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7-RIGID-FINITE ALGEBRAS WITH RADICAL SQUARE ZERO

TAKAHIDE ADACHI

ABSTRACT. In this note, we study 7-rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional alge-
bra over an algebraically closed field K. By a module we mean a finite dimensional right
module. Let A be an algebra. For a A-module M with a minimal projective presentation
P15 PO 5 M — 0, we define a A-module 7M by an exact sequence

0—7M —vP ' 2P

where v := Homg (Homy (—, A), K) is the Nakayama functor.
The following module plays an important role in this note.

Definition 1. A A-module M is 7-rigid if Homa(M,7M) = 0. We denote by 7-rigidA
the set of isomorphism classes of indecomposable 7-rigid A-modules.

In 1980’s, Auslander-Smalo [4] have already studied 7-rigid modules from the viewpoint
of torsion theory. Recently, from the perspective of tilting mutation theory, the authors
in [2] introduced the notion of (support) 7-tilting modules as a special class of 7-rigid
modules. They correspond bijectively with many important objects in representation
theory, i.e., functorially finite torsion classes, two-term silting complexes and cluster-
tilting objects in a special cases. By the following proposition, finiteness of these objects
is induced by that of 7-rigidA.

Proposition 2. [5] Let A be an algebra. The following are equivalent:
(1) The set T-rigidA is finite.
(2) There are finitely many isomorphism classes of basic support T-tilting A-modules.

Definition 3. An algebra A is called 7-rigid-finite if it satisfies the equivalent conditions
in Proposition 2.

Our aim of this note is to study 7-rigid-finite algebras with radical square zero. In the
rest of this note, let A be an algebra with radical square zero and @ = (Qy, Q1) the quiver
of A, where )y is the vertex set and ), is the arrow set. Namely, A = Ag is the path
algebra of a quiver () modulo the ideal generated by all paths of length 2. In representation
theory of algebras with radical square zero, the notion of the separated quiver play a
central role. For a quiver @ = (Q, Q1), we define a new quiver Q°* = (Q§, Q3), called the

The detailed version of this paper will be submitted for publication elsewhere.



separated quiver of @, as follows:

Qp={i"i [i€Q), QU={i"—=j |(i—]) e}

Note that the separated quiver ()° is bipartite and not connected even if () is connected.

Q: }/}2 Q°: /2‘%3*\ Q:1—4 @°:1"—=4" 17 =—47"
+ -
1‘§@ 1 \3_e2+/1 H:@ 2i<—j+ QEHZ}

The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let A be an algebra with radical square zero and KQ*® the path
algebra of the separated quiver of the quiver of A. Then two algebras A and KQ*® are
stably equivalent, that is, