homology of truncated quiver algebras

In this section, for a truncated quiver algebra we give elements in the complex, induced
by Sköldberg’s projective resolution P , which correspond to nonzero homology classes.

Let Q = (Q0, Q1, s, t) be a finite quiver. For an arrow α ∈ Q1, its source and target are
denoted by s(α) and t(α), respectively. A path in Q is a sequence of arrows α1α2 · · ·αn

such that t(αi) = s(αi+1) for i = 1, . . . , n− 1. The set of all paths of length n is denoted
by Qn.

For a path γ of Q, |γ| denotes the length of γ. A path γ is said to be a cycle if |γ| ≥ 1
and its source and target coincide. The period of a cycle γ is defined by the smallest
integer i such that γ = δj (j ≥ 1) for a cycle δ of length i, which is denoted by per γ. A
cycle is said to be a basic cycle if the length of the cycle coincides with its period. It is also
called a proper cycle [7]. Denote by Qc

n (respectively Qb
n) the set of cycles (respectively

basic cycles) of length n. Let Gn = ⟨g⟩ be the cyclic group of order n and the path
α1 · · ·αn−1αn a cycle where αi is an arrow in Q. Then we define the action of Gn on Qc

n

by g · (α1 · · ·αn−1αn) := αnα1 · · ·αn−1, and Qc
n/Gn denotes the set of all Gn-orbits on

Qc
n. Similarly, Gn acts on Qb

n, and Qb
n/Gn denotes the set of all Gn-orbits on Qb

n. For
γ̄ ∈ Qc

n/Gn, we denote by per γ̄ the period of γ, that is per γ̄ := per γ. For convenience
we use the notation Qc

0/G0 for the set of vertices Q0.
Sköldberg gives an projective resolution P of a truncated quiver algebra A. Moreover,

by means of the complex
⊕

i

⊕
γ̄∈Qc

i/Gi
Kγ̄,n given by the following isomorphism:

A⊗Ae Pn
φ−→ A⊗KQe

0
KΓ(n) ∼−→

⊕
i

⊕
γ̄∈Qc

i/Gi

Kγ̄,n,

he gives the module structure of HHn(A), where the set Γ(∗) is given by

Γ(i) =

{
Qcm if i = 2c (c ≥ 0),
Qcm+1 if i = 2c+ 1 (c ≥ 0).

In order to prove our main theorem, we investigate elements in A⊗KQe
0
Γ(∗) which corre-

spond to nonzero homology classes.

Lemma 3. Let K be a field and A = KQ/Rm
Q a truncated quiver algebra. For an element

γ̄ ∈ Qc
cm/Gcm with γ = α1 · · ·αcm(α1, . . . , αcm ∈ Q1), the following elements correspond

to non-zero homology classes:

α(c−1)m+i+1 · · ·αcmα1 · · ·αi−1 ⊗ αi · · ·α(c−1)m+i ∈ A⊗KQe
0
Γ((c−1)m+1),

where d = gcd(m, per γ̄) and i = 1, 2, . . . , d− 1.

Lemma 4. Let K be a field and A = KQ/Rm
Q a truncated quiver algebra. For an element

γ̄ ∈ Qc
cm+e/Gcm+e(1 ≤ e ≤ m − 1) with γ = α1 · · ·αcm+e(α1, . . . , αcm+e ∈ Q1), the

following element corresponds to a non-zero homology class:

αcm+1 · · ·αcm+e ⊗ α1 · · ·αcm ∈ A⊗KQe
0
Γ(cm).

We note that there is the following chain map in [6], which we denote by θ. This chain
map θ induces a quasi-isomorphism idA ⊗ θ : A⊗Ae Cbar → A⊗Ae Q, which we denote by
θ for the sake of simplicity.
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A chain map π from Cibils’ projective resolution Q to P given in [1] induces a quasi-
isomorphism π̄ = idA⊗π : A⊗Ae Q −→ A⊗Ae P . We use the following composition map
of chain maps from the Hochschild complex to Sköldberg’s complex by Φ;

A⊗Ae Qn
θ←− A⊗Ae (Cbar)n = A⊗Ae A⊗(n+2) ψ←− A⊗(n+1)

−→ π̄

A⊗Ae Pn
φ−→ A⊗KQe

0
KΓ(n) ∼−→

⊕
i

⊕
γ̄∈Qc

i/Gi

Kγ̄,n,

where ψ is given by ψ(a0 ⊗ · · · ⊗ an) = a0 ⊗Ae (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1).

4. The m-truncated cycles version of the “no loops conjecture”

Let K be a field, Q a finite quiver, RQ the arrow ideal of KQ and m ≥ 2 a positive
integer. In this section, we show that if an algebra KQ/I with I ⊂ Rm

Q has an m-
truncated cycle (see Definition 5), then the algebra has infinite Hochschild homology
dimension. Moreover, we show that the algebra satisfies an m-truncated cycles version of
the “no loops conjecture”.

If I ⊂ R2
Q is an ideal in the path algebra KQ, then a finite sequence α1, . . . , αu of

arrows which satisfies the equations t(αi) = s(αi+1) (i = 1, . . . , u− 1) and t(αu) = s(α1)
is called a cycle in KQ/I in [4].

Definition 5 ([4]). A cycle α1, . . . , αu in KQ/I is m-truncated for an integer m ≥ 2 if

αi · · ·αi+m−1 = 0 and αi · · ·αi+m−2 ̸= 0 in KQ/I

for all i, where the indices are modulo u.

By means of composition map Φ, we have the following our main theorem by the Lemma
3 and 4.

Theorem 6. Let K be a field, Q a finite quiver and I ⊂ KQ an ideal contained in Rm
Q .

Suppose that KQ/I contains an m-truncated cycle α1, . . . , αu. Then the following holds:

(i) Assume that gcd (m, per (α1 · · ·αu)) ̸= 1. For every n ≥ 1 with un ≡ 0 (mod m),
the element

α(c−1)m+2 · · ·αcm ⊗ α1 ⊗ α2 · · ·αm ⊗ αm+1

⊗ αm+2 · · ·α2m ⊗ α2m+1 ⊗ · · · ⊗ α(c−2)m+2 · · ·α(c−1)m ⊗ α(c−1)m+1,

where c = un/m, represents a nonzero element in HH2c−1(KQ/I).
(ii) Let e be an integer with 1 ≤ e ≤ m− 1. For every n ≥ 1 with un ≡ e (mod m), the

element ∑
0≤j1,...,jc≤m−2

α2c+1+j1+···+jc · · ·αun

⊗ α1 · · ·α1+j1 ⊗ α2+j1 ⊗ α3+j1 · · ·α3+j1+j2 ⊗ α4+j1+j2 ⊗ · · ·
⊗ α2c−1+j1+···+jc−1 · · ·α2c−1+j1+···+jc ⊗ α2c+j1+···+jc ,

where c = (un− e)/m, represents a nonzero element in HH2c(KQ/I).
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In particular, the Hochschild homology dimension HHdim (KQ/I) = ∞.

Corollary 7. Let K be a field, Q a finite quiver and I an admissible ideal in KQ with
I ⊂ Rm

Q . If the algebra KQ/I has finite global dimension, then it contains no m-truncated
cycles.

Example 8. Let B be an algebra given by the quiver with relations:

�������� ��������

��������

��������

��������

��������

γ

�������
α1

�������
α2

����
��

�

α3 ��
��

��
�

α4

�������

β1
���������
β2

��β3

���������

αiαi+1αi+2 = β1β2β3 = β3γα2 = 0,
β2β3α1 = β2β3γ,

where the indices of αi are modulo 4 (1 ≤ i ≤ 4). Then B has the 3-truncated cycle
α1, α2, α3, α4. By the Theorem 6, we have HHdimB = ∞. Therefore, the global dimension
of B is infinite.
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ON A GENERALIZATION OF COMPLEXES AND THEIR DERIVED
CATEGORIES.

OSAMU IYAMA AND HIROYUKI MINAMOTO

Abstract. When we want to understand the reason why the equation d2 = 0 has the
beautiful consequences, one way is to consider generalizations of it and research how its
properties vary. One natural candidate of a generalization is the notion of N -complex,
that is, gradeds object equipped with a morphism d of degree 1 such that dN = 0. This
was introduced by Kapranov [5] and Sarkaria [7] independently. Nowadays there is a
vast collection of literatures on the subject.

For an N -complex X, there are several cohomology functors. More precisely, for
1 ≤ r ≤ N − 1, we define a cohomorogy functor to be

Hi
(r)(X) :=

Ker[dr : Xi → Xi+r]

Im[dN−r : Xi−N+r → Xi]
.

As a new feature, it is observed that there are several relations between these cohomology
functors [5, 1].

On the other hands, Iyama-Kato-Miyachi [4] construct and study the homotopy cate-
gory KN (R), the derived category DN (R) of N -complexes. They showed that the derived
category DN (R) is equivalent as triangulated categories to the derived category (in the

ordinary sense) D(R ⊗k k
−→
AN−1). Inspired by their results, we introduce the notion of

A-complexes for a graded self-injective algebra A. We construct and study the homotopy
category, the derived category of and the cohomology functors. As a consequence, we
see that the relations between various cohomology functors of N -complexes comes from
representation theory of the graded algebra k[δ]/(δN ) with degk = 0, deg δ = 1.

1. N-complexes (Kapranov, Sarkaria, G. Kato, Dubois-Violette,
Hiramatsu-G. Kato, Iyama-K. Kato-Miyachi . . . )

1.1. N-complexes. Our setup is the followings:

• N ≥ 2 is an integer greater than 1.
• R is an algebra over a field k.

For simplicity, in this note N -(A-)complexes are that of R-modules.

Definition 1. An N -complex X ( of R-modules ) is a graded R-module
⊕

i∈Z X
i equipped

with an endomorphism dX of degree 1 (the differential of X) such that dNX = 0.

dNX = dX ◦ dX ◦ · · · dX (N times ).

· · · → X i−1 dX−→ X i dX−→ X i+1 → · · ·

The detailed version of this paper will be submitted for publication elsewhere.
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A morphism f : X → Y of N -complexes is a morphism of graded R-modules which is
compatible with the differentials dX and dY .

dX−−−→ X i−1 dX−−−→ X i dX−−−→ X i+1 dX−−−→

f i−1

� f i

� f i+1

�
dY−−−→ Y i−1 dY−−−→ Y i dY−−−→ Y i+1 dY−−−→

The category CN(R) of N -complexes is abelian.
The notion of N -complexes is so natural that it have been studied by many researchers

from various point of views.

1.2. Cohomology group Hi
(n)(X) of N-complexe X.

Definition 2. For i ∈ Z and 0 < n < N , we define the cohomology group Hi
(n)(X) of

N -complexe X which has i-th degree and n-th position to be

Hi
(n)(X) :=

Ker[dnX : X i → X i+n]

Im[dN−n
X : X i−N+n → X i]

.

For N -complexes we have cohomology long exact sequences.

Theorem 3 (Dubois-Violette). Let 0 → X → Y → Z → 0 be an exact sequence of
N-complexes. Then we have the following exact sequence:

· · · → Hi
(n)(X) → Hi

(n)(Y ) → Hi
(n)(Z) →

→ Hi+n
(N−n)(X) → Hi+n

(N−n)(Y ) → Hi+n
(N−n)(Z) →

→ Hi+N
(n) (X) → Hi+N

(n) (Y ) → Hi+N
(n) (Z) →

→ Hi+n+N
(N−n) (X) → Hi+n+N

(N−n) (Y ) → Hi+n+N
(N−n) (Z) → · · ·

Note that this sequence is 6-periodic up to degree shift.
There is another long exact sequence for cohomology groups of N -complexes.

Theorem 4 ( Second long exact sequence (Dubois-Violett) ). Let n,m > 0 be natural
numbers such that n+m < N . Then, for an N-complex X, we have

· · · → Hi
(n)(X) → Hi

(n+m)(X) → Hi+n
(m)(X) →

→ Hi+n
(N−n)(X) → Hi+n+m

(N−n−m)(X) → Hi+n+m
(N−m)(X) →

→ Hi+N
(n) (X) → Hi+N

(n+m)(X) → Hi+n+N
(m) (X) →

→ Hi+n+N
(N−n) (X) → Hi+n+m+N

(N−n−m) (X)toHi+n+m+N
(N−m) (X) → · · ·

We remark that for the ordinary complexes (i.e., the case where N = 2) the condition
for n and m is empty. We note that this sequence is also 6-periodic up to degree shift.
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1.3. Results of Iyama-Kato-Miyachi. Iyama-Kato-Miyachi showed that CN(R) has a
Frobenious structure. Then they defined the homotopy categoryKN(R) to be the stable
category KN(R) := CN(R) and of CN(R) with respect to this Frobenious structure, and

the derived category DN(R) to be the Verdier quotient of KN(R) by the thick subcategories

consisting of acyclic N -complexes DN(R) :=
KN(R)

(Acyclic N -complexes)
.

I heard that one of their mtivation to define a derived category of N -complexes is to
get a triangulated category of new kind. But they showed that derived category of N -
complexes is no new. It turns out to be equivalent to an ordinary derived category. More
precisely we have the following equivalence of triangulated categories:

Theorem 5 (Iyama-Kato-Miyachi).

DN(R) ≃ D(k
−→
AN−1 ⊗R)

The right hand side is the ordinary derived category of the algebra k
−→
AN−1 ⊗R where

k
−→
AN−1 is the path algebra of AN−1-quiver.

Since there are interesting results on N -complexes, now we would like to ask why
dN = 0? For this purpose, we try to find a further generalization of N -complexes.

2. A-complexes

2.1. An observation on N-complexes. We observe that the notion of N -complexes
and related things can be reformulated in terms of a graded algebra and its modules.

We define a graded algebra BN to be BN := k[δ]/δN with deg δ = 1. A point is that
an N -complex X is nothing but a graded module over the graded algebra BN ⊗R and

CN(R) = (BN ⊗R)GRMod

where we consider degR = 0.

2.2. A-complexes and their cohomologies. We define a notion of A-complex by re-
placing the graded algebra BN with a graded algebra A satisfying some conditions, which
allow us to develop general theory.

Let A :=
⊕

i∈Z A
i be a finite dimensional graded Frobenius algebra having Gorenstein

parameter ℓ ∈ Z, i.e., Homk(A,k) ∼= A(ℓ) for some ℓ ∈ Z.
Definition 6. An A-complex is a graded A ⊗ R-module. We set the category CA(R) of
A-complexes to be the category of graded A⊗R-modules.

CA(R) := (A⊗R)GRMod .

Remark 7. The above definition and the following results can be generalized to the case
where A is a self-injective k-linear category with a Serre functor satisfying some conditions.

For A-complex X we have a notion of cohomology groups Ht(X). The indexes t are
not integers any more.

Definition 8. Let t be a graded A-module. We define t-th cohomology group of an
A-complexes X to be

Ht(X) := Ext1AGRMod(t,X)
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The cohomology group Ht(X) is functorial in X and hence gives a functor

Ht(−) : CA(R) → RMod,X �→ Ht(X).

Theorem 9 (Cohomology long exact sequences for A-complexes).
Let 0 → X → Y → Z → 0 be an exact sequence of A-complexes. Then we have the

following exact sequence

→ HΩ−1(t)(X) → HΩ−1(t)(Y ) → HΩ−1(t)(Z) → · · ·

→ Ht(X) → Ht(Y ) → Ht(Z) →
→ HΩ(t)(X) → HΩ(t)(Y ) → HΩ(t)(Z) → · · ·

where Ω and Ω−1 denote the syzygy functor and co-syzygy functor.

Theorem 10 (Cohomology long exact sequence for indexes).
Let 0 → s → t → u → 0 be an exact sequence of graded A-modules. Then, for an

A-complex X, we have the following long exact sequence

→ HΩ−1(u)(X) → HΩ−1(t)(X) → HΩ−1(s)(X) →

→ Hu(X) → Ht(X) → Hs(X) →
→ HΩ(u)(X) → HΩ(t)(X) → HΩ(s)(X) →

Now we discuss a Frobenius Structure in CA(R).

Lemma 11. Let E be the class of exact sequences 0 → X → Y → Z → 0 in CA(R)
which become a split exact sequence when they are considered as graded R-modules. Then
E gives a Frobenius structure in CA(R).

Definition 12. We define the homotopy category KA(R) of A-complexes to be the stable
category of CA(R) with respect to the above Frobenious structure.

KA(R) := CA(R)

Remark 13. There exists a notion of homotopy equivalence for a morphism f : X → Y of
A-complexes. It can be proved that the homotopy category KA(R) is isomorphic to the
residue category of CA(R) modulo homotopy equivalences.

The cohomology functor Ht(X) descend to

Ht(−) : KA(R) → RMod,X �→ Ht(X).

An A-complex X is said to be acyclic if Ht(X) = 0 for all A-module t.

Definition 14. We define the derived category DA(R) of A-complexes to be the Verdier
quotient of KA(R) by the acyclic A-complexes.

DA(R) :=
KA(R)

(Acyclic A-complexes)

An A-complex X is said to be K-projective if we have HomKA(R)(X, Y ) = 0 for any
acyclic A-complex Y . We denote by KA−Proj the full subcategory of KA(R) consisting of
K-projective A-complexes.
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Proposition 15. (1) There is a semi-orthogonal decomposition

KA(R) = ⟨KA−Proj, (Acyclic A-complexes)⟩
(2) The canonical functor induces an equivalence

KA−Proj −→ KA(R) −→ DA(R).

3. Back to N-complexes

Let BN = k[δ]/δN with deg δ = 1. Recall that CN(R) = CBN
(R).

Definition 16. For i ∈ Z, 0 < n < N , we define a graded BN -module t(i, n) to be

t(i, n) := (k[δ]/δN−n)(N − n− i)

Then we have
Ht(i,n)(X) = Hi

(n)(X)

where in the left hand side X is considered as a BN -complex and in the right hand side
as an N -complex Moreover,

Ω(t(i, n)) = t(i+ n,N − n).

Now it can be easily seen that the cohomology long exact sequence of N -complexes
(Theorem 3) is nothing but that of BN -complexes (Theorem 9). More precisely, the
sequence

→ Hi
(n)(X) → Hi

(n)(Y ) → Hi
(n)(Z) → Hi+n

(N−n)(X) → Hi+n
(N−n)(Y ) → Hi+n

(N−n)(Z) →

is equal to the sequence

→ Ht(i,n)(X) → Ht(i,n)(Y ) → Ht(i,n)(Z) → HΩ(t(i,n))(X) → HΩ(t(i,n))(Y ) → HΩ(t(i,n))(Z) →
Now we see that the periodicity of the cohomology long exact sequence of N -complexes
is a consequence of the well-known fact that the syzygy functor ΩBN

is 2-periodic up to
degree −N -shift: Ω2

BN

∼= (−N).
In the same way, we can see that the second cohomology long exact sequence for N -

complexes (Theorem 4) is nothing bu the cohomology long exact sequence for indexes
(Theorem 10), by using the following exact sequence of graded BN -modules:

0 → k[δ]

δm
(−n) → k[δ]

δn+m
→ k[δ]

δn
→ 0.

4. Iyama-Kato-Miyachi equivalence for A-complexes (Ogawa)

The Iyama-Kato-Miyachi equivalence (Theorem 5) is generalized for A-complexes by
Y. Ogawa.

Theorem 17 (Ogawa). We assume that k is an algebraically closed field. Let Λ be a
finite dimensional algebra and A := Λ ⊕ Λ∗ the trivial extension algebra equipped with
the grading that deg Λ = 0, deg Λ∗ = 1. Then there is an equivalence of triangulated
categories:

DA(R) ≃ D(Λ⊗R).
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In a nutshell, this is a relative version of Happel’s equivalence ([2]):

grmod A ≃ D(Λ).
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CLASSIFICATION OF CATEGORICAL SUBSPACES OF LOCALLY

NOETHERIAN SCHEMES

RYO KANDA

Abstract. This paper is an announcement of our results in [2]. We classify the prelo-
calizing subcategories of the category of quasi-coherent sheaves on a locally noetherian
scheme. In order to give the classification, we introduce the notion of a local filter of
subobjects of the structure sheaf. We also classify the localizing subcategories and the
closed subcategories in terms of filters.

Key Words: Locally noetherian scheme, Prelocalizing subcategory, Localizing sub-
category, Closed subcategory, Local filter.

2010 Mathematics Subject Classification: Primary 18F20; Secondary 18E15, 16D90,
13C05.

1. Gabriel’s results

Let A be a Grothendieck category. For example, the category ModΛ of right modules
over a ring Λ and the category QCoh X of quasi-coherent sheaves on a scheme X are
Grothendieck categories. In this paper, we deal with the following classes of subcategories.

Definition 1. Let Y be a full subcategory of A.

(1) Y is called a prelocalizing subcategory (or a weakly closed subcategory) if Y is closed
under subobjects, quotient objects, and arbitrary direct sums.

(2) Y is called a closed subcategory if Y is a prelocalizing subcategory closed under
arbitrary direct products.

(3) Y is called a localizing subcategory if Y is a prelocalizing subcategory closed under
extensions.

For a ring Λ, Gabriel [1] classified the prelocalizing subcategories and the localizing
subcategories of ModΛ by using the notion of filters. We define filters for objects in
Grothendieck categories.

Definition 2. Let M be an object in A. A filter (of subobjects) of M in A is a set F of
subobjects of M satisfying the following conditions.

(1) M ∈ F .
(2) If L ⊂ L′ are subobjects of M with L ∈ F , then L′ ∈ F .
(3) If L1, L2 ∈ F , then L1 ∩ L2 ∈ F .

For each subobject L of M , denote by F(L) the filter consisting of all subobjects L′ of
M with L ⊂ L′. A filter of the form F(L) is called a principal filter.

The detailed version of this paper will be submitted for publication elsewhere.
The author is a Research Fellow of Japan Society for the Promotion of Science. This work is supported

by Grant-in-Aid for JSPS Fellows 25·249.
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Remark 3. The principal filter F(L) is closed under arbitrary intersection. Conversely,
if a filter F of M is closed under arbitrary intersection, then F = F(L), where L is the
smallest element of F .

Definition 4. For a ring Λ, we say that a filter F (of right ideals) of Λ in ModΛ is
prelocalizing if for each L ∈ F and a ∈ Λ, the right ideal

a−1L = { b ∈ Λ | ab ∈ L }

of Λ belongs to F .

Note that every filter F of a commutative ring R is prelocalizing.
The following theorem is the motivating result of our study.

Theorem 5 ([1, Lemma V.2.1]). Let Λ be a ring. Then the map

{ prelocalizing subcategories of ModΛ } → { prelocalizing filters of Λ in Mod Λ }

given by

Y �→

{
L ⊂ Λ in ModΛ

∣∣∣∣
Λ

L
∈ Y

}

is bijective. The inverse map is given by

F �→ {M ∈ Mod Λ | AnnΛ(x) ∈ F for every x ∈ M }

=

〈
Λ

L
∈ Mod Λ

∣∣∣∣ L ∈ F

〉

preloc

,

where �S�preloc is the smallest prelocalizing subcategory containing the set S of objects.

By considering the principal filters, we can recover the classification of the closed sub-
categories of Mod Λ due to Rosenberg [3].

Theorem 6 (Gabriel [1, Lemma V.2.1] and Rosenberg [3, Proposition III.6.4.1]). Let Λ
be a ring. Then there exist bijections between the following sets.

(1) The set of closed subcategories of Mod Λ.
(2) The set of principal prelocalizing filters of right ideals of Λ.
(3) The set of two-sided ideals of Λ.

The bijection between (1) and (2) is induced by the bijection in Theorem 5.
The bijection between (1) and (3) is given by

(1) → (3) : Y �→
⋂

M∈Y

AnnΛ(M),

(3) → (1) : I �→ {M ∈ ModΛ | MI = 0 } =

〈
Λ

I

〉

preloc

.

Gabriel [1] also classified the localizing subcategories of ModΛ. For more details, see
[2, section 10].
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2. Classification for QCoh X

In this section, let X be a locally noetherian scheme. Its structure sheaf is denoted by
OX . We give classifications of the three classes of subcategories of QCoh X. In order to
do that, we need to refine the notion of filters.

Definition 7. Let X be a locally noetherian scheme. We say that a filter F of subobjects
of OX in QCoh X is a local filter of OX if it satisfies the following condition: let I be a
subobject of OX , and assume that for each x ∈ X, there exist an open neighborhood U
of x in X and I ′ ∈ F such that I ′|U ⊂ I|U as a subobject of OU . Then we have I ∈ F .

We can show that every principal filter of OX is a local filter. In the case where X is
noetherian, every filter of OX is a local filter.

The following theorem is our main result.

Theorem 8. Let X be a locally noetherian scheme.

(1) The map

{ prelocalizing subcategories of QCoh X } → { local filters of OX in QCoh X }

given by

Y �→

{
I ⊂ OX in QCoh X

∣∣∣∣
OX

I
∈ Y

}

is bijective. The inverse map is given by

F �→

〈
OX

I
∈ QCohX

∣∣∣∣ I ∈ F

〉

preloc

.

(2) The bijection in (1) induces bijections

{ closed subcategories of QCoh X } → { principal filters of OX }

and

{ localizing subcategories of QCoh X } → { local filters of OX closed under products }.

Corollary 9. There exist bijections between the following sets.

(1) The set of closed subcategories of QCoh X.
(2) The set of subobjects of OX in QCoh X.
(3) The set of closed subschemes of X.

The key of the proof is the fact that every prelocalizing subcategory Y of QCoh X has
the description

Y = {M ∈ QCoh X | Mx ∈ Yx for each x ∈ X }.

Example 10. Let k be an algebraically closed field, and consider the projective line
X = P

1
k. Denote by Φ the set of closed points in X. For each r ∈

∏
x∈Φ(Z≥0 ∪ {∞}), we

define the prelocalizing subcategory Yr of QCoh X by

Yr = {M ∈ QCohX | Mxm
r(x)
x = 0 for each x ∈ Φ with r(x) �= ∞}.
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The set of prelocalizing subcategories of QCoh X is{
Yr

∣∣∣∣∣ r ∈
∏

x∈Φ

(Z≥0 ∪ {∞})

}
∪ {QCoh X},

the set of localizing subcategories of QCoh X is{
Yr

∣∣∣∣∣ r ∈
∏
x∈Φ

{0,∞}

}
∪ {QCoh X},

and the set of closed subcategories of QCoh X is{
Yr

∣∣∣∣∣ r ∈
⊕
x∈Φ

Z≥0

}
∪ {QCoh X}.
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TAKING TILTING MODULES FROM THE POSET OF SUPPORT
TILTING MODULES

RYOICHI KASE

Abstract. C. Ingalls and H. Thomas defined support tilting modules for path algebras.
From τ -tilting theory introduced by T. Adachi, O. Iyama and I. Reiten, a partial order on
the set of basic tilting modules defined by D. Happel and L. Unger is extended as a partial
order on the set of support tilting modules. In this report, we study a combinatorial
relationship between the poset of basic tilting modules and basic support tilting modules.
We will show that the subposet of tilting modules is uniquely determined by the poset
structure of the set of support tilting modules.

1. Introduction

Tilting theory first appeared in an article by S. Brenner and M.C.R. Butler [2]. In
that article the notion of a tilting module for finite dimensional algebras was introduced.
Let T be a tilting module for a finite dimensional algebra Λ and let B = EndA(T ).
Then D. Happel showed that the two bounded derived categories Db(A) and Db(B)
are equivalent as triangulated category [3]. Therefore, classifying tilting modules is an
important problem.

Tilting mutation introduced by C. Riedtmann and A. Schofield [7] is an approach to this
problem. It is an operation which gives a new tilting module from given one by replacing
an indecomposable direct summand. They also introduced a tilting quiver whose vertices
are (isomorphism classes of) basic tilting modules and arrows correspond to mutations.
D. Happel and L. Unger showed that there is a partial order on the set of (isomorphism
classes of) basic tilting modules suct that its Hasse quiver coincides to tilting quiver [4, 5].
However, tilting mutation is often impossible. Support τ -tilting modules introduced by
T. Adachi,O. Iyama and I. Reiten [1] are generalization of tilting modules. They showed
that a mutation (resp. a partial order) on the set of (isomorphism classes of) basic tilting
modules is extended as an operation (resp. a partial order) on the set of (isomorphism
classes of) support τ -tilting modules and improved behavior of tilting mutation.

In path algebras case, it is known that a support τ -tilting module is a support tilting
module introduced by C. Ingalls and H. Thomas [6]. Then the main result of this report
is the following.

Theorem 1. Let Λ be a finite dimensional path algebra. Then the set of basic tilting
modules of Λ is determined by poset structure of the set of basic support tilting modules.

The detailed version of this paper has been submitted for publication elsewhere.
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2. Path algebras

Let k be an algebraically closed field and let Q be a finite quiver (=oriented graph).
We denote by Q0 (resp. Q1) the set of vertices (resp. edges) of Q. For an edge α : a → b,
we set s(α) := a, t(α) := b.

Definition 2. A sequence w = (α1|α2| · · · |αl) of Q1 is a path on Q if t(αi) = s(αi+1)
holds for any i. Then we call l the length of w and put s(w) := s(α1) t(w) := αl. We
regard a vertex a ∈ Q0 as a path of length 0 with s(ea) = a = t(ea) and denote it by ea.

Then a path algebra Λ = kQ is defined as follows:

(1) Λ =
⊕

w:path k · w.
(2) For two paths w = (α1|α2| · · · |αl), w

′ = (β1|β2| · · · |βl′), we define

w · w′ =

{
(α1|α2| · · · |αl | β1|β2| · · · |βl′) if t(w) = s(w′)

0 if t(w) ̸= s(w′).

From now on, we assume that Λ = kQ and Q has no oriented cycles (⇔ dimΛ < ∞).

3. Tilting modules and support tilting modules

In this section, we recall definitions of poset of tilting modules and poset of support
tilting modules. For a module M ∈ mod Λ with indecomposable decomposition

M ≃ ⊕m
i=1M

ri
i (i ̸= j ⇒ Mi ̸≃ Mj),

we put |M | := m. M is said to be basic if ri = 1 (∀i).

Definition 3. T ∈ mod Λ is a tilting module if T satisfies following properties.

(1) Ext1Λ(T, T ) = 0.
(2) |T | = #Q0.

We denote by tilt Λ the set of (isomorphism classes of) basic tilting modules.

Proposition 4. [4, 5] The following relation induces a partial order on tilt Λ.

T ≥ T
′ ⇔ Ext1Λ(T, T

′
) = 0.

For a module M ∈ mod Λ, we put supp(M) := {a ∈ Q0 | dim Mea > 0} and denote by
Q(M) the full subquiver of Q with Q(M)0 = supp(M).

Remark 5. We can regard M as kQ(M)-module.

Definition 6. T ∈ mod Λ is a support tilting module if T satisfies following properties.

(1) Ext1Λ(T, T ) = 0.
(2) |T | = #supp(T).

We denote by stiltΛ the set of (isomorphism classes of) support tilting module.

We note that T is support tilting if and only if Λ(T ) is tilting as kQ(T )-module.

Proposition 7. [1, 6] The following relation induces a partial order on stilt Λ.

T ≥ T ′ ⇔ Ext1Λ(T, T
′) = 0 & supp(T′) ⊂ supp(T).
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Example 8. Let Q = 1 → 2. Then stiltΛ is given by the following.

P (1)⊕ P (2)

P (1)⊕ I(1)

I(1) 0

P (2)

4. Outline of a proof

By definition of support tilting modules, we have

T ∈ stiltΛ is a tilting module ⇔ T ≥ IΛ = ⊕a∈Q0I(a).

For a non negative integer i, we define a subset Vi of Q0 as follows.

• V0 = ∅.
• Vi = Vi−1 ∪ {a ∈ Q0 | a is a source of Q \ Vi−1}.

We set Ii := ⊕a∈Vi
I(a) (I0 = 0). Then we note that Ii ∈ stiltΛ.

Lemma 9. Let i ≥ 0. Then Ii+1 is a minimum element of
∩

X∈idp(Ii)

{T ∈ stiltΛ | T ≥ X},

where idp(Ii) Ii is the set of injective direct predecessors of Ii.

Lemma 1 shows that it is sufficient to determine idp(Ii) by poset structure of stiltΛ.

4.1. Deleting non injective direct predecessors of Ii. Non injective direct predeces-
sor T satisfies one of the following.

(1) #supp(T) = #supp(Ii) + 1.
(2) #supp(T) = #supp(Ii).

We denote by Ni(p) (p = 1, 2) the set of non injective direct predecessors of Ii which
satisfies (p).

Lemma 10. Let a, b ∈ Q0. Then There is an edge a → b in Q if and only if there are
X ∈ dp(S(a)), Y ∈ dp(S(b)) such that X < Y .

Since S(a) is injective if and only if a ∈ Q0 is a source, we can determine idp(I0) by
poset structure of stilt Λ.

Lemma 11. Let T ∈ Ni(1). Then there are T ′ ∈ dp(Ii), X ∈ dp(T), Y ∈ dp(T′) such
that X > Y .

Lemma 12. Let T ∈ idp(Ii). Then for any T ′ ∈ dp(Ii), X ∈ dp(T), Y ∈ dp(T′), we have
X ̸> Y .
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Lemma 3 and Lemma 4 implies that we can delete Ni(1). For T ∈ dp(Ii) and r ∈ Z≥1,
we set

F(i, T, r) := {((Xk)k∈{0,··· ,r}, (Tk)k∈{0··· ,r−1}, (Yk)k∈{1,··· ,r−1}) | (⋆)}

where the condition (⋆) is as follows: (⋆) :=




• X0 = Ii, T0 = T
• X1 ∈ ds(Ii), Xk+1 ∈ ds(Xk)
• Tk ∈ dp(Xk) \ {Xk−1}
• Yk ∈ dp(Tk)
• Y1 ≥ T, Yk+1 ≥ Tk

Lemma 13. Let T ∈ Ni(2). Then there are r ∈ Z≥1 and ((Xk), (Tk), (Yk)) ∈ F(i, T, r)
such that for any Tr ∈ dp(Xr) \ {Xr−1} and Yr ∈ dp(Tr), we have Yr ̸≥ Tr−1.

Lemma 14. Let T ∈ idp(Ii). Then for any r ∈ Z≥1 and ((Xk), (Tk), (Yk)) ∈ F(i, T, r),
there are Tr ∈ dp(Xr) \ {Xr−1} and Yr ∈ dp(Tr) such that Yr ≥ Tr−1.

Thus we can also delete Ni(2).

Corollary 15. Let Λ and Γ be two path algebras, ρ be a poset isomorphism

ρ : stiltΛ ≃ stiltΓ.

Then the restriction of ρ to tiltΛ induces a poset isomorphism

ρ|tiltΛ : tiltΛ ≃ tiltΓ.

5. Example

We consider the following quiver Q.

1

2

3

Then stilt Λ is given by the following.

–4–



― 76 ― ― 77 ―

X3

X2

X1

Y1

Y2

Z1

Z2

W1

W2

step 1 By applying Lemma 3 and Lemma 4 to {0, X1, X2, Y1, Z1}, we can see that X1

is not injective. Similarly we have X3 is not injective. Therefore X2 is injective.
step 2 By applying Lemma 5 and Lemma 6 to {X2, Y1, Y2, Z2, W2}, we have Y2 is not

injective. Hence Y1 is injective.
step 3 We consider F(1, Z1, Y1) ∋ ((Y1, X2), (Z1), ∅). Then Y2 is a unique direct predeces-

sor of X2 and {W1,W2} is the set of direct predecessors of Y2. Since Wp ̸≥ Z1 (p =
1, 2), Lemma 5 implies that Z1 is not injective. Therefore we have IΛ = Z2.

In particular, tiltΛ is given by the following.
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ON ISOMORPHISMS OF GENERALIZED MULTIFOLD EXTENSIONS
OF ALGEBRAS WITHOUT NONZERO ORIENTED CYCLES

MAYUMI KIMURA

Abstract. We show that an algebra of the form Â/⟨ϕ⟩ where A is an algebra and ϕ is

an automorphism of Â such that ϕ(A[0]) = A[n] for some integer n is isomorphic to an

algebra of the form Â/⟨ϕ̂0ν
n
Â
⟩ where ϕ̂0 is an automorphism of Â induced by ϕ and νÂ

is the Nakayama automorphism of Â if A has no nonzero oriented cycles. Throughout
this paper we do not assume that the action of groups (or automorphisms of Â) are free.
Therefore this result give us applying a derived equivalence classification in [1] and [3]
to n = 0.

1. Introduction

Throughout this paper k is an algebraically closed field, algebras are basic finite-
dimensional k-algebras and categories are k-categories.

We say that an algebra is a generalize multifold extension of algebra A if it has the
form Â/⟨ϕ⟩ where Â is the repetitive category of Â and ϕ is an automorphism of Â
with jump n for some integer n (see Definition 1 and Proposition 2). In [3], we gave a
derived equivalence classification of generalized multifold extensions of algebras which are
piecewise hereditary of tree type (i.e., algebras are derived equivalent to some hereditary
algebra whose ordinary quiver is oriented tree) if automorphisms act on algebras have
positive jump. To give a classification, we showed that for a positive integer n ∈ Z, a
generalized n-fold extension Â/⟨ϕ⟩ is derived equivalent to T n

ϕ0
(A) := Â/⟨ϕ̂0ν

n
Â
⟩ where ϕ̂0

is the automorphism of Â naturally induced from automorphism ϕ0 := (1l[0])−1ν−n

Â
ϕ1l[0] of

A and νÂ is the Nakayama automorphism of Â. Also, we posed a following question

Problem. If A is piecewise hereditary of tree type, when are the algebras Â/⟨ϕ⟩ and T n
ϕ0
(A)

isomorphic?

In this paper we will give the answer to this question.

Acknowledgments. I would like to express my gratitude to Junichi Miyachi for suggest-
ing me the problem above. I would also like to express my gratitude to Hideto Asasiba
for his generous supports. The idea, which was essential to solve this problem, to combine
an idea in Saoŕın’s paper [7] and Lemma 12 taken from [2] was suggested by Asashiba.
I would also like to express my thanks to Manuel Saoŕın for sending me the paper [7]
(which is the original version of [6]) through Asashiba and his results are cited in section
3. Finally I would also like to thank Steffen Koenig for informing me the proof of Lemma
18 through Asashiba.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Preliminaries

For a category R we denote by R0 and R1 the class of objects and morphisms of R,
respectively. A category R is said to be locally bounded if it satisfies the following:

• Distinct objects of R are not isomorphic;
• R(x, x) is a local algebra for all x ∈ R0;
• R(x, y) is finite-dimensional for all x, y ∈ R0; and
• The set {y ∈ R0 | R(x, y) ̸= 0 or R(y, x) ̸= 0} is finite for all x ∈ R0.

A category is called finite if it has only a finite number of objects.
A pair (A,E) of an algebra A and a complete set E := {e1, . . . , en} of orthogonal

primitive idempotents of A can be identified with a locally bounded and finite category
R by the following correspondences. Such a pair (A,E) defines a category R(A,E) := R
as follows: R0 := E, R(x, y) := yAx for all x, y ∈ E, and the composition of R is
defined by the multiplication of A. Then the category R is locally bounded and finite.
Conversely, a locally bounded and finite category R defines such a pair (AR, ER) as follows:
AR :=

⊕
x,y∈R0

R(x, y) with the usual matrix multiplication (regard each element of A as

a matrix indexed by R0), and ER := {(1lxδ(i,j),(x,x))i,j∈R0 | x ∈ R0}. We always regard
an algebra A as a locally bounded and finite category by fixing a complete set A0 of
orthogonal primitive idempotents of A.

Definition 1. Let A be a locally bounded category.
(1) The repetitive category Â of A is a k-category defined as follows (Â turns out to be

locally bounded again):

• Â0 := A0 × Z = {x[i] := (x, i) | x ∈ A0, i ∈ Z}.

• Â(x[i], y[j]) :=




{f [i] | f ∈ A(x, y)} if j = i,

{ϕ[i] | ϕ ∈ DA(y, x)} if j = i+ 1,

0 otherwise,

for all x[i], y[j] ∈ Â0.

• For each x[i], y[j], z[k] ∈ Â0 the composition Â(y[j], z[k])× Â(x[i], y[j]) → Â(x[i], z[k])
is given as follows.
(i) If i = j, j = k, then this is the composition of A A(y, z)×A(x, y) → A(x, z).
(ii) If i = j, j + 1 = k, then this is given by the right A-module structure of DA:

DA(z, y)× A(x, y) → DA(z, x).
(iii) If i + 1 = j, j = k, then this is given by the left A-module structure of DA:

A(y, z)×DA(y, x) → DA(z, x).
(iv) Otherwise, the composition is zero.

(2) We define an automorphism νA of Â, called the Nakayama automorphism of Â, by
νA(x

[i]) := x[i+1], νA(f
[i]) := f [i+1], νA(ϕ

[i]) := ϕ[i+1] for all i ∈ Z, x ∈ A0, f ∈ A1, ϕ ∈∪
x,y∈A0

DA(y, x).

(3) For each n ∈ Z, we denote by A[n] the full subcategory of Â formed by x[n] with

x ∈ A, and by 1l[n] : A
∼
→ A[n] �→ Â, x �→ x[n], the embedding functor.

We cite the following [3, Proposition 1.6.].

Proposition 2. Let A be an algebra, n an integer, and ϕ an automorphism of Â. Then
the following are equivalent:
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(1) ϕ is an automorphism with jump n;
(2) ϕ(A[i]) = A[i+n] for some integer i;
(3) ϕ(A[j]) = A[j+n] for all integers j; and

(4) ϕ = ϕLν
n
A for some automorphism ϕL of Â with jump 0.

(5) ϕ = νn
AϕR for some automorphism ϕR of Â with jump 0.

We cite the following from [1, Lemma 2.3].

Lemma 3. Let ψ : A → B be an isomorphism of locally bounded categories. Denote
by ψy

x : A(y, x) → B(ψy, ψx) the isomorphism defined by ψ for all x, y ∈ A. Define

ψ̂ : Â → B̂ as follows.

• For each x[i] ∈ Â, ψ̂(x[i]) := (ψx)[i];

• For each f [i] ∈ Â(x[i], y[i]), ψ̂(f [i]) := (ψf)[i]; and

• For each ϕ[i] ∈ Â(x[i], y[i+1]), ψ̂(ϕ[i]) := (D((ψy
x)

−1)(ϕ))[i] = (ϕ ◦ (ψy
x)

−1)[i].

Then

(1) ψ̂ is an isomorphism.

(2) Given an isomorphism ρ : Â → B̂, the following are equivalent.

(a) ρ = ψ̂;
(b) ρ satisfies the following.

(i) ρνA = νBρ;
(ii) ρ(A[0]) = A[0];
(iii) The diagram

A
ψ−−−→ B

1l[0]

�
�1l[0]

A[0] −−−→
ρ

B[0]

is commutative; and
(iv) ρ(ϕ[0]) = (ϕ ◦ (ψy

x)
−1)[0] for all x, y ∈ A and all ϕ ∈ DA(y, x).

3. Automorphisms of repetitive category with jump 0

Throughout this section A is an algebra. We set Aut0(Â) to be the group of all auto-

morphisms of Â with jump 0.

Lemma 4. Let ϕ ∈ Aut0(Â). Then ϕ gives a family of k-linear maps (ϕi, fi)i∈Z, where
ϕi is an automorphism of A and fi : A → A is a bijective ϕi-ϕi+1-semilinear map for all
i ∈ Z.

Proof. Let i ∈ Z. Then by definition, we have ϕ(A[i]) = A[i]. We set ϕi := (1l
[i]
A )

−1ϕ1l
[i]
A :

A → A , then ϕi is an automorphism of A. On the other hand, also by definition, we have
ϕ(DA[i]) = DA[i] . Hence we get a bijective k-linear mapD(f−1

i ) := D(1lA[i])ϕ(D(1lA[i]))−1 :
A → A. For morphisms a, b ∈ A1 and µ∗ ∈ DA1, b

[i+1]µ∗[i]a[i] = (aµ∗b)[i] ∈ DA[i] and

ϕ(b[i+1]µ∗[i]a[i]) = ϕ(b[i+1])ϕ(µ∗[i])ϕ(a[i]).
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Since
LHS = (D(f−1

i )(aµ∗b))[i] = ((aµ∗b)f−1
i )[i]

and
RHS = ϕi+1(b)

[i+1](D(f−1
i )(µ∗))[i]ϕi(a)

[i] = ϕi+1(b)
[i+1](µ∗f−1

i )[i]ϕi(a)
[i],

we have fi(aαb) = ϕi(a)fi(α)ϕi+1(b) for each α ∈ A1, which shows that fi is ϕi-ϕi+1-
semilinear. □

We identify ϕ with (ϕi, fi)i∈Z and write ϕ = (ϕi, fi)i∈Z.

For ψ ∈ Aut(Â) with jump n ∈ Z, we also get a family of k-linear maps by following

way. By Proposition 2, there exists an automorphism ψR = (ψRi, fi)i∈Z of Â with jump 0
such that ψ = νn

AψR. We can define (ψi, gi)i∈Z by ψi := ψRi, gi := fi for all i ∈ Z.

Remark 5. We can define a group homomorphism Ψ : Aut0(Â) → Aut(A) by Ψ(ϕ) := ϕ0

for all ϕ ∈ Aut0(Â). Then we have σ̂ ∈ Aut0(Â) and Ψ(σ̂) = σ for all σ ∈ Aut(A) by
lemma 3. Thus Ψ is an epimorphism, in particular split epimorhism.

Clearly an automorphism ϕ in the kernel of Ψ is whose ϕ0 is the identity of A. Therefore
to see the kernel of Ψ more particularly, we are interested to construct an automorphism
of Â from the identity of A.

Definition 6. We define a map ξ : (k×)A0 → Aut(A) by

ξ(λ)(e) := e

and
ξ(λ)(a) := λ(t(a))−1λ(s(a))a

for all λ = (λ(x))x∈A0 ∈ (k×)A0 , all objects e and morphisms a in A.
Then ξ is a group homomorphism.

Lemma 7. Let λ = (λi)i∈Z ∈ (k×)Â0 (We regard (k×)Â0 = ((k×)A0)Z by the canonical

isomorphism (k×)Â0 = (k×)A0×Z ∼= ((k×)A0)Z). Then a family (ϕi, fi)i∈Z of maps where

ϕi :=




ξ(λiλi+1 · · ·λ−1) if i < 0

1lA if i = 0

ξ(λ0λ1 · · ·λi−1) if i > 0

and fi : A → A is defined by fi(a) := λi(s(a))ϕi(a)(= λi(t(a))ϕi+1(a)) for a ∈ A1, gives

an automorphism of Â with jump 0.

We assume the following property which is necessary for our purpose.

Definition 8. If eAe ∼= k for all primitive idempotents of A, then A is said to have no
nonzero oriented cycles.

Let A := kQ/I where Q is a quiver and I is an admissible ideal of kQ. The definition
8 means that I contains all cycles in Q.

Proposition 9. Assume that A has no nonzero oriented cycles. Then there is an exact
sequence of groups

1 → (k×)Â0 Φ−→ Aut0(Â)
Ψ−→ Aut(A) → 1.
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Proof. For λ ∈ (k×)Â0 , we define Φ(λ) the automorphism constructed by Lemma 7. Since
ξ is group homomorphism, clearly Φ is a group homomorphism. First, we show that Φ
is injective. If Φ(λ) = 1lÂ, then ϕi = 1lA and D(f−1

i ) = 1lDA for all i ∈ Z. By induction,
the former implies that ξ(λi) = 1lA for all i ∈ Z. Hence for each i ∈ Z, we get an element
ki ∈ k× such that fi = ki1lA for all x ∈ A0. Therefore D(f−1

i ) = λ−1
i 1lDA = 1lDA, so that

ki = 1 for all i ∈ Z. This shows that Φ is injective.
Next we show that ImΦ = KerΨ. We easily have ΨΦ = 1 by definition, hence it

is enough to show ImΦ ⊇ KerΨ. Let ψ = (ψi, gi)i∈Z ∈ KerΨ. Since gi is a ψi-ψi+1-
semilinear bijection, the equality ψ0 = 1lA imply that gi(x) = gi(x

3) = ψi(x)gi(x)ψi+1(x) =
xgi(x)x for all x ∈ A0. Hence gi(x) ∈ xAx = kx, because A have no nonzero oriented
cycles. Therefore we get λi(x) ∈ k× such that gi(x) = λi(x)x for each i ∈ Z and x ∈ A0.
We claim that ψ = Φ(λ). Set Φ(λ) = (ϕi, fi)i∈Z. To see that, we take an arbitrary
morphism a ∈ A(x, y). If ϕi = ψi for all i ∈ Z, then

fi(a) = λi(x)ϕi(a)

= λi(x)ψi(a)

= λi(x)ψi(ax)

= ψi(a)λi(x)ψi(x)

= ψi(a)λi(x)x

= ψi(a)gi(x)

= gi(a).

Hence we check that ψi = ξ(λ0λ1 · · ·λi−1) for all 0 ≤ i ∈ Z and ψi = ξ(λiλi+1 · · ·λ−1)
−1

for all 0 > i ∈ Z. We prove by induction on 0 ≤ i ∈ Z the first equality, the other one
following in a similar way. Since ψ0 = 1lA = ϕ0, it is enough to show it in the case that
1 ≤ i. For any morphism a ∈ A(x, y),

ϕi(a) = ξ(λ0λ1 · · ·λi−1)(a)

= λ0 · · ·λi−1(x)(λ0 · · ·λi−1(y))
−1a

= λi−1(x)(λi−1(y))
−1ψi−1(a)

= λi−1(x)(λi−1(y))
−1ψi−1(a)x

= (λi−1(y))
−1ψi−1(a)gi−1(x)

= (λi−1(y))
−1gi−1(a)

= (λi−1(y))
−1gi−1(ya)

= (λi−1(y))
−1gi−1(y)ψi(a)

= yψi(a)

= ψi(a)

as desired. □

Remark 10.

(1) By Remark 5, the exact sequence in Proposition 9 splits. Therefore an auto-

morphism of Â with jump is characterized by an automorphism of A and a map
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from Â0 to k×. Let ϕ = (ϕi, fi)i∈Z be an automorphism of Â with jump. For all
morphism a ∈ A(x, y),

fi(a) = ϕi(a)fi(x) = fi(y)ϕi+1(a)

and
fi(x) = fi(x

3) = ϕi(x)fi(x)ϕi+1(x).

By Proposition 2, ϕi(x) = ϕi+1(x) therefore fi(x) ∈ ϕi(x)Aϕi(x) = kϕi(x). Hence
we get λi(x) ∈ k such that fi(x) = λi(x)ϕi(x) and

ϕi+1(a) = λi(x)(λi(y))
−1ϕi(a).

(2) In [5, section 3] automorphisms of repetitive category with jump 0 is characterized
in general case i.e., it does not assume that algebras have no nonzero oriented
cycles, and automorphisms are ”algebra automorphisms”. In their results, the left
term of exact sequence is given by U(A)Z where U(A) is the set of all units in A.

4. Orbit categories

Throughout this section G is a group. A pair (C, A) of a category and a group homo-
morphism A : G → Aut(C) (we write Aα := A(α)) is called a category with G-action.

We cite the following definition and lemma from [2, Section 4].

Definition 11. Let (C, A), (C ′, A′) be categories with G-actions and F : C → C ′ a functor.
Then an equivariance adjuster of F is a family η = (ηα)α∈G of natural isomorphisms
ηα : A′

αF ⇒ FAα (α ∈ G) such that the following diagram commutes for each α, β ∈ G

A′
βαF = A′

βA
′
αF A′

βFAα

FAβα = FAβAα

ηβα �����
����

����
���

A′
βηα ��

ηβAα

��

and a pair (F, η) is called a G-equivariant functor.

Lemma 12. Let (C, A), (C′, A′) be categories with G-actions, and (F, η) : C → C ′ a
G-equivariant equivalence. Then C/G and C ′/G are equivalent.

Proposition 13. Let R be a locally bounded category, and g, h automorphisms of R.
If there exists a map ρ : R0 → k× such that ρ(y)g(f) = h(f)ρ(x) for all morphisms
f ∈ R(x, y), then R/⟨g⟩ ∼= R/⟨h⟩.
Remark 14. Proposition 13 does not assume free actions. Therefore we extend a derived
equivalence classification in [3] to ”0-fold” case.

5. Main results

Throughout this section we assume that A is an algebra without nonzero oriented cycles
unless we note.

Lemma 15. Let ϕ and ψ be automorphisms of Â with jump n ∈ Z. If there exists a
map ρ0 : A0 → k× such that ρ0(y)ϕ0(a) = ψ0(a)ρ0(x) for all morphisms a ∈ A(x, y), then

Â/⟨ϕ⟩ and Â/⟨ψ⟩ are isomorphic.
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Theorem 16. Let ϕ and ψ be automorphisms of Â with jump n ∈ Z. If there exist
i, j ∈ Z and ρ : A0 → k× such that ρ(y)ϕi(a) = ψj(a)ρ(x) for all morphisms a ∈ A(x, y),

then Â/⟨ϕ⟩ and Â/⟨ψ⟩ are isomorphic.

Proof. By Remark 10(1), we get each of the elements ((λk(x))x∈A0)k∈Z, ((µk(x))x∈A0)k∈Z ∈
((k×)A0)Z from ϕ and ψ. Define ρ0 : A0 → k× by

ρ0(x) :=




(λj · · ·λ−1(x))
−1µi · · ·µ−1(x)ρ(x) if i, j < 0

λ0 · · ·λj(x)µi · · ·µ−1(x)ρ(x) if i < 0, j > 0

(λj · · ·λ−1(x))
−1(µ0 · · ·µi(x))

−1ρ(x) if i > 0, j < 0

λ0 · · ·λj(x)(µ0 · · ·µi(x))
−1ρ(x) if i, j > 0

for all x ∈ A0. Then for a morphism a ∈ A(x, y),

ρ(y)ϕi(a) = ρ(y)((λi−1(x))
−1λi−1(y)ϕi−1(a))

= ρ(y)(λi−1(x))
−1λi−1(y)((λi−2(x))

−1λi−2(y)ϕi−2(a))
...

= ρ(y)(λ0 · · ·λi−2λi−1(x))
−1λ0 · · ·λi−2λi−1(y)ϕ0(a)

and similarly

ψj(a)ρ(x) = (µ0 · · ·µj−2µj−1(x))
−1µ0 · · ·µj−2µj−1(y)ψ0(a)ρ(x).

Hence we get ρ0(y)ϕ0(a) = ψ0(a)ρ0(x). By Lemma 15, Â/⟨ϕ⟩ and Â/⟨ψ⟩ are isomorphic.
□

Corollary 17. Let ϕ be an automorphism of Â with jump n ∈ Z. Then Â/⟨ϕ⟩ and T n
ϕ0
(A)

are isomorphic.

What we want to know is when Â/⟨ϕ⟩ and T n
ϕ0
(A) are isomorphic if A is piecewise

hereditary algebra of tree type. The following lemma gives us the answer.

Lemma 18. A piecewise hereditary algebra has no nonzero oriented cycles.

Proof. If A is a piecewise hereditary algebra, then there is a tilting complex T on a
hereditary algebraH such that A ∼= End(T ). For all idempotents e in A, eAe is isomorphic
to End(Te) where Te is a direct summand of T . By [4, Corollary 5.5], eAe is a piecewise
hereditary algebra because Te is a partial tilting complex. Since piecewise hereditary
algebras have finite global dimension and eAe is local, eAe is isomorphic to k. Hence A
have no nonzero oriented cycles if A is a piecewise hereditary algebra. □

Corollary 19. Let A be a piecewise hereditary algebra and ϕ be an automorphism of Â
with jump n ∈ Z. Then Â/⟨ϕ⟩ and T n

ϕ0
(A) are isomorphic.
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[6] M. Saoŕın, Automorphism groups of trivial extensions, J. Pure Appl. Algebra 166 (2002), no. 3,
285-305.

[7] , Automorphism groups of trivial extension and repetitive algebras (unpublished paper).

Graduate School of Science and Technology
Shizuoka University
836 Ohya, Suruga-ku, Shizuoka, 422-8529 JAPAN

E-mail address: shirakawasanchi@gmail.com

–8–



― 86 ― ― 87 ―

TILTING OBJECTS IN STABLE CATEGORIES
OF PREPROJECTIVE ALGEBRAS

YUTA KIMURA

Abstract. In this paper, we construct a tilting object in stable categories of factor
algebras of preprojective algebras. In [4], for a finite acyclic quiver Q and its preprojec-
tive algebra Π, Buan-Iyama-Reiten-Scott introduced and studied the factor algebra Πw

associated with an element w in the Coxeter group of Q. The algebra Πw has a natural
Z-grading, and we prove that SubZΠw has a tilting object if w is a c-sortable element.

1. Introduction

The preprojective algebra Π of a finite acyclic quiver Q has an important role in rep-
resentation theory of algebras. One of them is categorifications of cluster algebras in-
troduced by Fomin-Zelevinsky [6]. In the study of categorifications of cluster algebras,
2-Calabi-Yau triangulated categories (2-CY for short) and their cluster tilting objects are
important.

If Q is a Dynkin quiver, then the preprojective algebra Π of Q is a finite dimensional
selfinjective algebra and Geiss-Leclerc-Schröer showed that the stable category modΠ is a
2-CY category and modΠ has cluster tilting objects [7]. If Q is finite acyclic non-Dynkin
quiver, Buan-Iyama-Reiten-Scott introduced and studied the factor algebra Πw associated
with an element w in the Coxeter group of Q [4]. They showed that the stable category
of SubΠw is a 2-CY category and has cluster tilting objects, where SubΠw is the full
subcategory of modΠw of submodules of finitely generated free Πw-modules.
There are other classes of 2-CY triangulated categories. For a finite dimensional algebra

A of finite global dimension, the cluster category CA were introduced [1, 5]. The category
CA is a 2-CY category and has cluster tilting objects. Amiot-Reiten-Todorov [3] showed
that there are close connections between 2-CY categories SubΠw and CA. That is, for
any finite acyclic quiver Q and any element w of the Coxeter group, there is a triangle
equivalence

SubΠw ≃ CAw

for some finite dimensional algebra Aw of global dimension at most two.
The aim of this paper is to construct a derived category version of this equivalence. More

precisely, we regard Πw as a Z-graded algebra and consider the stable category SubZΠw

of graded Πw-submodules of graded free Πw-modules. Then we construct a tilting object
in SubZΠw.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Preliminaries

Through out this paper, let k be an algebraically closed field. By a module, we mean a
left module unless stated otherwise. In this section, we give definitions used in the next
section.

Definition 1. Let Q be a finite acyclic quiver.

(1) The double quiver Q = (Q0, Q1, s, t) of Q is defined by Q0 = Q0, Q1 = Q1 ⊔ {ᾱ |
α ∈ Q1}, where s(ᾱ) = t(α), t(ᾱ) = s(α) for all α ∈ Q1.

(2) Then we have the preprojective algebra Π of Q by

Π := kQ/⟨
∑
β∈Q1

ββ̄ − β̄β⟩.

In this paper, we assume Q is non-Dynkin quiver, that is, the underlying graph of Q
is not a simply laced Dynkin diagram. Note that, if Q is non-Dynkin quiver, then the
preprojective algebra of Q is not a finite dimensional algebra. Next we define the Coxeter
group of Q.

Definition 2. The Coxeter group W of a quiver Q is the group generated by the set
{si | i ∈ Q0} with relations

• s2i = 1,
• sjsi = sisj if there are no arrows between i and j,
• sisjsi = sjsisj if there is exactly one arrow between i and j.

An expression w = si1si2 . . . sil is reduced if for any other expression w = si1si2 · · · sim ,
we have l ≤ m.

Let i be a vertex of Q. We define the two-sided ideal Ii of Π by

Ii := Π(1− ei)Π,

where ei is the idempotent associated to i. Let w = si1si2 . . . sil be a reduced expression
of w. We define a two-sided ideal Iw of Π by

Iw := Ii1Ii2 · · · Iil .
Note that, an ideal Iw is independent of the choice of a reduced expression of w by [4,
Theorem III. 1.9]. In [4], the authors studied the algebra Π/Iw.

Let modΠw be the category of finitely generated Πw-modules. We denote by SubΠw

the full subcategory of modΠw of submodules of finitely generated free Πw-modules.

Proposition 3. [4] Let Q be a finite acyclic non-Dynkin quiver. For an element w of the
Coxeter group of Q, we have the following results.

(a) The algebra Πw is finite dimensional and inj.dim(ΠwΠw) ≤ 1.
(b) The category SubΠw is a Frobenius category.
(c) The stable category SubΠw is 2-Calabi-Yau triangulated category, that is, for

any objects X, Y ∈ SubΠw, there is a functorial isomorphism HomΠw
(X, Y ) ≃

DHomΠw
(Y,X[2]), where D = Homk( , k).

(d) For any reduced expression w = si1si2 · · · sil, the object T =
⊕l

j=1 Πsi1si2 ···sij is a

cluster tilting object of SubΠw.
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Next we consider the grading of a preprojective algebra. We regard the path algebra
kQ as a Z-graded k-algebra by the following grading:

deg β =

{
1 β = ᾱ, α ∈ Q1

0 β = α, α ∈ Q1.

Since the element
∑

β∈Q1

(ββ̄ − β̄β) in kQ is homogeneous of degree 1, the grading of kQ

naturally gives a grading on the preprojective algebra Π =
⊕
i≥0

Πi.

Remark 4. (a) We have Π0 = kQ, since Π0 is spanned by all paths of degree 0.
(b) For any w ∈ W the ideal Iw of Π is a graded ideal of Π since so is each Ii.
(c) In particular, the quotient algebra Πw is a graded algebra.

For a graded module M =
⊕
i∈Z

Mi and an integer j, we define a new graded module

M(j) by (M(j))i = Mi+j. For any integer j, we define a graded submodule M≥j of M by

(M≥j)i =

{
Mi i ≥ j

0 else

and a graded factor module of M by M≤j = M/M≥j+1.

Let modZΠw be the category of finitely generated Z-graded Πw-modules with degree
zero morphisms. We denote by SubZΠw the full subcategory of modZΠw of submodules of
graded free Πw-modules, that is,

SubZΠw =

{
X ∈ modZΠw | X ⊂

m⊕
j=1

Πw(ij), ij ∈ Z
}
.

By Proposition 3 (a), SubZΠw is a Frobenius category. Then we have a triangulated
category SubZΠw. In this paper, we get a tilting object in this category.

3. c-sortable words and grading

In this section, we define a c-sortable words of the Coxeter group of Q and calculate
the graded structure of Πw.

Definition 5. Let Q be a finite acyclic quiver with vertices Q0 = {1, 2, . . . , n} and W be
the Coxeter group of Q.

(1) An element c inW is called a Coxeter element if c has an expression c = si1si2 . . . sin ,
where i1, . . . , in is a permutation of 1, . . . , n.

(2) A Coxeter element c = si1si2 . . . sin in W is said to be admissible with respect to
the orientation of Q if c satisfies eij(kQ)eik = 0 for k < j.

Since Q is acyclic, W has a Coxeter element c admissible with respect to the orientation
of Q. There are some expression of c = si1si2 . . . sin satisfying {i1, . . . , in} = {1, . . . , n}
and eij(kQ)eik = 0 for k < j. However, it is shown that c is uniquely determined as an
element of W . From now on, we call a Coxeter element admissible with respect to the
orientation of Q simply a Coxeter element.

Then we define a c-sortable words.
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Definition 6. Let c be a Coxeter element of W . An element w ∈ W is said to be c-
sortable if there is a reduced expression w = c(0)c(1) · · · c(l), where each c(i) is subsequence
of c and

Supp(c(l)) ⊂ Supp(c(l−1)) ⊂ · · · ⊂ Supp(c(0)) ⊂ Q0,

where Supp(c(i)) is the set of ij such that sij appears in c(i).

Example 7. Let Q =
1

2 3
����
��

��
���

��
�

. A Coxeter element is c = s3s2s1. Then an element

w = s3s2s1s3s2s3 is a c-sortable element. Actually, c(0) = s3s2s1, c
(1) = s3s2, and c(2) = s3.

If w = c(0)c(1) · · · c(l) is a c-sortable element, then the grading of Πw is calculated as
follows.

Proposition 8. Let w = c(0)c(1) · · · c(l) ∈ W be a c-sortable element. If i ≤ l, then we
have (Πw)≤i = (Πc(0)c(1)···c(i))≤i = Πc(0)c(1)···c(i). If i > l, then we have (Πw)≥i = 0.

4. Main theorem

In this section, we state the main theorem of this paper. Let T be a triangulated
category. Recall that, an object M in T is called a tilting object if following holds.

• HomT (M,M [j]) = 0 for any j ̸= 0,
• thickM = T , where thickM is the smallest triangulated full subcategory of T
containing M and closed under direct summands.

Let T be the stable category of a Frobenius category, and assume that T is Krull-
Schmidt. If there is a tilting object M in T , then it follows from [8, (4.3)] that we have
a triangle equivalence

T ≃ Kb(proj EndT (M)),

where Kb(proj EndT (M)) is the homotopy category of bounded complexes of projective
EndT (M)-modules.

Theorem 9. Let w = si1si2 · · · sil be a c-sortable element. For an integer 1 ≤ j ≤
l, let mj be the number of integers 1 ≤ k ≤ j − 1 satisfying ij = ik. Then M =⊕l

j=1 Π/Isi1 ···sij eij(mj) is a tilting object in SubZΠw.

Actually, the module M =
⊕l

j=1 Π/Isi1 ···sij eij(mj) belongs to SubZΠw, since M cor-

responds to the cluster tilting object of SubΠw of Proposition 3 (d) by forgetting the
grading.

The first condition of tilting objects follows from Proposition 8 and calculating a pro-
jective resolution of M . The second condition of tilting objects follows from the following
Theorem which is shown in [2]. For a c-sortable element w = si1si2 · · · sil and i ∈ Supp(w),
let ti be the number of integers 1 ≤ k ≤ l satisfying ik = i.

Theorem 10. [2, Theorem 3.11] Let w = si1si2 · · · sil be a c-sortable element. Then⊕
i∈Q′

0
(Πwei)ti−1 is a tilting kQ′-module, where Q′ is the full subquiver of Q such that

Q′
0 = Supp(w).
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Example 11. Let Q be a quiver
1

2 3
�����

��

��
����

��� . Then we have a graded algebra Π = Πe1 ⊕

Πe2 ⊕ Πe3, and these are represented by their radical filtrations

1

2

3

1

2

3

3

1 2

2 3 1

3 1 2 3

1 2 3 1 2

��� ���

���

��� ��� ���

��� ��� ��� ��� ���

��� ��� ��� ���

��� ��� ��� ��� ��� ���

2

3

1

2

3

1

1

2 3

3 1 2

1 2 3 1

2 3 1 2 3

���

��� ���

��� ��� ���

��� ��� ��� ���

��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

3

1

2

3

1

2

2

3 1

1 2 3

2 3 1 2

3 1 2 3 1

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

where numbers connected by solid lines are in the same degree, and the tops of the Πei
are concentrated in degree 0.

Let w = s3s2s1s3s2s3, then we have a graded algebra Πw = Πwe1 ⊕ Πwe2 ⊕ Πwe3,

1

2

3

3
��� ���

���

2

3

1

2

3

1

2 3

3

���

��� ���

��� ��� ���

���

3

1

2

3

2

3 1

3

��� ��� ���

��� ���

and a tilting module

M = 3⊕
2

3
��� ⊕




3

1

2

3

2

3
(1)��� ��� ���

���




in SubZΠw, where graded projective Πw-modules are removed. The endomorphism algebra
EndZ

Πw
(M) of M is given by the following quiver with relations

∆ = • •b�� •a�� ba = 0.

Since the algebra k∆/⟨ba⟩ has global dimension two, we have a triangle equivalence

SubZΠw ≃ Kb(proj k∆/⟨ba⟩) ≃ Db(k∆/⟨ba⟩).
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A CHARACTERIZATION OF THE CLASS OF HARADA RINGS

KAZUTOSHI KOIKE (小池寿俊)

Abstract. One-sided Harada rings are certain artinian QF-3 rings, which can be re-
garded as a generalization of QF rings and serial rings (Nakayama rings). It is well-known
that every left Harada ring can be represented by a upper staircase factor ring of a block
extension of a QF ring. In this paper, we shall give a slightly different construction and
characterization of left Harada rings by characterizing the class of left Harada rings.

1. 研究の動機

片側原田環はある種のQF-3両側アルチン環であり，QF環や serial環 (中山環)の一般
化と見なすことができる．原田環の性質や構造は，大城を中心として詳しく調べられてお
り，非常に多くの特徴付けが得られている．ここでは次を定義とする．なお，片側原田環
であるという性質は森田不変であることが知られているので，基本的 (basic)な場合の定
義を与える．

Definition 1. 基本的な両側アルチン環Rが左原田環であるとは，次の条件を満たす直交
原始べき等元の完全集合 {eij | i = 1, . . . ,m, j = 1, . . . , n(i)}をもつことをいう．

(1) 任意の i = 1, · · · ,mに対して，ei1Rは入射的右R加群である．
(2) 任意の i = 1, · · · ,m, j = 1, · · · , n(i) − 1に対して，J(eijRR) ∼= ei,j+1RRが成り
立つ．

Remark 2. 上の定義は実際には右余原田環と呼ばれる環のそれである．余原田環は，原
田環と双対的な性質を満たす環であるが，大城によって左原田環と右余原田環の概念は一
致することが示された．そのため，最近では右余原田環の性質に基づいた記述をする場合
でも，左原田環と呼ぶことが多い．本論文でも左原田環と呼ぶが，用いるのはほとんどが
右余原田環の性質である．

左原田環について次の構造定理が知られている．

Theorem 3 (大城 [1, Chapter 4]). すべての基本的左原田環は，あるQF環のブロック拡
大の上階段型剰余環で表される．

ここでブロック拡大について説明しておこう．一般の場合も同様なので簡単な例で述べ
ると，Rが基本的半完全環で，2個から成る直交原始べき等元の完全集合 {e1, e2}をもつ
場合，Rは行列表現 (ピアス分解)

R =

(
A X
Y B

)

The detailed version of this paper will be submitted for publication elsewhere.
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をもつ．ただし，A = e1Re1, B = e2Re2, X = e1Re2, Y = e2Re1である．ブロック拡大と
は，次のようなRと森田同値な環 T の部分環 Sのことである．

S =




A A A X X
J(A) A A X X
J(A) J(A) A X X
Y Y Y B B
Y Y Y J(B) B




⊂




A A A X X
A A A X X
A A A X X
Y Y Y B B
Y Y Y B B




= T.

ただし，J(A), J(B)は radical表す．大城はこのSをRのブロック拡大と呼び，R(3, 2)で
表した．一般のブロック拡大も同様に定義される．なお，ブロック拡大は blow-upとも呼
ばれる ([4, Chapter 6])．
このようにブロック拡大は難しいものではないが，一般に記述が少し大変である．ま

た Theorem 3の上階段型剰余環については，剰余を取るイデアルの記述自体も容易では
なく，左原田環を得るためにどのようなイデアルで割ることが本質的なのかも分かりにく
かった．
本論文の目的は，基本的QF環を含み，1個のべき等元を添加したブロック拡大と，あ

る種の「単純」イデアルによる剰余環 (組成列の長さが 1だけ小さくなる)を取るという
操作が，基本的左原田環全体のクラスを特徴付けることを示し，このような操作を繰り返
すことにより，すべての左原田環が構成されることを述べることである．また，この構成
方法について quiverによる具体例で詳しく説明する．
以下，本論文において，Rは単位元をもつ半完全環とし，右R加群Mに対して，J(M)

と S(M)でそれぞれM の radicalと socleを表す．Si(M) (i = 1, 2, . . . )でM の i-th socle
を表し，T (M)でM の topを表す．すなわち T (M) = M/J(M)とする．Pi(R)で，固定
したRの 1つの直交原始べき等元の完全集合を表す．

2. 主結果と例

まず主結果を述べる．そのためには，原田環の研究において重要な役割を果たす，ある
拡大環 (単位元は共有しない)を定義しておかなければならない．Rを基本的半完全環と
するとき，e ∈ Pi(R)に対して，環Reを次の行列環によって定める．

Re =

(
R Re

J(eR) eRe

)
.

明らかにReも基本的半完全環である．Pi(R) = {e1, . . . , ei, . . . , en}，e = eiのとき，Reは
大城 [1, Chapter 4]の意味のRのブロック拡大R(1, · · · , 2, · · · , 1) に他ならない．Reは次
の 2つの原始べき等元をもつ．

ẽ =

(
e 0
0 0

)
, ê =

(
0 0
0 e

)
.

これらについて，右Re加群として J(ẽRe) ∼= êReが成り立っている．後で述べる quiver
の形からも，ReはRに eのコピー êを添加した拡大環であると見なすことができる．
次が本論文の主結果である．

Theorem 4. 基本的左原田環全体のクラスをHとするとき，Hは次の性質を満たす．
(I) Hはすべての基本的QF環を含んでいる．
(II) R ∈ H, e ∈ Pi(R)ならばRe ∈ Hである．
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(III) R ∈ Hで，e, f ∈ Pi(R)が
(i) eRRは入射的で S(eRR) ∼= T (fRR);
(ii) fRRは入射的でない
を満たすならば，R/S(eRR) ∈ Hである．

(IV) R ∈ Hで，e, g ∈ Pi(R)が
(i) eRRは入射的である;
(ii) eR/S(eRR) ∼= J(gRR)
を満たすならば，R/S(eRR) ∈ Hである．

逆に，Hは性質 (I)–(IV)を満たす最小の環のクラスである．

Remark 5. (1) Hの最小性より，すべての基本的左原田環は
• 基本的QF環を取る
• (II), (III), (IV)の操作を繰り返す

ことによって得られる．性質 (I)–(IV)は左原田環の一種の「公理」と見なすことができる．
(2) 記述を簡単にするため (IV)の表現としたが，Rが斜体の場合に適用すると，Hは

零環を含んでしまう．R ∈ Hに斜体でないという条件をつけておけば，Hは零環を含ま
ない．

Theorem 4の状況を例で説明する前に，Rが体上道多元環の剰余環の場合のReのquiver
の形を述べておく．なお，一般のブロック拡大の quiver表現については山浦 [5]で求めら
れているが，次のようにReの方が当然記述は簡単になる．

Proposition 6. Kを体，Q = (Q0, Q1, s, t)を有限 quiver，Iを道多元環KQの許容イデ
アルとし，R = KQ/I とおく．i ∈ Q0を固定し，対応する Rの原始べき等元を eiとす
る．このとき，R̃ = Rei の quiver Q̃ = (Q̃0, Q̃1) と許容イデアル Ĩは次のようにして与え
られる．
【頂点】Q̃の頂点は，Qの頂点に iのコピー îを付け加えたものである: Q̃0 = Q0 ∪ {̂i}.
【矢】

• targetが iでないようなQの矢はそのまま Q̃の矢とする．
• targetが iであるようなQの矢α : j → iは，targetを îに変えた α̂ : j → îを Q̃の
矢とする．

• Q̃は îから iへの特別な矢 ω : î → iをもつ．(iへの矢，îからの矢はこれのみで
ある．)

Q̃1 = {α | α ∈ Q1, t(α) ̸= i} ∪ {α̂ | α ∈ Q1, t(α) = i} ∪ {ω}.
【関係式 (許容イデアルの生成元)】targetを iとするQの矢 α : j → iに対して，Q̃の

矢 α̂ : j → îと ω : î → iを合成した Q̃の道 ωα̂ : j → iを αと名付ける．Qの関係式 (I
の生成元)はそのまま Q̃の関係式 (Ĩの生成元)であると見なす．ただし，targetが iであ
るようなQの関係式

∑
l αlpl (αl : jl → iはQの矢，pl : k → jlはQの道)については，∑

l α̂lplを Q̃の関係式とする．

それではTheorem 4の状況を詳述しよう．

Example 7. (1) Kを体とし，Aを quiverと関係式

QA : 1
α

��2
γ

��
δ

��3
β

�� , {δα, γβ, αγ − βδ}.
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で定義されるQF多元環とする．定義より (Theorem 4 (I)より)Aは左原田環である．ei
(i = 1, 2, 3)を頂点 iに対応する原始べき等元とする．単純加群T (eiR)を “i”で表せば，直
既約射影的右A加群の Loewy列は次のようになる．

AA = 1
2
1

⊕ 2 ����
1 �� 3��

2

⊕ 3
2
3

.

(2) Aに原始べき等元 e3を添加した環B = Ae3 を考える．Theorem 4 (II)は，Bは左
原田環であることを主張している．Proposition 6よりBの quiverと関係式は次の通りと
なる．

QB : 1
α

��2
γ

��

δ̂ ��

3
β

��

3̂

ω

�� , {δ̂α, γβ, αγ − βδ}.

ただし δは道 δ = ωδ̂である．直既約射影的右B加群を Loewy列で表すと次のようにな
る．( と は後のCやDでイデアルとして割る部分．)

BB = 1
2
1

⊕ 2 ��
��
� 3

1
��
��

3̂
��

2

⊕ 3
3̂
2
3

3̂

⊕ 3̂
2
3

3̂

.

ê3 = e3̂を頂点 3̂に対応する原始べき等元とすると，eiB (i = 1, 2, 3)は入射的，J(e3B) ∼=
e3̂Bで，確かにBは左原田環の定義を満たしている．

(3) 左原田環Bについて，e3Bは入射的，S(e3B) ∼= T (e3̂B)で，Be3̂は入射的ではない
ので，Theorem 4 (III)より，剰余環C = B/S(e3B)は再び左原田環 (実際にはQF)にな
る．Cの quiverはBの quiverと同じであり，関係式は ωδ̂βωを追加したものである．直
既約射影的右C加群は，BBのそれを の部分で割ったものである．

(4) 左原田環Cについて，e3Cは入射的で，e3̂C/S(e3̂C) ∼= J(e3C)であるから，Theo-
rem 4 (IV)より，剰余環D = C/S(e3̂C) = B/(S(e3B) ⊕ S(e3̂B))も左原田環となる．D

の quiverもBの quiverと同じであり，関係式は ωδ̂βωと δ̂βω を追加したものである．直
既約射影的右D加群は，BBのそれを と の部分で割ったものである．

Remark 8. 本論とは直接関係ないが，Example 7の左原田環Cの大局次元は 6に等しい．
筆者は [3]において，大局次元が3以下の左原田環は serialとなることを示し (Theorem 2.1)，
6以上の任意の偶数 2nに対して gl.dimR = 2nとなる serialでない左原田環の例を構成し
た (Example 2.2)．大局次元が 6である serialでない左原田環が C であり，8以上のもの
は，Example 7のように，Cを元にべき等元を 1個付け加えて剰余環を取ることによって
帰納的に構成した (Remark 2.1参照)．
なお，大局次元が有限で serialでないものは，筆者はこの例しか得ていない．大局次元

が 4や 5であるような serialでない左原田環が存在するかどうかは，まだ分かっていない．
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3. 性質 (III), (IV)

それでは，Theorem 4の前半部分の証明について述べよう．性質 (I)は自明である．性
質 (II)は左原田環のブロック拡大の左原田性の特別な場合であり，一般的な形で，例えば
大城 [1, Theorem 4.2.2]で述べられている．また，比較的簡単に確かめることができる．
したがって，性質 (III), (IV)が問題になる．

Rを片側アルチン環，e ∈ Pi(R)で eRRは入射的であるとする．このとき，S(eR) ∼=
T (fR), S(Rf) ∼= T (Re)となるような f ∈ Pi(R)が存在し，RRfは入射的である．このよ
うな (eR,Rf)は i -pairと呼ばれる．また S(eR) = S(Rf)であるからこれは両側イデア
ルで，左右いずれの加群としても単純である．
なお，i -pairの概念は原田環の研究においても非常に重要な役割を果たす．以下でも，

Rが左原田環の場合に剰余環 R̄における直既約射影的右 R̄加群 ḡR̄の入射性を述べるが，
実際には i-pairを用いて証明する．

Theorem 4の (III), (IV)は，Rが左原田環の場合の剰余環 R̄ = R/S(eR)の左原田性を
扱っている．次の Lemmaは eRが入射的であるという条件のみで成り立つ．

Lemma 9. Rを基本的左原田環とし，eRRは入射的 (e ∈ Pi(R))であるとする．剰余環
R̄ = R/S(eR)について，次が成り立つ．

(1) gR ∼= J(hR) (g, h ∈ Pi(R))のとき，
(a) h ̸= eであれば，ḡR̄ ∼= J(h̄R̄)である．
(b) h = eであれば，ḡR̄R̄は入射的である．

(2) gRRが入射的 (g ∈ Pi(R))のとき，g ̸= eであれば，ḡR̄R̄も入射的である．

一般に，基本的アルチンRが左原田環であるためには，任意の g ∈ Pi(R)に対して，gR
が入射的であるか，ある h ∈ Pi(R)に対して gR ∼= J(hR)であることが必要十分である
から，この Lemmaより，eRが入射的のとき，剰余環 R̄ = R/S(eR)はかなり左原田環
に近いことが分かる．したがって，剰余環 R̄において ēR̄が入射的または ēR̄ ∼= J(ḡR̄)
(g ∈ Pi(R))となるかどうかが問題となる．Theorem 4 (IV)は後者となる場合なので，性
質 (IV)も分かった．

Lemma 10. Rを基本的左原田環とし，eRRは入射的で S(eR) ∼= T (fR)，fRRは入射的
でなく fR ∼= J(gR) (e, f, g ∈ Pi(R))であるとする．剰余環 R̄ = R/S(eR)について，次
が成り立つ．

(1) RRgが入射的でないとき，ēR̄R̄は入射的である．
(2) RRgが入射的のとき，S(hR) ∼= T (gR) (h ∈ Pi(R))とする．h1 = h, h2, . . . , hn ∈

Pi(R)を，J(hiR) ∼= hi+1R (i = 1, . . . , n− 1)，J(hn+1R)は射影的でない，である
ようなものとすれば，ēR̄ ∼= J(h̄nR̄)が成り立つ．

したがって，Theorem 4 (III)の仮定の下では，ēR̄は左原田環の条件を満たす射影的右
R̄加群になるので，(III)も言える．なお，Lemma 9に比べると Lemma 10の証明は容易
ではなく，いくつかの準備を必要とする．

Theorem 4 (III), (IV)を繰り返し適用すると次が分かる．後で用いるようにこの結果は
有用であり，基本的左原田環の剰余環がいつ再び左原田環になるかを示している．

Theorem 11. Rを基本的左原田環とし，e1, . . . , en, f ∈ Pi(R)は次を満たすとする．
(1) e1Rは入射的で，S(e1R) ∼= T (fR)，
(2) J(eiR) ∼= ei+1R (i = 1, . . . , n− 1)．
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もし fRが入射的でなければ，R/Ki (i = 1, · · · , n)も左原田環である．ただし，
Ki = S(e1R)⊕ · · · ⊕ S(enR)

とする．

Remark 12. Rが基本的左原田環のとき，Theorem 11の設定で，必ずしも fRが入射的
でなくても，

S(e1RR)⊕ · · · ⊕ S(enRR) = Si(RRf)

であることが知られている．

4. Hの最小性

Hの最小性については，次の 2つの Lemmaから従う．

Lemma 13 ([2, Proposition 2.15]). Rを基本的左原田環，fR (f ∈ Pi(R))は入射的でな
いとする．このとき，(1− f)R(1− f)は左原田環となる．

Lemma 14 ([2, Lemma 2.6 and Lemma 2.7]). Rを基本的原田環，fR ∼= J(eR) (e, f ∈
Pi(R))とする．R′ = (1− f)R(1− f)，R̃ = R′

eとおく．

(1) Reが入射的でないとき，R ∼= R̃である．
(2) Reが入射的のとき，ある i ≥ 1が存在してR ∼= R̃/Kiである．ただし，Ki = Si(R̃ê)
はTheorem 11の通りとする．

左原田環の構造において，これらのLemmaは非常に重要である．Lemma 13は，与えら
れた左原田環がQF環でなければ，右入射的でない直既約射影的加群に対応する原始べき
等元を取り除いて「縮小」したものも，再び左原田環であることを示している．Lemma 14
は，それにある原始べき等元を添加すれば，元の左原田環が「復元」できることを示して
いる．これらを用いればTheorem 4におけるHの最小性が示せるが，その前にこれらの
Lemmaを例で述べよう．

Example 15. Rを許容列 (4, 4, 3)をもつ serial環とし，e1, e2, e3を対応する直交原始べき
等元とする．このとき e1Rと e2Rは入射的で，J(e2R) ∼= e3Rである．Rは左原田環である
からLemma 13が適用できるので，R′ = (1− e3)R(1− e3)は左原田環 (実際には serial環)
である．R̃ = R′

e2
とおけば，Theorem 4 (II)より左原田環 (serial環)である．Lemma 14は，

R ∼= R̃/(S(e2R̃)⊕ S(ê2R̃))

として，RはR′ = (1− e)R(1− e)から復元できることを示している．直既約射影的右加
群を図示すると，次の通りである．

RR = 1
2
3
1

⊕ 2
3
1
2

⊕ 3
1
2

, R′
R′ = 1

2
1

⊕ 2
1
2

, R̃R̃ = 1
2
2̂
1

⊕ 2
2̂
1
2

2̂

⊕ 2̂
1
2

2̂

.

実際，R̃において の部分で割って 2̂と 3を同一視すれば，Rに一致する．

それではTheorem 4におけるHの最小性の証明を与えよう．
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Proof (Theorem 4におけるHの最小性) . H′を Theorem 4の性質 (I)–(IV)を満たす
環のクラスとする．H ⊂ H′を示せばよい．R ∈ Hとする．R ∈ H′を直交原始べき等元
の完全集合に含まれる元の個数#Pi(R) に関する帰納法で示す．RがQFであれば，性質
(I)よりR ∈ H′であるから，RはQFでないと仮定する．

RはQFでないから，e, f ∈ Pi(R)で fR ∼= J(eR)となるものが存在する．R′ = (1 −
f)R(1− f)とおくと，Lemma 13よりR′は左原田環である．したがって帰納法の仮定よ
りR′ ∈ H′である．よって R̃ = R′

eとおけば，性質 (II)より R̃ ∈ H′である．
Reが入射的でないとき，Lemma 14(1)よりR ∼= R̃ ∈ H′を得る．Reが入射的のとき，

Lemma 14(2)よりR ∼= R̃/Ki (i ≥ 1)である．したがって，Theorem 11 (これは性質 (III),
(IV)を繰り返し用いて得られている)より，R ∼= R̃/Ki ∈ H′が分かる．

最後にTheorem 4の一つの応用について述べる．[2]において，筆者はすべての左原田
環は概自己双対性 (almost self-duality)と呼ばれる自己双対性 (self-duality)の一般化をも
つことを示した．そこでの証明は，左原田環に関する Lemma 13, 14を示すことと，概自
己双対性のいくつかの性質を示すことによって与えたが，Theorem 4の観点からは次のよ
うに述べることができる．

Example 16 ([2, Theorem 3.2]). 概自己双対性をもつ基本的アルチン環のクラスAは，
Theorem 4の性質 (I)–(IV)を満たす．したがってTheorem 4のHの最小性より，H ⊂ A
である．すなわち，すべての (基本的)左原田環は概自己双対性をもつ．
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BASICALIZATION OF KLR ALGEBRAS

MASAHIDE KONISHI

Abstract. We describe an algorithm to basicalize KLR algebras arising from quivers.

1. Preliminaries

Let k be field and A be a finite dimensional or ”good” infinite dimensional connected
algebra over k. Throughout this paper, an algebra is associative and with an unit element
1A. Then A is decomposed into indecomposable projective left A-modules Pi as left A-
module, where Pi is Aei for a complete set of primitive orthogonal idempotents :

(i)
n∑

i=1

ei = 1A,

(ii) if ei = f + g where fg = gf = 0, f 2 = f , g2 = g then f = 0 or g = 0,
(iii) (ei)

2 = ei,
(iv) eiej = 0 for i ̸= j.

We call A basic if Pi ̸∼= Pj for i ̸= j. Even if A is not basic, we can basicalize A like
that. Choose some primitive idempotents ejk to satisfy the following property: for every
ei there exists exactly one r such that Pi

∼= Pjr . Set e the sum of those idempotents then
Ab := eAe is basic algebra. Note that A and Ab are Morita equivalent therefore module
categories of those two are equivalent.

Let A be a basic algebra, then we can obtain a connected quiver Q and an admissible
ideal I of a path algebra kQ such that A ∼= kQ/I. Our final destination is to describe an
algorithm to obtain such Q and I for KLR algebras.

Let Γ be a finite connected quiver without loops and multiple arrows. Let Γ0 =
{1, 2, . . . , n}. Let ν be n-tuple (ν1, ν2, . . . , νn) of non-negative integers. In general, KLR
algebras RΓ(ν) is defined depend on ν however in this paper we fix νi = 1 for every i. Let
In = {σ(1, 2, · · · , n)|σ ∈ Sn}, sk = (k, k+1) ∈ Sn. For i ∈ In, describe i as (i1, i2, . . . , in).

Definition 1. A KLR algebra RΓ is defined from these generators and relations.

• generators:
{e(i)|i ∈ In} ∪ {y1, · · · , yn} ∪ {ψ1, · · · , ψn−1}.

• relations:
e(i)e(j) = δi,je(i),

∑
i∈In

e(i) = 1,

yke(i) = e(i)yk, ψke(i) = e(ski)ψk,
ykyl = ylyk,

The detailed version of this paper will be submitted for publication elsewhere.
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ψkyl = ylψk (l ̸= k, k + 1),
ψkyk+1 = ykψk, yk+1ψk = ψkyk,
ψkψl = ψlψk (|k − l| > 1),
ψkψk+1ψk = ψk+1ψkψk+1,

ψ2
ke(i) =





e(i) (ik ̸↔ ik+1)
(yk+1 − yk)e(i) (ik → ik+1)
(yk − yk+1)e(i) (ik ← ik+1)

(yk+1 − yk)(yk − yk+1)e(i) (ik ↔ ik+1)

.

Note that the first (resp. second) equation shows e(i)s are orthogonal (resp. complete).
Moreover, RΓ is Z-graded algebra by deg(e(i)) = 0, deg(yk) = 2, deg(ψk) = 0 if ik ̸↔ ik+1,
1 if ik → ik+1 or ik ← ik+1, 2 if ik ↔ ik+1.

2. The starting point

As the first step, we define a class of quiver called gemstone quiver.

Definition 2. A gemstone quiver Gn is defined as follows.

• vertices: i ∈ In.
• arrows:

– yik : i → i for each i ∈ In and 1 ≤ k ≤ n,
– ψi

l : i → sli for each i ∈ In and 1 ≤ l < n.

Then we obtain following lemma.

Lemma 3. There exists an epimorphism kGn −→ RΓ by i �→ e(i), yik �→ e(i)yke(i),
ψi
l �→ e(i)ψle(sli). Moreover, kGn/IΓ ∼= RΓ where IΓ is an ideal obtained by rewriting

relations of RΓ by the above correspondence.

Note that IΓ is not admissible ideal since there are those relations : ψ2
ke(i) = e(i) if

ik ̸↔ ik+1, (yk+1 − yk)e(i) if ik → ik+1, (yk − yk+1)e(i) if ik ← ik+1. Therefore we need
some processes except for some cases. The following corollary is straightforward from the
next section.

Corollary 4. Let Γ be a quiver with 2-cycle for each two vertices. Then Gn and IΓ present
RΓ.

3. Processes

We should start from removing this type of relations: ψ2
ke(i) = e(i) if ik ̸↔ ik+1. In fact,

that relations are useful to determine an isomorphic class of indecomposable projective
modules.

Lemma 5. All e(i) are primitive. Therefore RΓe(i) is indecomposable.

Lemma 6. RΓe(i) ∼= RΓe(ski) if and only if ik ̸↔ ik+1

Using this lemma repeatedly, we can obtain the following property.
Let Ḡn be a graph obtained by removing loops and replacing each 2-cycles by edge on

Gn. Cut edges between i and ski if there exists some arrows between ik and ik+1 on Γ,
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denote this cut graph GΓ. Then the followings are equivalent:
(a) i and j are on the same connected component on GΓ,
(b) RΓe(i) ∼= RΓe(j).
We get a new quiver by identifying the vertices of Gn for each connected components of
GΓ.

To rewrite relations, we should pick up one i from each connected components. Then
vertices i means e(i) and loops yik means e(i)yke(i). However the meaning of two cycles
for two vertices i and j are bit complicated. Since there are two cycles between them,
there exists some paths from i to j in Gn constructed from three parts:
(i) a path in connected component with i, from i to some i′,
(ii) an arrow i′ to j′ where j′ picked from a connected component with j,
(iii) a path in connected component with j from j′ to j.

We pick two minimal paths for each two cycles between i and j to be inverse each other.
Then the arrow i to j means e(i)ψωe(j), where ψω is a multiplication of ψs in Gn taken
as above. Note that only part (ii) has positive degree in that path.

Then relations for this quiver are obtained from Gn by rewriting with the correspon-
dence above. However there still remains a problem from these type of relations:
ψ2
ke(i) = ±(yk+1 − yk)e(i) if there exists one arrow between ik and ik+1.

The problem is on right hand side, it must not be in admissible ideal since it’s just a sum
of two arrows. Therefore we delete arrows by rewriting relations as follows:
yk+1e(i) = yke(i)± ψ2

ke(i).
After that process all relations are obtained from a linear combination of paths of length
greater than 2. Therefore it’s completed.

From the construction above, we can obtain some combinatorial observations such as :

Corollary 7. The quiver for RΓ has at least one loop for each vertex.

4. Cyclotomic case

We can use previous method for cyclotomic case.

Definition 8. For Λ = (λ1, λ2, · · · , λn) ∈ Zn
≥0, a cyclotomic ideal IΛ is generated by{

y
λi1
1 e(i)|i ∈ In

}
.

We call a quotient algebra RΛ
Γ = RΓ/I

Λ a cyclotomic KLR algebra.

Only what we do is adding relations from that generators. However there is λk ≤ 1,
we need rewrite something. If there is λk = 0, we need to trim some vertices by using
following lemma.

Lemma 9. In RΛ
Γ , e(i) = 0 if and only if λi1 = 0 or there exists k such that for every

s < k there is no arrow between is and ik on Γ.

We trim i with e(i) = 0 and rewrite relations including i.
The remaining problem is about this type of relations: y1e(i) = 0. This happens if

λi1 = 1. To avoid this relation, delete arrows yi1 and rewrite relations including i. Then
it‘s completed.
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THE ARTINIAN CONJECTURE
(FOLLOWING DJAMENT, PUTMAN, SAM, AND SNOWDEN)

HENNING KRAUSE

Abstract. This note provides a self-contained exposition of the proof of the artinian
conjecture, following closely Djament’s Bourbaki lecture. The original proof is due to
Putman, Sam, and Snowden.

1. Introduction

This note provides a complete proof of the celebrated artinian conjecture. The proof is
due to Putman, Sam, and Snowden [6, 7]. Here, we follow closely the elegant exposition
of Djament in [3]. For the origin of the conjecture and its consequences, we refer to those
papers and Djament’s Bourbaki lecture [4]. In addition, the expository articles by Kuhn,
Powell and Schwartz in [5] are recommended.

There are two main result. Fix a locally noetherian Grothendieck abelian category A,
for instance, the category of modules over a noetherian ring.

Theorem 1.1. Let A be a ring whose underlying set is finite. For the category P(A) of
free A-modules of finite rank, the functor category Fun(P(A)op,A) is locally noetherian.

This result amounts to the assertion of the artinian conjecture when A is a finite field
and A is the category of A-modules.

The first theorem is a direct consequence of the following.

Theorem 1.2. For the category Γ of finite sets, the functor category Fun(Γop,A) is locally
noetherian.

The basic idea for the proof is to formulate finiteness conditions on an essentially
small category C such that Fun(Cop,A) is locally noetherian. This leads to the notion
of a Gröbner category. Such finiteness conditions have a ‘direction’. For that reason
we consider contravariant functors C → A, because then the direction is preserved (via
Yoneda’s lemma) when one passes from C to Fun(Cop,A).

2. Noetherian posets

Let C be a poset. A subset D ⊆ C is a sieve if the conditions x ≤ y in C and y ∈ D
imply x ∈ D. The sieves in C are partially ordered by inclusion.

Definition 2.1. A poset C is called

(1) noetherian if every ascending chain of elements in C stabilises, and
(2) strongly noetherian if every ascending chain of sieves in C stabilises.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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For a poset C and x ∈ C, set C(x) = {t ∈ C | t ≤ x}. The assignment x �→ C(x) yields
an embedding of C into the poset of sieves in C.

Lemma 2.2. For a poset C the following are equivalent:

(1) The poset C is strongly noetherian.
(2) For every infinite sequence (xi)i∈N of elements in C there exists i ∈ N such that

xj ≤ xi for infinitely many j ∈ N.
(3) For every infinite sequence (xi)i∈N of elements in C there is a map α : N → N such

that i < j implies α(i) < α(j) and xα(j) ≤ xα(i).
(4) For every infinite sequence (xi)i∈N of elements in C there are i < j in N such that

xj ≤ xi.

Proof. (1) ⇒ (2): Suppose that C is strongly noetherian and let (xi)i∈N be elements in C.
For n ∈ N set Cn =

⋃
i≤n C(xi). The chain (Cn)n∈N stabilises, say Cn = CN for all n ≥ N .

Thus there exists i ≤ N such that xj ≤ xi for infinitely many i ∈ N.
(2) ⇒ (3): Define α : N → N recursively by taking for α(0) the smallest i ∈ N such that

xj ≤ xi for infinitely many j ∈ N. For n > 0 set

α(n) = min{i > α(n− 1) | xj ≤ xi ≤ xα(n−1) for infinitely many j ∈ N}.

(3) ⇒ (4): Clear.
(4) ⇒ (1): Suppose there is a properly ascending chain (Cn)n∈N of sieves in C. Choose

xn ∈ Cn+1 \ Cn for each n ∈ N. There are i < j in N such that xj ≤ xi. This implies
xj ∈ Ci+1 ⊆ Cj which is a contradiction. �

3. Functor categories

Let C be an essentially small category and A a Grothendieck abelian category. We
denote by Fun(Cop,A) the category of functors Cop → A. The morphisms between two
functors are the natural transformations. Note that Fun(Cop,A) is a Grothendieck abelian
category.

Given an object x ∈ C, the evaluation functor

Fun(Cop,A) −→ A, F �→ F (x)

admits a left adjoint

A −→ Fun(Cop,A), M �→ M [C(−, x)]

where for any set X we denote by M [X] a coproduct of copies of M indexed by the
elements of X. Thus we have a natural isomorphism

(3.1) Fun(Cop,A)(M [C(−, x)], F ) ∼= A(M,F (x)).

Lemma 3.1. If (Mi)i∈I is a set of generators of A, then the functors Mi[C(−, x)] with
i ∈ I and x ∈ C generate Fun(Cop,A).

Proof. Use the adjointness isomorphism (3.1). �

A Grothendieck abelian category A is locally noetherian if A has a generating set of
noetherian objects. In that case an object M ∈ A is noetherian iff M is finitely presented
(that is, the representable functor A(M,−) preserves filtered colimits); see [8, Chap. V]
for details.
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Lemma 3.2. Let A be locally noetherian. Then Fun(Cop,A) is locally noetherian iff
M [C(−, x)] is noetherian for every noetherian M ∈ A and x ∈ C.

Proof. First observe that M [C(−, x)] is finitely presented if M is finitely presented. This
follows from the isomorphism (3.1) since evaluation at x ∈ C preserves colimits. Now the
assertion of the lemma is an immediate consequence of Lemma 3.1. �

4. Noetherian functors

Let C be an essentially small category and fix an object x ∈ C. Set

C(x) =
⊔

t∈C

C(t, x).

Given f, g ∈ C(x), let �f� denote the set of morphisms in C(x) that factor through f , and
set f ≤x g if �f� ⊆ �g�. We identify f and g when �f� = �g�. This yields a poset which
we denote by C̄(x).

A functor is noetherian if every ascending chain of subfunctors stabilises.

Lemma 4.1. The functor C(−, x) : Cop → Set is noetherian iff the poset C̄(x) is strongly
noetherian.

Proof. Sending F ⊆ C(−, x) to
⋃

t∈C F (t) induces an inclusion preserving bijection be-
tween the subfunctors of C(−, x) and the sieves in C̄(x). �

For a poset T let Set ≀ T denote the category consisting of pairs (X, ξ) such that X is
a set and ξ : X → T is a map. A morphism (X, ξ) → (X ′, ξ′) is a map f : X → X ′ such
that ξ(a) ≤ ξ′f(a) for all a ∈ X.

A functor Cop → Set ≀ T is given by a pair (F, φ) consisting of a functor F : Cop → Set
and a map φ :

⊔
t∈C F (t) → T such that φ(a) ≤ φ(F (f)(a)) for every a ∈ F (t) and

f : t′ → t in C.

Lemma 4.2. Let T be a noetherian poset. If C(−, x) is noetherian, then any functor
(C(−, x), φ) : Cop → Set ≀ T is noetherian.

Proof. Let (Fn, φn)n∈N be a strictly ascending chain of subfunctors of (F, φ). The chain
(Fn)n∈N stabilises since C(−, x) is noetherian. Thus we may assume that Fn = F for
all n ∈ N, and we find fn ∈

⊔
t∈C F (t) such that φn(fn) < φn+1(fn). The poset C̄(x)

is strongly noetherian by Lemma 4.1. It follows from Lemma 2.2 that there is a map
α : N → N such that i < j implies α(i) < α(j) and fα(j) ≤x fα(i). Thus

φα(n)(fα(n)) < φα(n)+1(fα(n)) ≤ φα(n+1)(fα(n)) ≤ φα(n+1)(fα(n+1)).

This yields a strictly ascending chain in T , contradicting the assumption on T . �

Definition 4.3. A partial order ≤ on C(x) is admissible if the following holds:

(1) The order ≤ restricted to C(t, x) is total and noetherian for every t ∈ C.
(2) For f, f ′ ∈ C(t, x) and e ∈ C(s, t), the condition f < f ′ implies fe < f ′e.

Fix an admissible partial order ≤ on C(x) and an object M in a Grothendieck abelian
category A. Let Sub(M) denote the poset of subobjects of M and consider the functor

C(−, x) ≀M : Cop −→ Set ≀ Sub(M), t �→
(
C(t, x), (M)f∈C(t,x)

)
.
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For a subfunctor F ⊆ M [C(−, x)] define a subfunctor F̃ ⊆ C(−, x) ≀M as follows:

F̃ : Cop −→ Set ≀ Sub(M), t �→
(
C(t, x),

(
πf (M [C(t, x)f ] ∩ F (t))

)
f∈C(t,x)

)

where C(t, x)f = {g ∈ C(t, x) | f ≤ g} and πf : M [C(t, x)f ] → M is the projection onto

the factor corresponding to f . For a morphism e : t′ → t in C, the morphism F̃ (e) is
induced by precomposition with e. Note that

πf (M [C(t, x)f ] ∩ F (t)) ⊆ πfe(M [C(t′, x)fe] ∩ F (t′))

since ≤ is compatible with the composition in C.

Lemma 4.4. Suppose there is an admissible partial order on C(x). Then the assignment

which sends a subfunctor F ⊆ M [C(−, x)] to F̃ preserves proper inclusions. Therefore
M [C(−, x)] is noetherian provided that C(−, x) ≀M is noetherian.

Proof. Let F ⊆ G ⊆ M [C(−, x)]. Then F̃ ⊆ G̃. Now suppose that F �= G. Thus there
exists t ∈ C such that F (t) �= G(t). We have C(t, x) =

⋃
f∈C(t,x) C(t, x)f , and this union is

directed since ≤ is total. Thus

F (t) =
∑

f∈C(t,x)

(
M [C(t, x)f ] ∩ F (t)

)

since filtered colimits in A are exact. This yields f such that

M [C(t, x)f ] ∩ F (t) �= M [C(t, x)f ] ∩G(t).

Choose f ∈ C(t, x) maximal with respect to this property, using that ≤ is noetherian.
Now observe that the projection πf induces an exact sequence

0 −→
∑

f<g

(
M [C(t, x)g] ∩ F (t)

)
−→ F (t) −→ πf

(
M [C(t, x)f ] ∩ F (t)

)
−→ 0

since the kernel of πf equals the directed union
∑

f<g M [C(t, x)g ]. For the directedness
one uses again that ≤ is total. Thus

πf

(
M [C(t, x)f ] ∩ F (t)

)
�= πf

(
M [C(t, x)f ] ∩G(t)

)

and therefore F̃ �= G̃. �

Proposition 4.5. Let x ∈ C. Suppose that C(−, x) is noetherian and that C(x) has an
admissible partial order. If M ∈ A is noetherian, then M [C(−, x)] is noetherian.

Proof. Combine Lemmas 4.2 and 4.4. �

5. Gröbner categories

Definition 5.1. An essentially small category C is a Gröbner category if the following
holds:

(1) The functor C(−, x) is noetherian for every x ∈ C.
(2) There is an admissible partial order on C(x) for every x ∈ C.

Theorem 5.2. Let C be a Gröbner category and A a Grothendieck abelian category. If
A is locally noetherian, then Fun(Cop,A) is locally noetherian.
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Proof. Combine Lemma 3.1 and Proposition 4.5. �

Example 5.3. (1) A strongly noetherian poset (viewed as a category) is a Gröbner
category.

(2) The additive monoid N of natural numbers (viewed as a category with a single
object) is a Gröbner category. Let A be the module category of a noetherian ring A.
Then Fun(Nop,A) equals the module category of the polynomial ring in one variable over
A. Thus Theorem 5.2 generalises Hilbert’s Basis Theorem.

6. Base change

Given functors F,G : Cop → Set, we write F ❀ G if there is a finite chain

F = F0 ։ F1 ֋ F2 ։ · · · ։ Fn−1 ֋ Fn = G

of epimorphisms and monomorphisms of functors Cop → Set.

Definition 6.1. A functor φ : C → D is contravariantly finite1 if the following holds:

(1) Every object y ∈ D is isomorphic to φ(x) for some x ∈ C.
(2) For every object y ∈ D there are objects x1, . . . , xn in C such that

n⊔
i=1

C(−, xi) ❀ D(φ−, y).

The functor φ is covariantly finite if φop : Cop → Dop is contravariantly finite.

Note that a composite of contravariantly finite functors is contravariantly finite.

Lemma 6.2. Let f : C → D be a contravariantly finite functor and A a Grothendieck
abelian category. Fix M ∈ A and suppose that M [C(−, x)] is noetherian for all x ∈ C.
Then M [D(−, y)] is noetherian for all y ∈ D.

Proof. A finite chain
n⊔

i=1

C(−, xi) = F0 ։ F1 ֋ F2 ։ · · · ։ Fn−1 ֋ Fn = D(φ−, y)

of epimorphisms and monomorphisms induces a chain
n∐

i=1

M [C(−, xi)] = F̄0 ։ F̄1 ֋ F̄2 ։ · · · ։ F̄n−1 ֋ F̄n = M [D(φ−, y)]

of epimorphisms and monomorphisms in Fun(Cop,A). Thus M [D(φ−, y)] is noetherian.
It follows that M [D(−, y)] is noetherian, since precomposition with φ yields a faithful and
exact functor Fun(Dop,A) → Fun(Cop,A). �

Proposition 6.3. Let f : C → D be a contravariantly finite functor and A a locally noe-
therian Grothendieck abelian category. If the category Fun(Cop,A) is locally noetherian,
then Fun(Dop,A) is locally noetherian.

Proof. Combine Lemmas 3.2 and 6.2. �

1The terminology follows that introduced by Auslander and Smalø [1] for an inclusion functor.
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7. Categories of finite sets

Let Γ denote the category of finite sets (a skeleton is given by the sets n = {1, 2, . . . , n}).
The subcategory of finite sets with surjective morphisms is denoted by Γsur. A surjection
f : m → n is ordered if i < j implies min f−1(i) < min f−1(j). We write Γos for the
subcategory of finite sets whose morphisms are ordered surjections. Given a surjection
f : m → n, let f ! : n → m denote the map given by f !(i) = min f−1(i). Note that
ff ! = id, and gf = f !g! provided that f and g are ordered surjections.

Lemma 7.1. (1) The inclusion Γsur → Γ is contravariantly finite.
(2) The inclusion Γos → Γsur is contravariantly finite.

Proof. (1) For each integer n ≥ 0 there is an isomorphism
⊔

m→֒n

Γsur(−,m)
∼
−→ Γ(−,n)

which is induced by the injective maps m → n.
(2) For each integer n ≥ 0 there is an isomorphism

Γos(−,n)×Sn
∼
−→ Γsur(−,n)

which sends a pair (f, σ) to σf . The inverse sends a surjective map g : m → n to (τ−1g, τ)
where τ ∈ Sn is the unique permutation such that g!τ is increasing. �

Fix an integer n ≥ 0. Given f, g ∈ Γ(n) we set f ≤ g if there exists an ordered
surjection h such that f = gh.

Lemma 7.2. The poset (Γ(n),≤) is strongly noetherian.

Proof. We fix some notation for each f ∈ Γ(m,n). Set λ(f) = m. If f is not injective,
set

µ(f) = m−max{i ∈ m | there exists j < i such that f(i) = f(j)}

and π(f) = f(m−µ(f)). Define f̃ ∈ Γ(m− 1,n) by setting f̃(i) = f(i) for i < m−µ(f)

and f̃(i) = f(i+ 1) otherwise.

Note that f ≤ f̃ . Moreover, µ(f) = µ(g), π(f) = π(g), and f̃ ≤ g̃ imply f ≤ g.
Suppose that (Γ(n),≤) is not strongly noetherian. Then there exists an infinite se-

quence (fr)r∈N in Γ(n) such that i < j implies fj �≤ fi; see Lemma 2.2. Call such a se-
quence bad. Choose the sequence minimal in the sense that λ(fi) is minimal for all bad se-
quences (gr)r∈N with gj = fj for all j < i. There is an infinite subsequence (fα(r))r∈N (given
by some increasing map α : N → N) such that µ and π agree on all fα(r), since the values

of µ and π are bounded by n. Now consider the sequence f0, f1, . . . , fα(0)−1, f̃α(0), f̃α(1), . . .

and denote this by (gr)r∈N. This sequence is not bad, since (fr)r∈N is minimal. Thus there
are i < j in N with gj ≤ gi. Clearly, j < α(0) is impossible. If i < α(0), then

fα(j−α(0)) ≤ f̃α(j−α(0)) = gj ≤ gi = fi,

which is a contradiction, since i < α(0) ≤ α(j − α(0)). If i ≥ α(0), then fα(j−α(0)) ≤
fα(i−α(0)); this is a contradiction again. Thus (Γ(n),≤) is strongly noetherian. �

Proposition 7.3. The category Γos is a Gröbner category.

–6–



― 110 ―

Proof. Fix an integer n ≥ 0. The poset Γ̄os(n) is strongly noetherian by Lemma 7.2, and
it follows from Lemma 4.1 that the functor Γos(−,n) is noetherian.

The admissible partial order on Γos(n) is given by the lexicographic order. Thus for
f, g ∈ Γos(m,n), we have f < g if there exists j ∈ m with f(j) < g(j) and f(i) = g(i) for
all i < j. �

Theorem 7.4. Let A be a locally noetherian Grothendieck abelian category. Then the
category Fun(Γop,A) is locally noetherian.

Proof. The category Γos is a Gröbner category by Proposition 7.3. It follows from The-
orem 5.2 that Fun((Γos)

op,A) is locally noetherian. The inclusion Γos → Γ is contravari-
antly finite by Lemma 7.1. Thus Fun(Γop,A) is locally noetherian by Proposition 6.3. �

8. The artinian conjecture

Let A be a ring. We denote by P(A) the category of free A-modules of finite rank. If
A is finite, then the functor Γ → P(A) sending X to A[X] is a left adjoint of the forgetful
functor P(A) → Γ.

Lemma 8.1. Let A be finite. Then the functor Γ → P(A) is contravariantly finite.

Proof. The assertion follows from the adjointness isomorphism

P(A)(A[X], P ) ∼= Γ(X,P ). �

Theorem 8.2. Let A be a finite ring and A a locally noetherian Grothendieck abelian
category. Then the category Fun(P(A)op,A) is locally noetherian.

Proof. Combine Theorem 7.4 with Lemma 8.1 and Proposition 6.3. �

9. FI-modules

The proof of the artinian conjecture yields an alternative proof of the following result
due to Church, Ellenberg, Farb, and Nagpal.

Let Γinj denote the category whose objects are finite sets and whose morphisms are
injective maps.

Theorem 9.1 ([2, Theorem A]). Let A be a locally noetherian Grothendieck abelian
category. Then the category Fun(Γinj,A) is locally noetherian.

Proof. The following argument has been suggested by Kai-Uwe Bux. Consider the functor
φ : Γos → (Γinj)

op which is the identity on objects and takes a map f : m → n to f ! : n → m
given by f !(i) = min f−1(i). This functor is contravariantly finite, since for each integer
n ≥ 0 the morphism

Γos(−,n)×Sn −→ Γinj(n, φ−)

which sends a pair (f, σ) to f !σ is an epimorphism.
It follows from Proposition 6.3 that the category Fun(Γinj,A) is locally noetherian, since

Fun((Γos)
op,A) is locally noetherian by Proposition 7.3 and Theorem 5.2. �
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Note added in proof

After completing this paper I found that Theorem 5.2 is precisely the statement of
Theorem 3.1 in [G. Richter, Noetherian semigroup rings with several objects, in Group
and semigroup rings (Johannesburg, 1985), 231–246, North-Holland Math. Stud., 126,
North-Holland, Amsterdam, 1986].
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2000.
[6] A. Putman and S. V. Sam, Representation stability and finite linear groups, arXiv:1408.3694.
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HALF EXACT FUNCTORS ASSOCIATED WITH GENERAL HEARTS
ON EXACT CATEGORIES

YU LIU

Abstract. We construct a half exact functor from the exact category to the heart of a
cotorsion pair. This is analog of the construction of Abe and Nakaoka for triangulated
categories. When the cotorsion pair comes from a cluster tilting subcategory, our half
exact functor coincides with the canonical quotient functor from the exact category to
the quotient category of it by this cluster tilting subcategory. We will also use this half
exact functor to find out the relationship between different hearts.

Key Words: exact category, abelian category, cotorsion pair, heart, half exact func-
tor.

1. Introduction

Cotorsion pairs play an important role in representation theory (see [2] and see [3] for
more examples). In [4], we define hearts H of cotorsion pairs (U ,V) on exact categories
B and proved that they are abelian. This is similar as Nakaoka’s result on triangulated
categories [5]. It is natural to ask whether we can find any relationship between the
hearts and the original exact categories. Abe and Nakaoka have already given an answer
by constructing a cohomological functor in the case of triangulated categories [1]. In this
paper we will construct an associated half exact functor H from the exact category B to
the heart H, which is similar as the construction of Abe and Nakaoka.

Let B be a Krull-Schmidt exact category with enough projectives and injectives. Let
P (resp. I) be the full subcategory of projectives (resp. injectives) of B.
We recall the definition of a cotorsion pair on B [4, Definition 2.3]:

Definition 1. Let U and V be full additive subcategories of B which are closed under
direct summands. We call (U ,V) a cotorsion pair if it satisfies the following conditions:

(a) Ext1B(U ,V) = 0.
(b) For any object B ∈ B, there exits two short exact sequences

VB � UB � B, B � V B
� UB

satisfying UB, U
B ∈ U and VB, V

B ∈ V .
For any cotorsion pairs (U ,V), let W := U ∩ V . We denote the quotient of B by W as

B := B/W . For any morphism f ∈ HomB(X, Y ), we denote its image in HomB(X, Y ) by
f . For any subcategory C ⊇ W of B, we denote by C the full subcategory of B consisting
of the same objects as C. Let

B+ := {B ∈ B | UB ∈ W}, B− := {B ∈ B | V B ∈ W}.

The detailed version of this paper will be submitted for publication elsewhere.
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Let

H := B+ ∩ B−.

Since H ⊇ W , we have an additive subcategory H which we call the heart of cotorsion
pair (U ,V).

Definition 2. A covariant functor F from B to an abelian category A is called half exact
if for any short exact sequence

A �� f �� B
g �� �� C

in B, the sequence

F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)

is exact in A.

We will prove the following theorem.

Theorem 3. For any cotorsion pair (U ,V) on B, there exists an associated half exact
functor

H : B → H.

The half exact functor we construct gives us a way to find out the relationship between
different hearts. Let k ∈ {1, 2}, (Uk, Vk) be a cotorsion pair on B and Wk = Uk ∩ Vk.
Let Hk/Wk be the heart of (Uk, Vk) and Hk be the associated half exact functor. For
i, j ∈ {1, 2} and i �= j, if Hi(Wj) = 0, then Hi induces a functor βji : Hj/Wj → Hi/Wi.
Moreover, we have the following theorem.

Theorem 4. If Hj(Ui) = Hj(Vi) = 0 and Hi(Uj) = Hi(Vj) = 0, then we have an equiva-
lence Hi/Wi � Hj/Wj between two hearts. More precisely, we have natural isomorphisms
βijβji � idHj/Wj

and βjiβij � idHi/Wi
of functors.

2. Notations

For briefly review of the important properties of exact categories, we refer to [4, §2].
Throughout this paper, let B be a Krull-Schmidt exact category with enough projectives

and injectives. Let P (resp. I) be the full subcategory of projectives (resp. injectives) of
B.

Definition 5. For any B ∈ B, we define B+ as follows:
Take two short exact sequences:

VB
�� �� UB

uB �� �� B , UB
�� w

′
�� W 0 �� �� U0
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where UB, U
0 ∈ U , W 0,VB ∈ V . In fact, W 0 ∈ W since U is closed under extension. We

get the following commutative diagram

VB
�� �� UB

��
w′

��

uB �� �� B
��
αB

��
VB

�� �� W 0
w

�� ��

����

B+

����
U0 U0

where the upper-right square is both a push-out and a pull-back.

By [4, Lemma 3.2], B+ ∈ B+, and if B ∈ B−, then B+ ∈ H.

Proposition 6. [4, Proposition 3.3] For any B ∈ B and Y ∈ B+, HomB(αB, Y ) :
HomB(B

+, Y ) → HomB(B, Y ) is surjective and HomB(αB, Y ) : HomB(B
+, Y ) → HomB(B, Y )

is bijective.

We define a functor σ+ from B to B+ as follows:
For any object B ∈ B, since all the B+′

s are isomorphic to each other in B by Proposition
6, we fix a B+ for B. Let

σ+ : B → B+

B �→ B+

and for any morphism f : B → C, we define σ+(f) as the unique morphism given by
Proposition 6

B
f

��

αB

��

C

αC

��
B+

σ+(f)

�� C+.

Dually, we can define σ−.
Let π : B → B be the canonical functor. We denote σ− ◦ σ+ ◦ π by

H : B → H.

3. Main results

Proposition 7. The functor H has the following properties:

(a) For any objects A and B in B, H(A⊕ B) � H(A)⊕H(B) in H.
(b) H|H = π|H.
(c) H(U) = 0 and H(V) = 0. In particular, H(P) = 0 and H(I) = 0.

Theorem 8. For any cotorsion pair (U ,V) in B, the functor

H : B → H
is half exact. We call H the associated half exact functor to (U ,V).

We have the following general property of half exact functors which H satisfies.

–3–
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Proposition 9. Let A be an abelian category and F : B → A be a half exact functor
satisfying F (P) = 0 and F (I) = 0. Then for any short exact sequence

A �� f �� B
g �� �� C

in B, there exist morphisms h : C → Ω−A and h′ : ΩC → A such that the following
sequence

· · · F (Ωh′)−−−−→ F (ΩA)
F (Ωf)−−−→ F (ΩB)

F (Ωg)−−−→ F (ΩC)
F (h′)−−−→ F (A)

F (f)−−→ F (B)

F (g)−−→ F (C)
F (h)−−→ F (Ω−A)

F (Ω−f)−−−−→ F (Ω−B)
F (Ω−g)−−−−→ F (Ω−C)

F (Ω−h)−−−−→ · · ·

is exact in A.

Let i ∈ {1, 2}. Let (Ui,Vi) be a cotorsion pair on B and Wi = Ui ∩ Vi.

(a) B+
i is defined to be the full subcategory of B, consisting of objects B which admits

a short exact sequence

VB � UB � B

where UB ∈ Wi and VB ∈ Vi.
(b) B−

i is defined to be the full subcategory of B, consisting of objects B which admits
a short exact sequence

B � V B
� UB

where V B ∈ Wi and UB ∈ Ui.

Denote

Hi := B+
i ∩ B−

i .

Then Hi/Wi is the heart of (Ui,Vi). Let πi : B → B/Wi be the canonical functor and
ιi : Hi/Wi ↪→ B/Wi be the inclusion functor.
If H2(W1) = 0, then there exists a functor h12 : B/W1 → H2/W2 such that H2 = h12π1.

B

H2 ��

π1 �� B/W1

h12��
H2/W2

Hence we get a functor β12 := h12ι1 : H1/W1 → H2/W2.

Proposition 10. Let (U1,V1), (U2,V2) be cotorsion pairs on B. If H2(W1) = 0 and
H1(U2) = 0 = H1(V2), then we have a natural isomorphism β21β12 � idH1/W1 of functors.

Moreover, we have the following theorem.

Theorem 11. If H1(U2) = H1(V2) = 0 and H2(U1) = H2(V1) = 0, then we have an
equivalence H1/W1 � H2/W2 between two hearts. More precisely, we have natural iso-
morphisms β12β21 � idH2/W2 and β21β12 � idH1/W1 of functors.
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SINGULARITY CATEGORIES OF STABLE RESOLVING
SUBCATEGORIES

HIROKI MATSUI AND RYO TAKAHASHI

Abstract. In this article1 we study resolving subcategories X of an abelian category
from the structure of their associated triangulated categories. More precisely, we inves-
tigate the singularity categories

Dsg(X ) = Db(modX )/Kb(proj(modX ))

of the stable categories X of X . We consider when the stable categories of two resolving
subcategories have triangle equivalent singularity categories. Applying this to resolving
subcategories of modules over Gorenstein rings, we characterize simple hypersurface
singularities of type (A1) as complete intersections over which the stable categories of
resolving subcategories have trivial singularity categories.

1. introduction

Let R be a noetherian ring. The singularity category of R is by definition the Verdier
quotient

Dsg(R) = Db(modR)/Kb(proj(modR)),

wheremodR denotes the category of finitely generatedR-modules, Db(modR) the bounded
derived category and Kb(proj(modR)) the bounded homotopy category. The singularity
category Dsg(R) is a triangulated category, which has been introduced by Buchweitz [4] by
the name of stable derived category and connected to the Homological Mirror Symmetry
Conjecture by Orlov [10]. A lot of studies on singularity categories have been done in
recent years; see [5, 8, 11, 15] for instance.

In this article, we consider the singularity category of a stable resolving category. Let A
be an abelian category with enough projective objects. Let X be a resolving subcategory
of A, and X its stable category. Then the category modX of finitely presented right
X -modules is an abelian category with enough projective objects [1]. We take the Verdier
quotient of

Dsg(X ) := Db(modX )/Kb(proj(modX )),

and call this the singularity category of X . For two resolving subcategories X, Y we say
that X , Y are singulary equivalent if there is a triangle equivalence Dsg(X ) ∼= Dsg(Y).

The main purpose of this article is to study the following question.

Question 1. Let A be an abelian category with enough projective objects. Let X, Y be
resolving subcategories of A. When are the stable categories X , Y singularly equivalent?

1The detailed version of this article will be submitted for publication elsewhere.
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We give a sufficient condition for two stable resolving subcategories to be singularly
equivalent. We also apply it to resolving subcategories of module categories of commuta-
tive Gorenstein rings, and characterize the simple hypersurface singularities of type (A1)
in terms of singular equivalence classes.

2. Preliminaries

In this section, we introduce the several notions. Throughout this article, let A be an
abelian category with enough projective objects, and denote by projA the full subcategory
of projective objects of A.

Definition 2. An object M of A is said to be Cohen-Macaulay if there is an exact
sequence

· · · d2−→ P1
d1−→ P0

d0−→ P−1
d−1−−→ · · ·

of projectives whose dual by any projective is also exact, such that M is isomorphic to
the image of d0. Denote by CM(A) the subcategory of A consisting of Cohen-Macaulay
objects and by CMn(A) the subcategory of A consisting objects whose n-th syzygies are
Cohen-Macaulay.

In [7], a Cohen-Macaulay object is called a Gorenstein projective object. The category
consisting of Cohen-Macaulay objects is a Frobenius category, hence its stable category
is a triangulated category.

Next, we recall the definition of the category of finitely presented modules over an
additive category.

Definition 3. Let C be an additive category. Denote by Mod C the functor category of
C, that is, the objects are additive contravariant functors from C to the category Ab
of abelian groups, and the morphisms are natural transformations. An object and a
morphism of Mod C are called a (right) C-module and a C-homomorphism, respectively. A
C-module F is said to be finitely presented if there is an exact sequence

HomC(−, X) → HomC(−, Y ) → F → 0

in the abelian category Mod C with X, Y ∈ C. The full subcategory of Mod C consisting
of finitely presented C-modules is denoted by mod C.
Definition 4. An additive category C is called Gorenstein of dimension at most n if
Ωn(mod C) = CM(mod C).
Example 5. Let Λ be a Gorenstein ring of selfinjective dimension at most n, and denote
by projΛ the category of finitely generated Λ-modules. Then projΛ is Gorenstein of
dimension at most n.

We introduce the main target in this article.

Definition 6. Let C be an additive category. The singularity category C is defined as
follows:

Dsg(C) = Db(mod C)/Kb(proj(mod C)).
Definition 7. Additive categories C, C ′ are singularly equivalent if there is a triangule

equivalence Dsg(C) ∼= Dsg(C ′), and then denote this by C sg∼ C ′.
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Let us give the definition of a resolving subcategory, which is mainly studied in this
article.

Definition 8. A full subcategory X of an abelian category A is resolving if:

(1) X contains all projective objects of A.
(2) X is closed under direct summands, extensions and syzygies.

Here we recall the definition of a stable category.

Definition 9. Let X be a full subcategory of A containing projA. Then the quotient
category

X := X / projA
is called the stable category of X ; the objects of X are the same as those of X , and the
hom-set HomX (M,N) of M,N ∈ X is defined as follows:

HomX (M,N) := HomA(M,N)/PA(M,N),

where PA(M,N) consists of all morphisms from M to N that factor through objects in
projA.

Finally, we recall a structure result due to Auslander and Reiten on finitely presented
modules over the stable category of a resolving subcategory.

Theorem 10. [1] If X is a resolving subcategory of A, then the category modX of finitely
presented right X -modules is an abelian category with enough projectives.

3. Singularity categories and singularly equivalent

In this section, we give a sufficient condition for two resolving subcategories to be
singularly equivalent. In particular, there is a natural asking when a resolving subcategory
is singularly equivalent to 0. We give an answer to this question.

The following result is the key to study singular equivalence.

Theorem 11. Let X be a resolving subcategory of A such that Ω−1ΩnX ⊂ ΩnX ⊂ CM(A).
Then:

(1) X is Gorenstein of dimension at most 3n.
(2) There is a triangle equivalence Dsg(X ) ∼= CM(modX ).

This theorem gives some characterizations of a singularity category.

Corollary 12. For each n ≥ 0 there is a triangle equivalence

Dsg(CMn(A)) ∼= CM(modCMn(A)).

Corollary 13. Let R be a local complete intersection. Let X be a resolving subcategory
of modR. Then there is a triangle equivalence

Dsg(X ) ∼= CM(modX ).

Let n = 0 in Theorem 11. Then the following result holds, whose assertion is nothing
but [14].

Corollary 14. Let X be a resolving subcateory of A contained in CM(A) and closed under
cosyzygies. Then modX = CM(modX ), and hence modX is a Frobenius category.



― 120 ―

Taking advantage of Theorem 11, we obtain a sufficient condition for singular equiva-
lence.

Theorem 15. Let X ,Y be resolving subcategories of A such that ΩnX ∪ Ω−1Y ⊆ Y ⊆
X ∩ CM(A) for some n ≥ 0. Then there are triangle equivalences

Dsg(X ) ∼= CM(modX ) ∼= CM(modY) ∼= Dsg(Y).

Hence X and Y are singularly equivalent.

Sketch of proof. The restriction F �→ F |Y makes a covariant exact functor

Φ : ModX → ModY
of abelian categories. This induces an equivalent functor

ϕ : CM(modX ) → CM(modY).
of triangulated categories. ■
Corollary 16. Let X be a resolving subcategory of A with ΩnX ⊆ CM(A) ⊆ X for some
n ≥ 0. Then X and CM(A) are singularly equivalent. In particular, CMp(A) and CMq(A)
are singularly equivalent for all p, q ≥ 0.

Remark 17. A singular equivalence between X and Y does not necessarily imply that X ,
Y have an inclusion relation. Indeed, let (R,m) be a Gorenstein local domain of dimension
at least 2. Set

X = {M ∈ modR | m /∈ AssM},
Y = {M ∈ modR | AssM ⊆ {0,m}}.

These are resolving subcategories of modR containing CM(R). Hence X sg∼ CM(R)
sg∼ Y .

However, X and Y have no inclusion relation.

In the proof of our last theorem, the following two lemmas are necessary.

Lemma 18. Let R be a Gorenstein complete local ring. Let X be a resolving subcategory
of modR contained in CM(R) and closed under cosyzygies. Assume that there exists a
nonsplit exact sequence

σ : 0 → X
f−→ Y

g−→ Z → 0

of R-modules with X, Y, Z ∈ X such that X,Z are indecomposable. If X is singularly
equivalent to 0, then Y is free, and X is isomorphic to ΩZ.

Lemma 19. Let R and S be Gorenstein complete local rings. Let Φ : CM(R) → CM(S)
be a triangle equivalence. If f is an irreducible homomorphism of nonfree indecomposable
MCM R-modules and g is a homomorphism of S-modules such that Φ(f) = g, then g is
an irreducible homomorphism of nonfree indecomposable MCM S-modules.

Let R be a local ring. Recall that M is said to have complexity c, denoted by cxR M = c,
if c is the least nonnegative integer n such that there exists a real number r satisfying the
inequality βR

i (M) ≤ rin−1 for all i ≫ 0. It is known that if R is a complete intersection,
then the codimension of R is the maximum of the complexities of R-modules. For details
on the complexity of a module, we refer the reader to [2, §4.2].
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Let R be a d-dimensional Gorenstein local ring with algebraically closed residue field
k of characteristic zero. Then R contains a field isomorphic to k, and it is known that R
has finite CM-representation type if and only if R is a simple (hypersurface) singularity
[13, §8], namely, R is isomorphic to a hypersurface

k[[x0, . . . , xd]]/(f),

where f is one of the following.

(An) x2
0 + xn+1

1 + x2
2 + · · ·+ x2

d,

(Dn) x2
0x1 + xn−1

1 + x2
2 + · · ·+ x2

d,

(E6) x3
0 + x4

1 + x2
2 + · · ·+ x2

d,

(E7) x3
0 + x0x

3
1 + x2

2 + · · ·+ x2
d,

(E8) x3
0 + x5

1 + x2
2 + · · ·+ x2

d.

For each T ∈ {An,Dn,E6,E7,E8}, a simple hypersurface singularity of type (T) is shortly
called a (T)-singularity.

We give a characterization of the (A1)-singularities in terms of singular equivalence.

Theorem 20. Let R be a d-dimensional nonregular complete local ring with algebraically
closed residue field k of characteristic 0. Then the following conditions are equivalent;

(1) R is a Gorenstein ring, and CM(R) is singularly equivalent to 0.
(2) R is a complete intersection, and X is singularly equivalent to 0 for every resolving

subcategory X of modR.
(3) R is a complete intersection, and X is singularly equivalent to 0 for some resolving

subcategory X of modR that containing a module of maximal complexity.
(4) R is an (A1)-singularity.

Sketch of proof. (1) ⇒ (4): Using Lemma 18, we can show that R has finite CM rep-
resentation type. By [13, Corollary 8.16] R is a simple singularity. The classification of
the Auslander-Reiten quivers of the MCM modules over simple singularities [13, Chapters
8–12] together with Lemma 19 implies that the only simple singularities R where CM(R)
possesses such an Auslander-Reiten quiver are (A1)-singularities. ■

Let R be a simple hypersurface singularity. Theorem 20 especially says that CM(R) is
not singularly equivalent to 0 unless R is an (A1)-singularity. One can actually confirm
this for a 1-dimensional (A2)- singularity by direct calculation.

Example 21. Let k be an algebraically closed field of characteristic 0. Let R be an
(A2)-singularity of dimension 1 over k. Then there is a triangle equivalence

Dsg(CM(R)) ∼= Dsg(k[t]/(t
2)).

In particular, CM(R) is not singularly equivalent to 0.
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JACOBIAN ALGEBRAS AND DEFORMATION QUANTIZATIONS

IZURU MORI

Abstract. Let V be a 3-dimensional vector space over an algebraically closed field k
of characteristic 0. In this paper, we study the following two classes of algebras: (1) the
Jacobian algebra J(ω) of a potential 0 �= ω ∈ V ⊗3, and (2) the algebra Sλ

f induced by

the deformation quantization of the polynomial algebra S := S(V ) = k[x, y, z] in three
variables whose semi-classical limit has a quadratic unimodular Poisson bracket on S
determined by f ∈ S3. It is known that every noetherian quadratic Calabi-Yau algebra
of dimension 3 is of the form J(ω), however, it is not easy to see for which potential
0 �= ω ∈ V ⊗3, J(ω) is a Calabi-Yau algebra of dimension 3. In this paper, we try to
answer this question by relating J(ω) to Sλ

f .

1. Jacobian Algebras

This is a report on a joint work in progress with S. Paul Smith. Throughout this paper,
let k be an algebraically closed field of characteristic 0, and V a finite dimensional vector
space over k. We denote by T (V ) the tensor algebra and S(V ) the symmetric algebra.
We define the action of θ ∈ Sm on V ⊗m by

θ(v1 ⊗ · · · ⊗ vm) := vθ(1) ⊗ · · · ⊗ vθ(m).

Specializing to the m-cycle φ ∈ Sm, we define

φ(v1 ⊗ v2 ⊗ · · · ⊗ vm−1 ⊗ vm) := vm ⊗ v1 ⊗ · · · ⊗ vm−2 ⊗ vm−1.

We define linear maps c, s, a : V ⊗m → V ⊗m by

c(ω) :=
1

m

m−1∑
i=0

φi(ω)

s(ω) :=
1

m!

∑

θ∈Sm

θ(ω)

a(ω) :=
1

m!

∑

θ∈Sm

(sgn θ)θ(ω).

We define the following subspaces of V ⊗m:

Symm V := {ω ∈ V ⊗m | θ(ω) = ω for all θ ∈ Sm}
Altm V := {ω ∈ V ⊗m | θ(ω) = (sgn θ)ω for all θ ∈ Sm}.

It is easy to see that Symm V = Im s and Altm V = Im a.
The following is a key lemma in this paper.

The detailed version of this paper will be submitted for publication elsewhere.
This work was supported by Grant-in-Aid for Scientific Research (C) 22540044.
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Lemma 1. Suppose that dimV = 3. For every choice of a basis x, y, z for V , Alt3 V =
kω0 where

ω0 = 2a(xyz) = c(xyz − zyx) =
1

3
(xyz + zxy + yzx− zyx− xzy − yxz).

By Lemma 1, we can define a linear map µ : V ⊗3 → k by the formula a(ω) = µ(ω)ω0

when dimV = 3.
We define three kinds of derivatives: Choose a basis x1, . . . , xn for V so that S(V ) =

k[x1, . . . , xn] and T (V ) = k〈x1, . . . , xn〉. For f ∈ k[x1, . . . , xn], the usual partial derivative
of f with respect to xi is denoted by fxi

. For a monomial ω = xi1xi2 · · · xim−1xim ∈
k〈x1, . . . , xn〉m of degree m, we define

x−1
i ω :=

{
xi2 · · · xim−1xim if i1 = i,

0 if i1 �= i,
and

∂xi
(ω) := mx−1

i c(ω).

We extend the map ∂xi
: k〈x1, . . . , xn〉 → k〈x1, . . . , xn〉 by linearity. We call ∂xi

the cyclic
derivative with respect to xi.

Definition 2. The Jacobian algebra of ω ∈ k〈x1, . . . , xn〉 is the algebra of the form

J(ω) := k〈x1, . . . , xn〉/(∂x1ω, . . . , ∂xnω).

We call ω the potential of J(ω).

It is easy to see that the Jacobian algebra is independent of the choice of a basis
x1, . . . , xn for V . Note that if ω is homogeneous, then J(ω) is a graded algebra. In
this paper, we focus on the case that dimV = 3 and 0 �= ω ∈ V ⊗3. In this case,
J(ω) = T (V )/(R) is a quadratic algebra where R ⊂ V ⊗ V .

A Calabi-Yau algebra defined below plays an important role in many branches of math-
ematics. For an algebra A, we denote by Ae := A⊗ Aop the enveloping algebra of A.

Definition 3. An algebra A is called Calabi-Yau of dimension d (d-CY for short) if

(1) A has a resolution of finite length consisting of finitely generated projective Ae-
modules, and

(2) ExtiAe(A,Ae) ∼=

{
A if i = d

0 if i �= d
as Ae-modules.

Bocklandt [3] showed that every graded Calabi-Yau algebra is a Jacobian algebra.
Specializing to the noetherian quadratic case, we have the following result, which is the
main motivation of this paper.

Theorem 4. [3] Every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the
form J(ω) where dimV = 3 and 0 �= ω ∈ V ⊗3.

By the above theorem, it is interesting to know for which potential 0 �= ω ∈ V ⊗3, J(ω)
is a Calabi-Yau algebra of dimension 3. Some criteria were given by [4], [2], however,
these criteria are difficult to check in practice. The purpose of this paper is to give a more
effective criterion by using geometry.
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2. Deformation Quantizations

Let A be a commutative algebra.

Definition 5. A Poisson algebra is an algebra A together with a bilinear map {−,−} :
A× A → A, called the Poisson bracket, satisfying the following axioms:

(1) {a, b} = −{b, a} for all a, b ∈ A.
(2) {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 for all a, b, c ∈ A.
(3) {a, bc} = {a, b}c+ b{a, c} for all a, b, c ∈ A.

Definition 6. A formal deformation of A is a k[[t]]-algebra A[[t]] with the multiplication
ϕ : A[[t]] × A[[t]] → A[[t]] of the form ϕ =

∑
i∈N ϕit

i where ϕ0 : A × A → A is the
original multiplication of A and each ϕi : A× A → A is a k-bilinear map extended to be
k[[t]]-bilinear.

Since A is commutative, for all a, b ∈ A, ϕ0(a, b) = ϕ0(b, a), so

ϕ(a, b)− ϕ(b, a) =
∑

i∈N

ϕi(a, b)t
i −

∑

i∈N

ϕi(b, a)t
i

=
∑

i∈N

(ϕi(a, b)− ϕi(b, a))t
i

= (ϕ1(a, b)− ϕ1(b, a))t+O(t2).

It is easy to see that (A, {−,−}ϕ) where {a, b}ϕ := ϕ1(a, b) − ϕ1(b, a) for a, b ∈ A is
a Poisson algebra. We call (A, {−,−}ϕ) the semi-classical limit of (A[[t]], ϕ). It is not
easy to see which Poisson algebra can be realized as a semi-classical limit of a formal
deformation. If this is the case, we call it a deformation quantization.

Definition 7. Let (A, {−,−}) be a Poisson algebra. A formal deformation (A[[t]], ϕ) of
A is called a deformation quantization of (A, {−,−}) if {−,−} = {−,−}ϕ.

We now focus on the case A = S(V ). For m ≥ 2, S(V )m = V ⊗m/
∑

i+j=m−2 V
i⊗R⊗V j

is the quotient space where R = {u ⊗ v − v ⊗ u ∈ V ⊗ V | u, v ∈ V }. We denote the

quotient map by (−) : V ⊗m → S(V )m. Since s(ω) = 0 for every ω ∈ V i ⊗ R ⊗ V j,

the linear map s : V ⊗m → V ⊗m induces a linear map (̃−) : S(V )m → V ⊗m, called the
symmetrization map.

Lemma 8. The linear maps (−) : V ⊗m → S(V )m and (̃−) : S(V )m → V ⊗m induce

isomorphisms (−) : Symm V → S(V )m and (̃−) : S(V )m → Symm V inverses to each
other.

For the rest of the paper, we assume that dimV = 3 and we write S = S(V ) = k[x, y, z].
In this case, every Poisson bracket on S is uniquely determined by {y, z}, {z, x}, {x, y} ∈
S. A Poisson algebra (S, {−,−}) is called quadratic if {y, z}, {z, x}, {x, y} ∈ S2.

Theorem 9. [5] If (S, {−,−}) is a quadratic Poisson algebra, then

k[[t]]〈x, y, z〉/([y, z]− t{̃y, z}, [z, x]− t{̃z, x}, [x, y]− t{̃x, y})
is a deformation quantization of (S, {−,−}).
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For every f ∈ S,
{y, z}f := fx, {z, x}f := fy, {x, y}f := fz

defines a Poisson bracket on S. In fact, it is known that {−,−} is a unimodular Poisson
bracket on S if and only if {−,−} = {−,−}f for some f ∈ S. If f ∈ S3, then (S, {−,−}f )
is a quadratic Poisson algebra, so

k[[t]]〈x, y, z〉/([y, z]− tf̃x, [z, x]− tf̃y, [x, y]− tf̃z)

is a deformation quantization of (S, {−,−}f ) by Theorem 9. For f ∈ S3 and λ ∈ k, we
define the algebra induced by the above deformation quantization as

Sλ
f := k〈x, y, z〉/([y, z]− λf̃x, [z, x]− λf̃y, [x, y]− λf̃z).

The next two results show that Jacobian algebras and deformation quantizations are
strongly ralated.

Theorem 10. For every f ∈ S3 and every λ ∈ k, Sλ
f = J

(
ω0 − λf̃

)
.

Theorem 11. For J(ω) = T (V )/(R) where 0 �= ω ∈ V ⊗3 and R ⊂ V ⊗ V , the following
are equivalent:

(1) J(ω) = Sλ
f for some f ∈ S3, λ ∈ k.

(2) R ∩ Sym2 V = {0}.
(3) R �⊂ Sym2 V .
(4) c(ω) �∈ Sym3 V .
(5) a(ω) �= 0.
(6) µ(ω) �= 0.

If any of the above equivalent condition holds, then J(ω) = S
−1/µ(ω)
ω .

The above theorem shows that majority of Jacobian algebras are induced by deforma-
tion quantizations.

3. A Criterion for the Calabi-Yau Property

In this section, we will give a criterion for which potential 0 �= ω ∈ V ⊗3, J(ω) is 3-
CY. By the previous section, we divide into two cases (1) a(ω) �= 0 (majority), and (2)
a(ω) = 0 (minority).

Let H(f) :=

∣∣∣∣∣∣
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣
be the Hessian of f ∈ S. Since H(f) ∈ S, we can define

H i+1(f) := H(H i(f)) for every i ∈ N. The classification of cubic divisors in P2 is well-
known. There are eight singular ones and one family of smooth ones (elliptic curves) up
to isomorphisms. The Hessian gives a rough classification of cubic divisors in P2.

Lemma 12. For 0 �= f ∈ S3, the exactly one of the following occurs:

(1) H(f) = 0. In this case, ProjS/(f) is either triple lines, the union of double line
and a line, or the union of three lines meeting at one point.

(2) H(f) �= 0, but H2(f) = 0. In this case, ProjS/(f) is either the union of a conic
and a line meeting at one point, or a cuspidal curve.
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(3) H i(f) �= 0 for every i ∈ N, In this case, ProjS/(f) is either a triangle, the union
of a conic and a line meeting at two points, a nodal curve or an elliptic curve.

Recall that a(ω) �= 0 if and only if J(ω) = Sλ
f for some f ∈ S3 and λ ∈ k by Theorem

11, so it is essential to ask which Sλ
f is 3-CY.

Theorem 13. Let f ∈ S3.

(1) If H2(f) = 0, then Sλ
f is 3-CY for every λ ∈ k.

(2) If H2(f) �= 0 and ProjS/(f) is singular, then Sλ
f is 3-CY except for exactly two

values of λ ∈ k for each f ∈ S3.
(3) If H2(f) �= 0 and ProjS/(f) is smooth, then Sλ

f is 3-CY for every λ ∈ k.

The above theorem shows that majority of Sλ
f is 3-CY. In fact, there are only three

exceptions up to isomorphisms.

Theorem 14. Let f ∈ S3 and λ ∈ k. If Sλ
f is not 3-CY, then it is isomorphic to one of

the following algebras:

• k〈x, y, z〉/(yz, zx, xy).
• k〈x, y, z〉/(yz + x2, zx, xy).
• k〈x, y, z〉/(yz + x2, zx+ y2, xy).

On the other hand, if a(ω) = 0, then there are not much choice for ω (minority), so we
can show the following theorem by case-by-case analysis.

Theorem 15. Let 0 �= ω ∈ V ⊗3 such that a(ω) = 0.

(1) If H2(ω) = 0, then J(ω) is not 3-CY.
(2) If H2(ω) �= 0 and ProjS/(ω) is singular, then J(ω) is 3-CY.
(3) If H2(ω) �= 0 and ProjS/(ω) is smooth, then J(ω) is 3-CY if and only if the

j-invariant of ProjS/(ω) is not 0.

There are six exceptions up to isomorphisms.

Theorem 16. Let 0 �= ω ∈ V ⊗3 such that a(ω) = 0. If J(ω) is not 3-CY, then it is
isomorphic to one of the following algebras:

• k〈x, y, z〉/(x2).
• k〈x, y, z〉/(xy + yx, x2).
• k〈x, y, z〉/(y2, x2).
• k〈x, y, z〉/(xz + zx+ y2, xy + yx, x2).
• k〈x, y, z〉/(xz + zx, y2, x2).
• k〈x, y, z〉/(z2, y2, x2).

These nine exceptional algebras in Theorem 14 and Theorem 16 are in one-to-one
correspondence with eight singular cubics together with the elliptic curve of j-invariant
0. By [1], every noetherian quadratic Calabi-Yau algebra of dimension 3 is a domain. On
the other hand, none of the nine exceptional algebras above is a domain, so we have a
rather surprising result:

Theorem 17. Let 0 �= ω ∈ V ⊗3. Then J(ω) is 3-CY if and only if it is a domain.
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The point scheme is an essential ingredient to study noetherian quadratic Calabi-Yau
algebras of dimension 3 in noncommutative algebraic geometry.

Theorem 18. Let f ∈ S3 and λ ∈ k. If Sλ
f is 3-CY, then the point scheme of Sλ

f is given

by ProjS/(24λf + λ3H(f)).

It follows that, for a generic choice of f ∈ S3 and λ ∈ k, the point scheme of Sλ
f

parameterizes 0-dimensional symplectic leaves for the unimodular Poisson structure on
P2 = ProjS induced by f .
A few more calculations for minority show the following theorem:

Theorem 19. Let 0 �= ω ∈ V ⊗3. If J(ω) is 3-CY, then the point scheme of J(ω) is given
by ProjA/(24µ(ω)2ω +H(ω)).

4. Examples

We claim that the criterion given in this paper is effective. In fact, given ω ∈ V ⊗3, it is
routine to calculate a(ω). Moreover, given f ∈ S3, it is routine to calculate H2(f), and it
is easy to check if ProjS/(f) is singular or smooth because ProjS/(f) is singular if and
only if the system of polynomial equations fx = fy = fz = 0 has a non-trivial solution.
Alternately, by sketching the curve, we can fit ProjS/(f) into one of the cubic divisors
in the classification. Then we can see if it is singular or smooth and we can determine if
H2(f) = 0 or not by Lemma 12.

Example 20. If f = x2z + xy2, then it is easy to see that ProjS/(f) is the union of a
conic and a line meeting at one point, so H2(f) = 0 by Lemma 12, hence Sλ

f is 3-CY for
every λ ∈ k by Theorem 13.

Example 21. If f = xyz + (1/3)x3 ∈ S3, then it is easy to see that ProjS/(f) is the
union of a conic and a line meeting at two points, so H2(f) �= 0 by Lemma 12. Since
ProjS/(f) is singular, Sλ

f is 3-CY except for exactly two values of λ ∈ k by Theorem
13. These exceptional values can also be determined by a geometric condition as follows.
Since

H(f) =

∣∣∣∣∣∣
2x z y
z 0 x
y x 0

∣∣∣∣∣∣
= 2(xyz − x3),

if Sλ
f is 3-CY, then the point scheme of Sλ

f is ProjS/(g) where

g = 24λf + λ3H(f) = 2λ{(12 + λ2)xyz + (4− λ2)x3}

by Theorem 18. It is easy to see that

ProjS/(g) =





the union of a conic and a line meeting at two points if λ2 �= 0,−12, 4,

P2 if λ = 0,

a triple line if λ2 = −12,

a triangle if λ2 = 4.
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We can show that Sλ
f is 3-CY if and only if ProjS/(g) is not a triangle. In fact, the

defining relations of Sλ
f are

[y, z]− λf̃x = yz − zy − λ

(
yz + zy

2
+ x2

)
=

2− λ

2
yz − 2 + λ

2
zy − λx2

[z, x]− λf̃y = zx− xz − λ

(
zx+ xz

2

)
=

2− λ

2
zx− 2 + λ

2
xz

[x, y]− λf̃z = xy − yx− λ

(
xy + yx

2

)
=

2− λ

2
yx− 2 + λ

2
yx,

so if λ = ±2, then Sλ
f is not a domain, hence it is not 3-CY.

Example 22. If ω = x3 + y3 + z3 + (3α/2)(xyz + zyx) ∈ V ⊗3 where α ∈ k, then it is
easy to see that a(ω) = 0, so we apply Theorem 15 to this example. Since f := ω =
x3 + y3 + z3 + 3αxyz ∈ S3, it is well-known that

ProjS/(f) =

{
a triangle if α3 = −1,

an elliptic curve if α3 �= −1,

so H2(f) �= 0 in either case by Lemma 12. If α3 = −1, then ProjS/(f) is singular, so
J(ω) is 3-CY by Theorem 15. On the other hand, if α3 �= −1, then ProjS/(f) is smooth
(an elliptic curve) and the j-invariant of ProjS/(f) is given by the formula

α3(8− α3)

(1 + α3)3
,

so J(ω) is 3-CY if and only if α3 �= 0, 8 by Theorem 15.
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ON THE HOCHSCHILD COHOMOLOGY RING MODULO
NILPOTENCE OF THE QUIVER ALGEBRA DEFINED BY c CYCLES

AND A QUANTUM-LIKE RELATION

DAIKI OBARA

Abstract. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Osaka City University, Japan, 13–15 September 2014.

In this paper, we consider the quiver algebra A over a field K defined by c cycles
and a quantum-like relation. We describe the minimal projective bimodule resolution
of A, and determine the ring structure of the Hochschild cohomology ring of A modulo
nilpotence. And we give some examples of the support variety of A-modules.

1. Introduction

LetK be a field and A an indecomposable finite dimensional algebra overK. We denote
by Ae the enveloping algebra A ⊗K Aop of A, so that left Ae-modules correspond to A-
bimodules. The n-th Hochschild cohomology group is given by HHn(A) ∼= ExtnAe(A,A)
and the Hochschild cohomology ring is given by HH∗(A) = ⊕n≥0HH

n(A,A) with Yoneda
product. Let N denote the ideal of HH∗(A) which is generated by all homogeneous
nilpotent elements. In this paper, we consider the Hochschild cohomology ring modulo
nilpotence HH∗(A)/N .

The Hochschild cohomology ring modulo nilpotence HH∗(A)/N was used in [5] to define
a support variety for any finitely generated module over a finite dimensional algebra A.
In [5], Snashall and Solberg defined the support variety V (M) of an A-module M by

V (M) = {m ∈ MaxSpecHH∗(A)/N|AnnExt∗A(M,A/radA) ⊆ m′}.

where m′ is the inverse image of m in HH∗(A).
Let c be an integer with c ≥ 2 and qi,j ∈ K nonzero elements for 1 ≤ i < j ≤ c. We

consider the quiver algebra KQ/I defined by c cycles and a quantum-like relation where

The detailed version of this paper will be submitted for publication elsewhere.
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Q is the following quiver:

e(c,sc)
ac,sc

��

e(1,2)

e(c,2) 　 e1

a1,1
��

a2,1
��

ac,1�� e(1,s1)a1,s1��

　 e(2,2)

e(2,s2)

a2,s2

��

where 1 ≤ j ≤ c and sj ≥ 2, and where I is the ideal of KQ generated by

Xni
i for 1 ≤ i ≤ c,

XiXj − qi,jXjXi for 1 ≤ i < j ≤ c.

where Xi := (
∑si

ki=1 ai,ki)
si and ni are integers with ni ≥ 2 for 1 ≤ i ≤ c.

In the case c = 2, we determined the Hochschild cohomology ring of A modulo nilpo-
tence in [2] and [3]. In the case si = 1 for 1 ≤ i ≤ c, the Hochschild cohomology ring of
A modulo nilpotence was described by Oppermann in [4]. In this paper, we describe the
minimal projective bimodule resolution of A, and determine explicitly the ring structure
of the Hochschild cohomology ring modulo nilpotence HH∗(A)/N by giving the K-basis
and the multiplication.

2. Precedent results

In this section, we introduce the precedent results about the quiver algebra A. In
the case of si = 1 for 1 ≤ i ≤ c, A is called a quantum complete intersection. In this
case, the projective bimodule resolution of A and the Hochschild cohomology ring modulo
nilpotence of A was given by Oppermann in [4] as follows.

Theorem 1. [4] In the case of si = 1 for 1 ≤ i ≤ c, the projective bimodule resolution of
A is total complex Tot(P1 ⊗ P2 ⊗ · · · ⊗ Pc) where Pi is the projective bimodule resolution
of Ai = K[αi]/(α

ni
i ):

Pi : A
e
i
1⊗x−xi⊗1←− Ae

i

∑ni−1

k=0 xk
i ⊗x

ni−1−k
i←− Ae

i
1⊗x−xi⊗1←− Ae

i ←− · · · .

Theorem 2. [4] HH∗(A)/N is isomorphic to the following finitely generated K-algebra.

K⟨yp1n1/2
1 · · · ypcnc/2

c ∈ K[y1, . . . , yc]|
∏c

j=1 q
pjnj/2
i,j = 1 for all i with pi even,

∏c
j=1 q

(pj−1)nj/2+1
i,j = −1 and ni = 2 for all i with pi odd⟩.

where qi,i = 1 and qi,j = q−1
j,i for 1 ≤ j < i ≤ c.

In the case of c = 2, we determined the Hochschild cohomology ring modulo nilpotence
HH∗(A)/N in [2] and [3] as follows.
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Theorem 3. Let r be an integer with r > 0. In the case of c = 2, if q1,2 is a primitive
r-th root of unity, then HH∗(A)/N is isomorphic to the polynomial ring of two variables:

HH∗(A)/N ∼=





K[x2r, y2r] if n1, n2 ̸≡ 0mod r,

K[x2, y2r] if n1 ≡ 0mod r, ni ̸≡ 0mod r,

K[x2r, y2] if n1 ̸≡ 0mod r, n2 ≡ 0mod r,

K[x2, y2] if n1, n2 ≡ 0mod r,

where xn =
∑s1

k1=1 e(1,k1), y
n =

∑s2
k2=1 e(2,k2) in HHn(A).

Theorem 4. In the case of c = 2, if q1,2 is not a root of unity, then HH∗(A)/N ∼= K.

3. Projective bimodule resolution of A

In this section, we describe the minimal projective bimodule resolution of the quiver
algebra A = KQ/I defined by c cycles and a quantum-like relation.

Let c and n be integers with c ≥ 2 and n ≥ 1. We set

Ln = {(l1, l2, . . . , lc) ∈ (N ∪ {0})c |
c∑

k=1

lk = n} for any integer n ≥ 1.

We define projective left Ae-modules, equivalently A-bimodules:

P0 = Aε00A⊕
c⨿

i=1

si⨿
ki=2

Aε0(i,ki)A and,

Qn
(l1,...,lc)

=




si⨿
ki=1

Aεn(i,ki)A if li = n for some 1 ≤ i ≤ c,

Aεn(l1,...,lc)A if li < n for all 1 ≤ i ≤ c,

for (l1, . . . , lc) ∈ Ln, where εn(l1,...,lc) = e1 ⊗ e1 and

εn(i,ki) =

{
e(i,ki) ⊗ e(i,ki) if n is even,

e(i,ki+1) ⊗ e(i,ki) if n is odd.

Then, we have the minimal projective A-bimodule resolution of A as the total complex
of the following complexes.

Lemma 5. Let n be an integer with n ≥ 1 and En
i,ki

=
∑si−1

l=0 xl
iε

n
(i,ki−l)x

si−1−l
i for 1 ≤ i ≤ c

and 0 ≤ ki ≤ si − 1. For (l1, . . . , lc) ∈ Ln, we set the integers µi by

µi =

{
ni(li − 1)/2 + 1 if li is odd,

nili/2 if li is even,
for 1 ≤ i ≤ c.

Then, we have the following complexes.
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(1) For (l1, . . . , lc) ∈ Ln such that li = n, we define the left Ae-homomorphisms
∂n
(l1,...,lc),i

: Qn
(l1,...,lc)

→ Qn−1
(l1,...,li−1,...,lc)

by

∂n
(l1,...,lc),i

: εn(i,ki) �→





εn−1
(i,ki+1)xi − xiε

n−1
(i,ki)

if n is odd,
ni−1∑
l=0

X l
iE

n−1
i,ki−1X

ni−1−l
i if n is even,

for 1 ≤ ki ≤ si.

Then, since ∂n
(l1,...,lc),i

◦ ∂n+1
(l1,...,li+1,...,lc),i

= 0, we have the complex Pi :

P0

∂1
(0,...,1,...,0),i←− Q1

(0,...,1,...,0)

∂2
(0,...,2,...,0),i←− · · ·

∂n
(0,...,n,...,0),i←− Qn

(0,...,n,...,0) ← · · · .

(2) Let m = min{i | li > 0} for (l1, . . . , lc) ∈ Ln. For m ≤ j ≤ c and (l1, . . . , lc) ∈ Ln

such that li < n−1 for 1 ≤ i ≤ c and lj ̸= 0, we define the left Ae-homomorphisms
∂n
(l1,...,lc),j

: Qn
(l1,...,lc)

→ Qn−1
(l1,...,lj−1,...,lc)

as follows:

∂n
(l1,l2,...,lc),j

: εn(l1,...,lc) �→


(−1)
∑c

k=j+1 lk
( c−j∏
h1=1

q
µj+h1
j,j+h1

εn−1
(l1,...,lj−1,...,lc)

Xj −
j−1∏
h2=1

q
µh2
h2,j

Xjε
n−1
(l1,...,lj−1,...,lc)

)

if lj is odd,

(−1)
∑c

k=j+1 lk

nj−1∑
kj=0

c−j∏
h1=1

q
µj+h1

(nj−1−kj)

j,j+h1

j−1∏
h2=1

q
µh2

kj
h2,j

X
kj
j εn−1

(l1,...,lj−1,...,lc)
X

nj−1−kj
j

if lj is even( ̸= 0).

For (l1, . . . , lc) ∈ Ln such that lm = n− 1 and lj = 1 for m ≤ j ≤ c, we define the
left Ae-homomorphisms ∂n

(l1,...,lc),j
by

∂n
(l1,...,lc),j

: εn(l1,...,lc) �→

{
En−1

m,0 Xj − qµm

m,jXjE
n−1
m,0 if n is even,

εn−1
(m,1)Xj − qµm

m,jXjε
n−1
(m,1) if n is odd,

For (l1, . . . , lc) ∈ Ln such that lm = 1 and lj = n− 1 for m ≤ j ≤ c, we define the
left Ae-homomorphisms ∂n

(l1,...,lc),j
by

∂n
(l1,...,lc),j

: εn(l1,...,lc) �→

{
En−1

j,0 Xm − q
µj

m,jXmE
n−1
j,0 if n is even,

εn−1
(j,1)Xm − q

µj

m,jXmε
n−1
(j,1) if n is odd,

Then, since ∂n
(l1,...,lc),j

◦ ∂n+1
(l1,...,lj+1,...,lc),j

= 0, for (l1, . . . , lc) ∈ Ln such that lj = 0,

we have the complex Q(l1,...,lc),j :

Qn
(l1,...,0,...,lc)

∂n+1
(l1,...,1,...,lc),j←− Qn+1

(l1,...,1,...,lc)
← · · ·

∂n+n′
(l1,...,n

′,...,lc),j←− Qn+n′

(l1,...,n′,...,lc)
← · · · .

Theorem 6. The following total complex P is the minimal projective resolution of the left
Ae-module A.

P : 0 ← A
π←− P0

d1←− P1 ← · · · dn←− Pn ← · · ·

–4–



― 134 ―

where π is the multiplication map and

Pn =
⨿

(l1,...,lc)∈Ln

Qn
(l1,...,lc)

and dn =
c∑

j=1

∑
(l1,...,lc)∈Ln

∂n
(l1,...,lc),j

,

for n ≥ 1, where ∂n
(l1,...,lc),j

are the Ae-homomorphisms given in Lemma 5.

Now we consider the complex P ⊗A A/radA. We can prove that P is exact, by the
following Lemma.

Lemma 7. [1] If P ⊗A A/radA is exact sequence then P is also exact sequence.

We can prove that P⊗AA/radA is exact, that is dimk Im dn⊗AidA/radA+dimk Im dn+1⊗A

idA/radA = dimk Pn ⊗A A/radA by the following Lemma.

Lemma 8. Let (l1, . . . , lc) ∈ Ln such that li < n−1 for 1 ≤ i ≤ c, and m = min{i |li > 0}
for (l1, . . . , lc) ∈ Ln.

(1) If lm is even, then the left A-module AXmdn ⊗A idA/radA(e
n
(l1,...,lc)

) is generated by

dn ⊗A idA/radA(e
n
(l1,...,lm+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

(2) If lm is odd, then the left A-module AXnm−1
m

�dn(e(l1,...,lc)) is generated by

dn ⊗A idA/radA(e
n
(l1,...,lm+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

(3) For 1 ≤ i ≤ m− 1, the left A-module AXi
�dn(en(l1,...,lc)) is generated by

dn ⊗A idA/radA(e
n
(l1,...,li+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

4. The Hochschild cohomology ring modulo nilpotence

In this section, we give a K-basis of the Hochschild cohomology ring modulo nilpotence.
Applying the functor HomAe(−, A) to the Ae-projective resolution P given in Theorem 6,
we have the following complex:

P∗ : 0 → P ∗
0

d∗1−→ P ∗
1 → · · · → P ∗

n−1

d∗n−→ P ∗
n → · · · ,

where

P ∗
n =

⨿
(l1,...,lc)∈Ln

HomAe(Qn
(l1,...,lc)

, A) and d∗n =
c∑

i=1

∑
(l1,...,lc)∈Ln

HomAe(∂n
(l1,...,lc),i

, A),

for n ≥ 1. Then we have the following isomorphisms:

P ∗
0 = HomAe(P0, A) ≃ e1Ae

0
0 ⊕

c⨿
i=1

si⨿
ki=2

ei,kiAe
0
(i,ki)

,

HomAe(Qn
(l1,...,lc)

, A) ≃




si⨿
ki=1

e(i,ki)Ae
n
(i,ki)

if n is even and li = n,

si⨿
ki=1

e(i,ki+1)Ae
n
(i,ki)

if n is odd and li = n,

e1Ae
n
(l1,...,lc)

if li < n for 1 ≤ i ≤ c,
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for (l1, . . . , lc) ∈ Ln. Since we give the Hochschild cohomology ring modulo nilpotence, we
only consider the elements, which are trivial passes in A, in HHn(A) = Ker d∗n+1/Im d∗n.
Now, we give the image of en(l1,...,lc) in P ∗

n by ∂n+1∗
(l1,...,lj+1,...,lc),j

for (l1, . . . , lj+1, . . . , lc) ∈ Ln+1

and 1 ≤ j ≤ c.

HomAe(∂n+1
(l1,...,lj+1,...,lc),j

, A) :



en(i,ki) �→ xie
n+1
(i,ki−1) − xie

n+1
(i,ki)

for 1 ≤ ki ≤ si if n is even, li = n and i = j,

en(i,1) �→ (1− qµi

i,j)Xje
n+1
(l1,...,lj+1,...,lc)

if li = n and i < j,

en(i,1) �→ (−1)n(qµi

j,i − 1)Xje
n+1
(l1,...,lj+1,...,lc)

if li = n and i > j,

en(l1,...,lc) �→


(−1)
∑c

k=j+1 lk
( c−j∏
h1=1

q
µj+h1
j,j+h1

−
j−1∏
h2=1

q
µh2
h2,j

)
Xje

n+1
(l1,...,lj+1,...,lc)

if lj is even,

(−1)
∑c

k=j+1 lk

nj−1∑
kj=0

c−j∏
h1=1

q
µj+h1

(nj−1−kj)

j,j+h1

j−1∏
h2=1

q
µh2

kj
h2,j

X
nj−1
j en+1

(l1,...,lj+1,...,lc)
if lj is odd,

if li < n for 1 ≤ i ≤ c,

For homogeneous elements η ∈ HHm(A) and θ ∈ HHn(A), we have the Yoneda product
ηθ = ησm ∈ HHm+n(A) where σm is a lifting of θ in the following commutative diagram
of A-bimodules.

· · · �� Pm+n
dm+n ��

σm

��

· · · dn+2 �� Pn+1

dn+1 ��

σ1

��

Pn

θ

���
��

��
��

�

σ0

��
· · · �� Pm

dm �� · · · d2 �� P1
d1 �� P0

π �� A �� 0.

Proposition 9. Let (l1, . . . , lc) ∈ Ln, (l
′
1, . . . , l

′
c) ∈ Ln′. Then we have the lifting of en(l1,...,lc)

as follows.

σn′ : εn+n′

(l1+l′1,...,lc+l′c)
�→

∑
0 ≤ kj ≤ nj − 2

1 ≤ j ≤ c
such that

lj , l
′
j are odd

Q
∏

1 ≤ j ≤ c

such that
lj , l

′
j are odd

X
kj
j εn

′

(l′1,...,l
′
c)

∏

1 ≤ j ≤ c

such that
lj , l

′
j are odd

X
nj−2−kj
j ,

for n′ ≥ 0 where Q ∈ K depending on (l1 + l′1, . . . , lc + l′c) ∈ Ln+n′ and integers kj.

By Proposition 9, if n is odd or lj is odd for some 1 ≤ j ≤ c, en(l1,...,lc) is nilpotence.
By the complex P∗ and Yoneda product given by Proposition 9, we have the K-basis

of the Hochschild cohomology ring of A modulo nilpotence as follows.

Theorem 10. Let qi,j = q−1
j,i for 1 ≤ j < i ≤ c. The following elements form a K-basis

of HH∗(A)/N.
(1)

∑si
ki=1 e

n
(i,ki)

∈ HHn(A)/N for the even integer n and the integer i with 1 ≤ i ≤ c
which satisfy the following conditions:

q
nin/2
i,j = 1 for 1 ≤ j ≤ c.
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(2) en(l1,...,lc) ∈ HHn(A)/N for the even integer n and (l1, . . . , lc) ∈ Ln which satisfy the
following conditions:

li is even for 1 ≤ i ≤ c,
c∏

h=1

q
nhlh/2
j,h = 1 for 1 ≤ j ≤ c such that lj ̸= 0,

Remark 11. In the case of ni > 2 for 1 ≤ i ≤ c, the K-basis elements of HH∗(A)/N given
in Theorem 10 coincide with those of given in Theorem 2.

5. Examples of the support variety

In this section, we give the examples of the support variety of an A-module. In [5],
Snashall and Solberg defined the support variety V (M) of a A-module M by

V (M) = {m ∈ MaxSpecHH∗(A)/N|AnnExt∗A(M,A/radA) ⊆ m′}.
where m′ is the inverse image of m in HH∗(A) and AnnExt∗A(M,A/radA) is annihilator
of Ext∗A(M,A/radA).

Let K be an algebraically closed filed and r ∈ N. We consider the case c = 2, s1 =
s2 = 1,q1,2 is a primitive r-th root of unity and n1, n2 ̸≡ 0mod r ([2]). Then we have

HH∗(A)/N = K[X, Y ].

where X =
∑s1

k1=1 e(1,k1), Y =
∑s2

k2=1 e(2,k2) in HH2r(A).

Example 12. Let M1 = Axs1t
1 e1. We have Ext∗A(M1, A/radA) and the annihilator of

Ext∗A(M1, A/radA) as follows:

Ext∗A(M1, A/radA) =
⨿

n≥0 Ken(1,1),

AnnExt∗A(M1, A/radA) = (Y ).

And we have the support variety of M1 as follows:

V (M1) ={(a1, a2) ∈ K2| a2 = 0} as an affine algebraic set.

Example 13. Let M2 = AXs1t1
1 Xs2t2

2 and M3 = AXs1t1
1 e1 + AXs2t2

2 e1. We have the
annihilator of Ext∗A(Mi, A/radA) for i = 2, 3 as follows:

AnnExt∗A(Mi, A/radA) = 0.

And we have the support variety of Mi for 2 ≤ i ≤ 3 as follows:

V (Mi) = K2 as an affine plane.
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REMARKS ON A CATEGORICAL DEFINITION
OF DEGENERATION IN TRIANGULATED CATEGORIES

ALEXANDER ZIMMERMANN

Abstract. This work reports on joint research with Manuel Saorin. For an algebra A
over an algebraically closed field k the set of A-module structures on kd forms an affine
algebraic variety. The general linear group Gld(k) acts on this variety and isomorphism
classes correspond to orbits under this action. A module M degenerates to a module N if
N belongs to the Zariski closure of the orbit of M . Yoshino gave a scheme-theoretic char-
acterisation, and Saorin and Zimmermann generalise this concept to general triangulated
categories. We show that this concept has an interpretation in terms of distinguished
triangles, analogous to the Riedtmann-Zwara characterisation for modules. In this man-
uscript we report on these results and study the behaviour of this degeneration concept
under functors between triangulated categories.

1. Introduction

Already very early in representation theory of algebras a geometric interpretation of
representations of an algebra was given, cf e.g. work of Gabriel [3]. For an algebraically
closed field k, a finite-dimensional k-algebra A and some integer d > 0 the set of A-module
structures on kd forms an affine algebraic variety mod(A, d). The general linear group
Gld(k) acts on this variety and two A-module structures on kd are isomorphic if and only
if they belong to the same orbit. One says that an A-moduleM degenerates to the module
N if N belongs to the Zariski closure of the orbit of M . Much work was done to explain
the geometric structure of the orbit closures. Riedtmann [10] and Zwara [16] prove that
M degenerates to N if and only if there is an A-module Z and an embedding of Z into
M⊕Z such that N is isomorphic to the cokernel of this embedding. We refer to Section 2
for more details on this part of the theory.
Yoshino studies in [12, 13, 14] degeneration for more general algebras, including maximal

Cohen-Macaulay modules over a local Gorenstein k-algebra, and for this purpose he gave
a scheme-theoretic definition of this concept. Using this concept Yoshino studies stable
categories of maximal Cohen-Macaulay modules over a local Gorenstein algebra. We refer
to Section 3 for more details.
Yoshino’s concept is then suitable for general triangulated categories. In joint work

with Saorin [11] we define a degeneration concept for general triangulated k-categories
with splitting idempotents. We then show that this concept implies in a very general
setting that if an object M degenerates to an object N , then there is an object Z and

a distinguished triangle Z
(vu)→ Z ⊕ M → N → Z[1] in the triangulated category with

nilpotent endomorphism v of Z. We then write M ≤∆ N . For algebraic triangulated

The detailed version of this paper will be submitted for publication elsewhere.
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categories, and an additional technical hypothesis, we prove the converse. We study in
the present paper the question what happens if two objects M and N belonging to a
triangulated category T1 such that T1 is a full triangulated subcategory of a triangulated
category T2. Under the hypotheses on T2 which we need for the converse of the main
theorem of [11] as mentioned above, we show that then the degeneration concepts coincide.
We finally mention that our degeneration concept applies to the bounded derived cat-

egory of a finite dimensional algebra, and to the stable category of a selfinjective algebra.
For the bounded derived category over an algebra Jensen, Su and Zimmermann gave an
alternative definition in [5]. Also in [5] we showed that degeneration there is equivalent
to the existence of a distinguished triangle as above. However, this concept is very closely
linked to the specific situation of derived categories of bounded complexes over a finite
dimensional algebra. Moreover, no clear relation to degeneration of the homology can be
seen. In a subsequent approach Jensen, Madsen and Su [4] used A∞ algebras to define a
degeneration by means of the homology of a complex. Again, this is not done for general
triangulated categories.
In the classical theory degeneration of modules provides a partial order on the isomor-

phism classes of objects. In [6] Jensen, Su and Zimmermann study when the degeneration

given by the existence of a distinguished triangle Z
(vu)→ Z⊕M → N → Z[1] gives a partial

order. This happens to be the case when some finiteness conditions are assumed, in par-
ticular morphism spaces in the triangulated category should be k-modules of finite length
for all objects in the triangulated category. Moreover, for two objects X, Y we ask that
we may find a shift nX,Y such that there is no non-zero morphism from X to Y [nX,Y ].

Acknowledgement : I wish to thank the organisers of the Symposion on Ring Theory
and Representation theory 47, and in particular Hideto Asashiba for the kind invitation
to Osaka, for giving me the opportunity to present my work and for the great hospitality
during my visit.

2. Classical degeneration concepts

Degeneration between modules over a fixed algebra is a relatively classical subject in
representation theory of finite dimensional algebras, and was used in many different ways.
Let k be an algebraically closed field and let A be a finite dimensional k-algebra. Then

an A-module of k-dimension d is an algebra homomorphism A
ϕ→ Endk(k

d). Hence, if
a1, · · · , am are algebra generators of A, then for each i ∈ {1, · · · ,m} each of the ϕ(ai) =:
Mi is a square matrix of size d. Moreover, A is finitely presented, in the way that there is
a finite set ρ1(X1, · · · , Xm), · · · , ρs(X1, · · · , Xm) of relations such that if k〈X1, . . . , Xm〉
denotes the free algebra in m variables X1, · · · , Xm, then as an algebra we get

A � k〈X1, · · · , Xm〉/(ρ1, · · · , ρs).
The points of the affine algebraic variety mod(A, d) defined by the m · d2 variables given
by the coefficients of the matrices M1, · · · ,Mm modulo the relations given by the poly-
nomial equations ρ1, · · · , ρs parameterise A-module structures on kd. Two modules N1

and N2 corresponding to the points n1, n2 of mod(A, d) are isomorphic if and only if the
corresponding matrices M1(n1), · · · ,Mm(n1) are simultaneously conjugate with the ma-
trices M1(n2), · · · ,Mm(n2). Otherwise said, G := GLd(k) acts on mod(A, d) by matrix
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conjugation and the points n1 and n2 correspond to isomorphic modules if and only if n1

and n2 belong to the same orbit G · n1 = G · n2 under this action. In general orbits are
not Zariski closed, and we denote by G · n the Zariski closure of the orbit G · n. Now, we
say that N1 degenerates to N2 if and only if n2 ∈ G · n1. In this case we note N1 ≤deg N2.
An algebraic classification of degenerations was subject of intensive research. It is

relatively easy to see that N2 � N/N1 implies N ≤deg N1 ⊕ N2. Moreover, N1 ≤deg N2

implies N3 ⊕N1 ≤deg N3 ⊕N2 for all A-modules N1, N2, N3. The converse is not true, as
may be shown by an example due to Jon Carlson (cf [10, § 3.1]); another example was
given with different methods by Yoshino [14, Proposition 3.3]. Further, if N1 ≤deg N2,
then

dimk(HomA(X,N1)) ≤ dimk(HomA(X,N2))

and
dimk(HomA(N1, X)) ≤ dimk(HomA(N2, X))

for all X. This property implies actually that ≤deg is a partial order, as was shown by
Auslander [1]. An independent proof was later given by Bongartz [2], and an adaption
of this proof was used in [6] to show that ≤∆ is a partial order under some reasonable
hypotheses. Riedtmann showed in [10] that if there is an A-module Z and a short exact
sequence

0 → Z → Z ⊕N1 → N2 → 0

then N1 ≤deg N2, and Zwara showed in [16] the converse in this generality. The above
relations on the dimension of Hom-spaces is an easy consequence, though it was proved
earlier by different methods.

3. On Yoshino’s degeneration concept

The fact that we only deal with finite dimensional algebras in Section 2 is in some
sense unsatisfying. In order to be able to cover a greater generality, Yoshino changed the
classical degeneration ≤deg to a scheme theoretic concept which is well-suited for us. We
explain Yoshino’s results here.
Let k be a field and let A be a k-algebra. Yoshino developed in a series of papers a

degeneration concept which is well-suited for the purpose of commutative algebra. By the
symbol (V, tV, k) we denote a discrete valuation ring V with radical tV and residue field
k. An algebra which is a discrete valuation ring is a discrete valuation k-algebra.

Definition 1. (Yoshino [13]) Let A be a k-algebra and let M and N be two finitely
generated A-modules. We say M degenerates to N along a discrete valuation ring, and
we write in this case M ≤dvr N , if there is a discrete valuation k-algebra (V, tV, k) and
an A⊗k V -module Q, which is

• flat as V -module,
• such that M ⊗k V [1

t
] � Q⊗V V [1

t
] as A⊗k V [1

t
]-modules and

• such that N � Q/tQ as A-modules.

The interpretation of this notion is that there is an affine line, presented by V , and a
point Q that moves along V . The algebra V is a discrete valuation algebra since we are
only interested in the neighbourhood of the parameter t = 0. Now, at the value t = 0 the
moving point Q becomes Q/tQ, which is assumed to be isomorphic to N , and generically,
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outside t = 0, the moving point looks like M . This last fact is expressed by the condition
M ⊗k V [1

t
] � Q⊗V V [1

t
].

Of course, Yoshino’s concept M ≤dvr N immediately generalises to the stable category.
The only thing to do is to replace the isomorphisms in the module category by isomor-
phisms in the stable categories. Yoshino formulated this concept for stable categories
of maximal Cohen-Macaulay modules over local Gorenstein rings. A local commutative
ring A with residue field k is a Gorenstein ring if A is Noetherian with finite injective
dimension. In this case an A-module M is Cohen-Macaulay if ExtiA(M,A) = 0 for all
i > 0. It is well-known that the stable category of maximal Cohen-Macaulay modules
over a local Gorenstein k-algebra is triangulated.

Definition 2. (Yoshino) [14] Let k be a field, and let (A,m, k) be a local Gorenstein
k-algebra and let M and N be two A-modules. We say M stably degenerates to N along
a discrete valuation ring if there is a discrete valuation k-algebra (V, tV, k) and a maximal
Cohen-Macaulay A⊗k V -module Q, such that

• M ⊗k V [1
t
] � Q⊗V V [1

t
] in the stable category of maximal Cohen-Macaulay A⊗k

V [1
t
] modules and

• N � Q/tQ in the stable category of maximal Cohen-Macaulay A-modules.

In this case we write M ≤stdvr N .

Now, the most striking fact is that this concept implies, and is in some cases actually
equivalent to an analogue of Riedtmann-Zwara’s characterisation in terms of short exact
sequences.

Definition 3. • LetA be an abelian category. We say that an objectM degenerates
to an object N if there is an object Z and a short exact sequence

0 → Z
(vu)→ Z ⊕M → N → 0

with a nilpotent endomorphism v of Z. We write M ≤RZ N in this case.
• Let T be a triangulated category with suspension functor denoted by T . We
say that an object M degenerates to an object N if there is an object Z and a
distinguished triangle

Z
(vu)→ Z ⊕M → N → Z[1]

with a nilpotent endomorphism v of Z. We write M ≤∆ N in this case

Riedtmann and Zwara considered this degeneration for modules M and N over a finite
dimensional algebras A over a field k. In this case Fitting’s lemma implies that the
hypothesis on v to be nilpotent is not necessary, and actually these authors do not assume
that v is nilpotent. Up to my knowledge the importance of this nilpotence hypothesis was
first observed by Yoshino [13].
Yoshino gave as a main theorem of [13, 14] the following result. Recall that the sta-

ble category of maximal Cohen-Macaulay modules over a local Gorenstein k-algebra is
triangulated. In particular ≤stdvr and ≤∆ are both defined for this category.
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Theorem 4. • [13] Let k be a field and let A be a k-algebra. Let M and N be finitely
generated A-modules. Then

(M ≤dvr N) ⇔ (M ≤RZ N) .

• [14] Let k be a field, and let (R,m, k) be a local Gorenstein k-algebra. Let T be the
stable category of maximal Cohen Macaulay R-modules and let M and N be two
objects of T . Then

(∃m,n∈NR
m ⊕M ≤dvr R

n ⊕N) ⇒ (M ≤∆ N) ⇒ (M ≤stdvr N) .

Moreover, these three conditions are equivalent if A is artinian.

The implications may be strict in general. Yoshino gave explicit examples for the first
implication.

4. The categorical degeneration

We shall now give a generalisation of Yoshino’s degeneration concept Definition 2 for
the stable category of maximal Cohen-Macaulay modules.

Definition 5. Let k be a commutative ring and let C◦
k be a k-linear triangulated category

with split idempotents. A degeneration data for C◦
k is given by

• a triangulated category Ck with split idempotents and a fully faithful embedding
C◦
k → Ck,

• a triangulated category CV with split idempotents and a full triangulated subcat-
egory C◦

V ,
• triangulated functors ↑Vk : Ck → CV and Φ : C◦

V → Ck, such that (C◦
k) ↑Vk ⊆ C◦

V , when
we view C◦

k as a full subcategory of Ck,
• a natural transformation idCV

t→ idCV of triangulated functors.

These triangulated categories and functors should satisfy the following axioms:

(1) For each object M of C◦
k the morphism Φ(M ↑Vk )

Φ(t
M↑V

k
)

→ Φ(M ↑Vk ) is a split
monomorphism in Ck.

(2) For all objects M of C◦
k we get Φ(cone(tM↑Vk

)) � M .

All throughout the paper, whenever we have a degeneration data for C◦
k as above, we

will see C◦
k as a full subcategory of Ck.

Definition 6. Given two objects M and N of C◦
k we say that M degenerates to N in the

categorical sense if there is a degeneration data for C◦
k and an object Q of C◦

V such that

p(Q) � p(M ↑Vk ) in C◦
V [t

−1] and Φ(cone(tQ)) � N,

where p : C◦
V → C◦

V [t
−1] is the canonical functor. In this case we write M ≤cdeg N .

Remark 7. The functor ↑Vk models V ⊗k − from Yoshino’s attempt. The functor Φ
models the forgetful functor which is the identity on objects, i.e. an A ⊗k V -module M
is considered as an A-module only. Of course, in the classical situation considered by
Yoshino M is not finitely generated anymore. This is the reason why we need to consider
the categories C◦

k inside Ck, and C◦
V inside CV .
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The concept ≤cdvr is appropriate, as we shall see in the following result. It gives
under certain conditions an equivalence between the geometric, or scheme-theoretical,
degeneration ≤cdeg and the algebraic notion of degeneration ≤∆.

Theorem 8. (Saorin and Zimmermann [11]) Let k be a commutative ring.

(1) Let C◦
k be a triangulated k-category with split idempotents and let M and N be two

objects of C◦
k. Then M ≤cdeg N implies that M ≤∆ N .

(2) Suppose that k is a field. Let C0
k be the category of compact objects of an algebraic

compactly generated triangulated k-category. If M ≤∆ N , then M ≤cdeg N .

We observe that this is indeed a generalisation of Yoshino’s Theorem 4. Moreover, both
parts of the theorem are valid for the bounded derived category of A-modules for A being
a finite dimensional k-algebra.
The reason why we need the additional hypotheses for the second part of the theorem

is to be able to apply a result due to Keller [7, 8]. This result implies that then C◦
k is the

subcategory of compact objects of the derived category of a differential graded k-category.
For the first part a main difficulty is first to construct the object Z of Ck. This is done
by tricky applications of octahedral axioms. Another main difficulty is to show that the
object Z is actually in Z◦

k , and not only in Ck. This is shown using a result due to May (cf
e.g.[15, Lemma 3.4.5] or [9]).

5. Categorial degeneration and triangle functors

We see immediately that if the triangulated category C is equivalent to the triangulated
category D, given by some functor F , then

[M ≤cdeg N ⇔ F (M) ≤cdeg F (N)] and [M ≤∆ N ⇔ F (M) ≤∆ F (N)] .

However, if F is not an equivalence the situation is much less clear.

5.1. The Zwara-like degeneration defined by triangles. Consider the degeneration
≤∆ given by distinguished triangles. Then, it is not difficult to show that this degeneration
concept is well-behaved with respect to the image under a triangle functor.

Lemma 9. Let C and D be triangulated categories and let

F : C −→ D
be a functor of triangulated categories. In particular F sends distinguished triangles to
distinguished triangles. Then for all objects M and N we get

M ≤∆ N ⇒ F (M) ≤∆ F (N).

Proof. Indeed, suppose M ≤∆ N . Then there exists an object Z such that

Z
(vu)→ Z ⊕M → N → Z[1]

is a distinguished triangle. We apply F to this triangle, using that the hypothesis on
F implies that F preserves finite direct sums, and using again the hypothesis on F , we
obtain that

F (Z)
(F (v)
F (u))→ F (Z)⊕ F (M) → F (N) → F (Z)[1]
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is a distinguished triangle by hypothesis on F . Since v is assumed to be nilpotent, F (v)
is also nilpotent. Therefore F (M) ≤∆ F (N) as claimed. �

However, if C is a full triangulated subcategory of D, then M ≤∆ N in D does not
necessarily imply that M ≤∆ N in C. Indeed, the object Z, which is needed for the
construction does not need to lie in C.

5.2. The Yoshino-like degeneration defined by degeneration data. Contrary to
the situation for ≤∆ we get for the geometrically inspired degeneration that M ≤cdeg N
does not imply necessarily F (M) ≤cdeg F (N).

The degeneration ≤cdeg is well-behaved with respect to a fully faithful embedding of
triangulated categories.

Lemma 10. Let k be a commutative ring, let C◦
k be a triangulated k-category and let M

and N be objects of C◦
k. Suppose that D◦

k is a triangulated k-category and suppose that
F : D◦

k → C◦
k is a full embedding of triangulated categories. Then F (M) ≤cdeg F (N)

implies that M ≤cdeg N .

Proof. By definition we have a degeneration data Ck
↑Vk→ CV restricting to C◦

k

↑Vk→ C◦
V and

C◦
V

Φ→ Ck with an element t : idCV → idCV in the centre of C◦
V . Moreover, we get an object

Q of C◦
V such that Φ(cone(tQ)) � N in C◦

k and p(Q) � p(M ↑Vk ). Here C◦
V

p→ C◦
V [t

−1] is
the canonical functor.
But now, we may replace ↑Vk : CV

k → C◦
V by the composition ↑Vk ◦F : D◦

k → C◦
V and

obtain this way a degeneration data for D◦
k, maintaining all the other data. The object

Q still serves for degeneration in D◦
k. �

Interesting is the case when Theorem 8 fully applies, combined with the above lemmas.

Proposition 11. Let k be a field and let C◦
k be the category of compact objects in an alge-

braic compactly generated triangulated k-category. If D◦
k is a full triangulated subcategory

of C◦
k, then for all objects M and N of D◦

k we get that M ≤cdeg N with respect to D◦
k if

and only if M ≤cdeg N in C◦
k.

Proof. Suppose M ≤cdeg N with respect to D◦
k. Let D◦

k
F→ C◦

k be the embedding functor.
Then M ≤∆ N in D◦

k by Theorem 8, item 1. By Lemma 9 we obtain FM ≤∆ FN in C◦
k .

But by Theorem 8, item 2 we get that FM ≤cdeg FN with respect to C◦
k .

Suppose FM ≤cdeg FN with respect to C◦
k . Then Lemma 10 directly gives thatM ≤cdeg

N with respect to D◦
k �

6. Partial order

A very important property of ≤deg is that it is a partial order on the set of isomorphism
classes of finite dimensional A-modules. Yoshino showed that also ≤stdvr has a partial
order property. The question if ≤∆ is a partial order is not easy, and finiteness conditions
are necessary. This is work due to Jensen, Su and Zimmermann [5]. The antisymmetricity
in particular uses that if T is an R-linear triangulated category for a commutative ring
R such that HomT (X, Y ) is of finite length as R-modules for all objects X and Y , then
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M ≤∆ N implies that lengthR(HomT (X,M)) ≤ lengthR(HomT (X,N)) for all objects X,
and likewise for HomT (−, X). If in addition there is n such that HomT (M,N [n]) = 0,
then lengthR(HomT (X,M)) = lengthR(HomT (X,N)) for all X implies that M � N .
The proof of this result is an adaption of Bongartz proof in [2].

Theorem 12. (Jensen, Su, Zimmermann [5]) Let R be a commutative ring and let T be
an R-linear skeletally small triangulated category with split idempotents satisfying for any
two objects X, Y of T

• we get lengthR(HomT (X, Y )) < ∞
• there is nX,Y ∈ Z \ {0} such that HomT (X, Y [nX,Y ]) = 0

Then ≤∆ is a partial order relation on the set of isomorphism classes of objects in T .

As a last remark I want to mention that in [11] we generalised this result slightly. The
price we have to pay there is that we need to consider the transitive hull of ≤∆.
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BATALIN-VILKOVISKY ALGEBRAS, TAMARKIN-TSYGAN
CALCULUS AND ALGEBRAS WITH DUALITY;

THE CASE OF FROBENIUS ALGEBRAS

ALEXANDER ZIMMERMANN

Abstract. This note reports on joint work with Thierry Lambre and Guodong Zhou.
Let A be a Frobenius algebra with diagonalisable Nakayama automorphism. We exhibit a
Tamarkin-Tsygan calculus on the Hochschild cohomology of A and Hochschild homology
of A with values in the Nakayama twisted bimodule. Since this pair is an algebra with
duality, as introduced by Lambre, these structures define a Batalin-Vilkovisky structure
on the cohomology ring of A. We further give an easy and practical criterion when a
Frobenius algebra has diagonalisable Nakayama automorphism.

1. Introduction

Hochschild cohomology HH∗(A) and Hochschild homology HH∗(A,M) with values in
a bimodule M of an algebra has a very rich structure. First, the Hochschild cohomology
is a graded commutative N-graded algebra. Then, Gerstenhaber showed in [9] that the
Hochschild cohomology algebra carries a graded Lie algebra structure, where the Lie
bracket is graded in the sense [ , ] : Hn+1(A) × Hm+1(A) → Hn+m+1(A). Moreover,
these two structures are compatible in the sense that [α,−] is a graded derivation of the
multiplicative structure. Structures of this kind are called Gerstenhaber algebras.
The Gerstenhaber bracket is somewhat mysterious and has been determined in only few

cases. A nice description in terms of coderivations was given by Stasheff in [21]. If there is
a differential ∆ of degree−1 of a Gerstenhaber algebra such that the Gerstenhaber bracket
is the obstruction of ∆ to be a graded derivation of the Hochschild cohomology, then the
Gerstenhaber algebra is called a Batalin-Vilkovisky algebra. This structure comes from
theoretical physics, more precisely from quantum field theories as explained in e.g. [10].
In representation theory the Batalin-Vilkovisky structure was popularised by Ginzburg

[11], where he proves that the Hochschild cohomology of a Calabi-Yau algebra A is a
Batalin-Vilkovisky algebra. This result was generalised by Kowalzig and Krähmer to
twisted Calabi-Yau algebras, i.e. there is n, such that the n-th syzygy of A as A ⊗ Aop-
module is 1Aα for some automorphism α of A, provided the twisting automorphism is
diagonalisable. In a parallel development Tradler [23] showed that for symmetric algebras
(i.e. k-algebras such that the k-linear dual of A is isomorphic to A as A − A-bimodule)
the Hochschild cohomology also caries the structure of a Batalin-Vilkovisky algebra. In
[17] Lambre, Zhou and Zimmermann show that the Hochschild cohomology ring of a

The detailed version of this paper will be submitted for publication elsewhere.
This research was supported by a STIC-Asie grant ’Escap’ from the ministère des affaires étrangères

de la France.
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Frobenius algebra is Batalin-Vilkovisky provided that the Nakayama automorphism is
diagonalisable.
We shall report in this note about the various steps to the proof of this result. We will

also give a short criterion which implies that the Nakayama automorphism of a Frobenius
algebra is diagonalisable.

Acknowledgement: I thank the organisers of the 47th Symposion on Ring and Repre-
sentation Theory in Osaka City university, and in particular Hideto Asashiba for the kind
invitation and great hospitality during my visit.

2. Batalin-Vilkovisky algebras

We first give the precise definition of a Batalin-Vilkovisky algebra.

Definition 1. • A Gerstenhaber algebra over a field k is the data (H∗,∪, [ , ]), where
H∗ = ⊕n∈ZHn is a graded k-vector space equipped with two bilinear maps

∪ : Hn ×Hm → Hn+m, (α, β) �→ α ∪ β

[ , ] : Hn+1 ×Hm+1 → Hn+m+1, (α, β) �→ [α, β]

called the cup product ∪, and the Lie bracket [ , ] respectively such that
– (H∗, ∪) is a graded commutative associative algebra with unit 1 ∈ H0,
– (H∗[−1], [ , ]) is a graded Lie algebra,
– for each homogeneous element α ∈ H∗[−1] the map [α,−] is a graded deriva-
tion of the algebra (H∗,∪).

• A Gerstenhaber algebra (H∗,∪, [ , ]) is a Batalin–Vilkovisky algebra (BV algebra
for short) if there is an operator ∆: H∗ → H∗−1 of degree −1 (called a generator
of the Gerstenhaber bracket [ , ]) such that ∆ ◦∆ = 0, ∆(1) = 0, and [ , ] is the
obstruction for ∆ to be a graded derivation of (H∗,∪), i.e.

[α, β] = (−1)|α|+1(∆(α ∪ β)−∆(α) ∪ β − (−1)|α|α ∪∆(β)),

for homogeneous elements α, β ∈ H∗.

Remark 2. Batalin-Vilkovisky algebras appeared in mathematical physics. As explained
in [27] and [13] the Batalin-Vilkovisky algebra formalism is fully used in the closed string
theory. As explained in [13] the Batalin-Vilkovisky structure gives an additional rigidity
to the string theory, and a certain number of choices which have to be made in this theory
respect this additional structure. More precisely, in string field theory one first chooses
a conformal field theory [10, Definition 3.1]. This field theory defines a vector space, the
state space, and a field is an element in this vector field. A string field theory action
is written as a formal power series with values in the string field. Then, certain choices
have to be made, linked to Feynman rules, and the physical observables are independent
of these choices. [13] show that the relation between two string field actions arises from
field transformations that are canonical with respect to the Lie bracket.

Some algebras have Hochschild cohomology rings which are Batalin-Vilkovisky algebras.

Theorem 3. (Ginzburg [11, Theorem 3.4.3]) Let A be a Calabi-Yau algebra of dimension
d. Then the Hochschild cohomology of A has the structure of a Batalin-Vilkovisky algebra.
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Ginzburg is actually much more precise. He constructs the map ∆ explicitly, and
obtains ∆ from the dual of Connes’ B-operator on the Hochschild homology complex,
and conjugation by the isomorphism HHn(A) � HHd−n(A) which is deduced from the
Calabi-Yau property. He also exhibits already there a connection to a Tamarkin-Tsygan
calculus, in the same way as we will explain in Section 3.
In a parallel development Tradler considered more the case of finite dimensional algebras

and proved that the Hochschild cohomology of symmetric algebras is a Batalin-Vilkovisky
algebra.

Theorem 4. (Tradler [23]) Let k be a field and let A be a finite dimensional symmetric
k-algebra. Then HH∗(A) is a Batalin-Vilkovisky algebra.

The operator ∆ is in this case the k-linear dual of Connes’ B-operator, using that for
symmetric algebras A we have HHn(A) � Homk(HHn(A), k) for all n ∈ N. Note that
the isomorphism uses the symmetrising form.
A next step was given by Kowalzig and Krähmer [15]. They generalise Ginzburg’s

result to a twisted version. For an automorphism α of an algebra A we denote by 1Aα the
A − A-bimodule which is the regular A-module as left-module, but where the action of
a ∈ A from the right is given by multiplication with α(a). An algebra is twisted Calabi-
Yau of dimension d if there is a class ω ∈ Hd(A, 1Aα) such that ωA ∩ − : H∗(A,M) →
Hd−∗(A, 1Aα ⊗A M) is an isomorphism (cf [12, Definition 3.6]).

Theorem 5. (Kowalzig and Krähmer [15]) Let A be a twisted Calabi-Yau algebra of
dimension d and twist α. If α acts as diagonalisable automorphism on the vector space
A, then HH∗(A) is a Batalin-Vilkovisky algebra.

Kowalzig and Krähmer obtain in [15] a twisted version of Connes’ map B, and use this
twisted version to obtain ∆ as its dual.

In joint work with Lambre and Zhou we shall be concerned with Frobenius algebras.
These play the same role for symmetric algebras as twisted Calabi-Yau algebras do for
Calabi-Yau algebras. Indeed, for Frobenius algebras we get an A − A-bimodule isomor-
phism Homk(A, k) � 1Aν for some automorphism ν of A, the Frobenius automorphism.
Therefore, the k-linear dual of HHn(A) is not isomorphic to HHn(A), but rather to
HHn(A, 1Aν), where ν is the Nakayama automorphism of A. For more ample details on
Frobenius algebras see [26, Sections 1.10 and 4.5].

3. Twisting by automorphisms, the Tamarkin-Tsygan calculus

We shall not give directly the map ∆. Instead we shall prove that some parts of the
Hochschild cohomology, together with the Hochschild homology, of a Frobenius algebra
carries another important structure: It is a Tamarkin-Tsygan calculus, sometimes also
called differential calculus.

Definition 6. A Tamarkin-Tsygan calculus is the data of Z-graded vector spaces H∗ and
H∗ together with graded bilinear inner laws ∪ and [ , ] of H∗ an a graded operation map
∩ of (H∗,∪) on H∗ such that

• (H∗,∪, [ , ]) is a Gerstenhaber algebra;
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• H∗ is a graded module over (H∗,∪) via the map ∩ : Hr⊗Hp → Hr−p, z⊗α �→ z∩α
for z ∈ Hr and α ∈ Hp. That is, if we denote ια(z) = (−1)rpz∩α, then ια∪β = ιαιβ;

• There is a map B : H∗ → H∗+1 such that B2 = 0 and we have

Lα ◦ ιβ − (−1)|β|ιβ ◦ Lα = ι[α,β]

where we denote Lα = B ◦ ια − (−1)|α|ια ◦B.

It is not surprising to learn that [8] prove that Hochschild homology and cohomology
give a Tamarkin-Tsygan calculus with the natural Gerstenhaber structure and a ∩ opera-
tion given by evaluation of the first terms of the Hochschild complex by some Hochschild
cocycle. This coincides with the classical ∩-product well known in Hochschild theory. We
note that the ∩ product can be defined as well on the action of HH∗(A) on HH∗(A,M)
for any A− A-bimodule M , but it is not this Tamarkin-Tsygan structure that we use.

Remark 7. It would be nice to extend Stasheff’s description [21] of the Gerstenhaber
bracket by coderivations to the Tamarkin-Tsygan calculus on Hochschild (co-)homology.

Let α be an automorphism of the algebra A. We now develop the following very general
construction. Recall the bar resolution BA. Its degree n homogeneous component is A⊗n+2

and its differential b is given by bn(a0 ⊗ · · · ⊗ an+1) =
∑n

i=0(−1)ia0 ⊗ · · · ai−1 ⊗ aiai+1 ⊗
ai+2 ⊗ · · · ⊗ an+1. It is well-known that this is a free A⊗ Aop-module resolution of A (cf
e.g. [26]). The complex HomA⊗Aop(BA,A) has homology HH∗(A) and the homology of
BA⊗A⊗Aop 1Aα is HH∗(A, 1Aα).
Observe that the degree n homogeneous component of BA⊗A⊗Aop 1Aα is isomorphic to

A⊗n and α acts diagonally on this space. Likewise, the degree n homogeneous component
of HomA⊗Aop(BA,A) is isomorphic to Homk(A

⊗n, k).
Since α is an algebra automorphism, α(1) = 1 and so 1 is an eigenvalue of the ac-

tion of α on A. It is easy to see that the eigenspace for the value 1 of the action
of α on HomA⊗Aop(BA,A), and on BA ⊗A⊗Aop 1Aα respectively, are actually subcom-
plexes of HomA⊗Aop(BA,A), and BA⊗A⊗Aop 1Aα respectively. Let HH∗

(1)(A), respectively

HH
(1)
∗ (A, 1Aα), be the corresponding homologies of these subcomplexes.

The structural maps ∪, ∩, [ , ] do restrict to HH∗
(1)(A) and to HH

(1)
∗ (A, 1Aα), which

can be verified by an easy computations in a few lines.

Theorem 8. (Lambre-Zhou-Zimmermann [17]) With the notation above, there is a degree

1 map βα of HH∗
(1)(A) such that (HH∗

(1)(A),∪, [ , ], HH
(1)
−∗ (A, 1Aα),∩, βα) is a Tamarkin-

Tsygan calculus.

We note that we need to use negative degrees for the homology part in order to get a
formally correct calculus. The map βα is much more tricky to obtain. It is an adaption
of Kowalzig-Krähmer’s map used in their proof.

4. Algebras with duality; the main result

The proofs we mentioned so far to prove that Hochschild cohomology is a Batalin-
Vilkovisky algebra always used both, the Hochschild cohomology and the Hochschild
homology, as well as some duality between them. Lambre formalised this in his concept
of an algebra with duality.
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Definition 9. (Lambre) An algebra with duality is given by (H∗,∪,H∗, ∂), where

• (H∗,∪) is a graded commutative unitary algebra with unit 1 ∈ H0,
• H∗ is a graded vector space and c is an element of Hd,
• ∂ is an isomorphism of vector spaces ∂ : H∗ → Hd−∗ satisfying ∂(c) = 1.

Observe that it is not really necessary to explicitly mention c. The third axiom implicitly
defines it as image of 1 under ∂. Now, we come to the link between Tamarkin-Tsygan
calculi and Batalin-Vilkovisky structures.

Proposition 10. Let (H∗,∪,H∗, c, ∂) be an algebra with duality.

(1) We suppose that
(a) (H∗,∪, [ , ],H∗,∩, B) is a Tamarkin-Tsygan calculus,
(b) the duality ∂ is a homomorphism of H∗-right modules, i.e. we have the rela-

tion ∂(z ∩ α) = ∂(z) ∪ α.
Then the Gerstenhaber algebra (H∗,∪, [ , ]) is a BV-algebra with generator ∆ =
∂ ◦B ◦ ∂−1.

(2) We suppose that (H∗,∪, [ , ],∆) is a BV-algebra with generator ∆. Then posing
B := ∂−1 ◦∆ ◦ ∂ and z ∩ α := ∂−1(∂(z) ∪ α), the data (H∗,∪, [ , ],H∗,∩, B) is a
Tamarkin-Tsygan calculus.

If α acts as diagonalisable automorphism on A, then HomA⊗Aop(BA,A) and BA⊗A⊗Aop

1Aα both decompose as a direct sum of eigenspace subcomplexes. Note however that we
may get eigenvalues for the complexes which do not occur as eigenvalues for the action on
A. This comes from the fact that if A =

⊕
λ∈Λ Aλ is an eigenspace decomposition, then

A⊗n =
⊕

(λ1,··· ,λn)∈Λn

Aλ1 ⊗ · · · ⊗ Aλn .

The automorphism α acts on Aλ1 ⊗ · · · ⊗ Aλn with the eigenvalue λ1 · · · · · λn. Therefore
if Λ is the set of eigenvalues of α, then the Hochschild complex decomposes as direct sum
of subcomplexes which are eigenspaces for some λ ∈ 〈Λ〉, where 〈Λ〉 is the submonoid of
the multiplicative group k× of the base field generated by Λ. This decomposition is also
the point where we use that α acts on A as diagonalisable automorphism.
Moreover, we get the most important formula on BA⊗A⊗Aop 1Aα:

b ◦ βα + βα ◦ b = 1− T

where T is the diagonal map of α on A⊗n for each n, where b denotes the Hochschild
differential and where βα is defined in Theorem 8. Hence, only for the eigenspace of α for
the eigenvalue 1 the corresponding subcomplex is not homotopic to 0. This shows

Proposition 11. If α is diagonalisable, then HH
(1)
∗ (A, 1Aα) = HH∗(A, 1Aα).

We are almost done. Now suppose that A is a Frobenius algebra with Nakayama
automorphism ν and consider the case α = ν. Then Theorem 8 and Proposition 11
provide a Tamarkin-Tsygan calculus on the Hochschild cohomology of a Frobenius algebra
and the homology with values in the Nakayama twisted bimodule. Since

Homk(HHn(A, 1Aν), k) � HHn(A)
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we easily get an algebra with duality satisfying the hypotheses of the first part of Propo-
sition 10. This shows

Theorem 12. (Lambre, Zhou, Zimmermann [17]) Let k be a field and let A be a Frobe-
nius k-algebra with diagonalisable Nakayama automorphism. Then HH∗(A) is a Batalin-
Vilkovisky algebra.

Remark 13. Volkov obtained in [24] independently and at the same time a similar result
by exhibiting the operator ∆ by explicit computation on the Hochschild cocycles.

Remark 14. Let k be the algebraic closure of k and let A := k ⊗k A. If A is a Frobenius
k-algebra, then A is a Frobenius k-algebra. We actually only need that the Nakayama
automorphism of A acts as diagonalisable automorphism on A.

5. Diagonalisable Nakayama automorphism

We are left with the question how we may verify when a Nakayama automorphism is
diagonalisable. There is an easy case: If A is a Frobenius k-algebra and ν is of finite order
n. Then the action of ν on A is a representation of the cyclic group of order n, and if
n is invertible in k, then this group ring is semisimple. Hence, for large enough fields k
with nk = k we have that the action of ν is diagonalisable. This happens for example for
finite dimensional Hopf algebras by a result of Radford [19] in combination with a result
by Larson-Sweedler [18]. Also preprojective algebras of Dynkin type have this property.
For quantum complete intersections it can be shown by a direct computation that there
also we get a diagonalisable Nakayama automorphism.
What about more general basic Frobenius algebras? Consider basic algebras and let

hence A = kQ/I be a finite dimensional Frobenius algebra given by quiver with relations.
We can choose a basis B of A consisting of paths which also contains a basis for the socle
of each indecomposable projective A-module. Then by [14, Proposition 2.8], there is a
natural choice of the defining bilinear form 〈a, b〉 = tr(ab) for a, b ∈ A induced by the
trace map

tr : A → k, p ∈ B �→
{

1 if p ∈ soc(A) ∩ B
0 otherwise

Then we show the following useful

Proposition 15. (Lambre, Zhou, Zimmermann [17]) Assume that the basis B satisfies
two further conditions:

(1) for arbitrary two paths p, q ∈ B, there exist another path r ∈ B and a constant
λ ∈ k such that p · q = λr ∈ A

(2) for each path p ∈ B, there exists a unique element p∗ ∈ B such that 0 �= p · p∗ ∈
soc(A)

If k is an algebraically closed field of characteristic 0 or of characteristic p with p strictly
bigger than the number of arrows of Q. Then the two conditions (1) and (2) imply that
the Nakayama automorphism of A is semisimple and the Hochschild cohomology of A is
a BV algebra.

By a classification result of Asashiba [1] we get
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Lemma 16. Each self-injective algebra of finite representation type is Morita equivalent to
an algebra kQ/I given by a quiver Q modulo admissible relations I verifying the conditions
(1) and (2).

An alternative proof can be given by the fact that each representation-finite algebra
has a multiplicative basis (cf. [2]).

Lemma 17. Basic special biserial algebras satisfy the hypotheses of Proposition 15.

Finally, we were looking at algebras of polynomial growth. These were studied by Holm,
Skowroński, Bocian, Bia­lkowsky for a classification up to derived equivalences, and by
Zhou and Zimmermann [25] up to stable equivalences, clearing also a few remaining cases
in the derived equivalence classification. Also there we can show that almost all the cases
satisfy the hypotheses of Proposition 15. The few remaining situations can be done by an
elementary computation on the quiver, using the construction of Holm-Zimmermann [14]
mentioned above.
We finish by mentioning that an easy computation shows that for a field k of charac-

teristic 2 the self-injective Nakayama algebra with two simples and Loewy length 4 does
not have a semisimple Nakayama automorphism action. The quiver of this Nakayama
algebra has two arrows such that Lemma 16 shows that the hypothesis in Proposition 15
on the characteristic of the base field is indeed necessary.

Remark 18. I want to mention that the formula for the Frobenius bilinear form given
by [14] was originally used to classify deformed preprojective algebras ([4], see also [5]
for a rectification in case of type E) of type Ln up to derived equivalence. This was
done using the so-called Külshammer structure, an additional structure on the degree 0
Hochschild homology of an algebra [3], linked to the p-power map. In joint work with
Sorlin [20] we extended the classification to deformed preprojective algebras of type Dn.
For the precise and somewhat technical definition of the deformation parameter see [4,
Proposition 6.2] or [5, Example 10.6]. We computed the degree 0 Hochschild homology of
deformed preprojective algebras of type Dn and showed that over an algebraically closed
field the deformed preprojective algebra is never derived equivalent to the non deformed
preprojective algebra. Indeed, the dimension of the degree 0 Hochschild homology of the
deformed preprojective algebra with deformation parameter k is at most n + 2 + k for
k ≤ n− 3 whereas this dimension is 3n in the non-deformed case.

The preprojective algebras of generalised Dynkin type are also interesting with respect
to the Tamarkin-Tsygan structure on the Hochschild (co-)homology. Ching-Hwa Eu com-
puted this explicitly (cf [6, 7]).
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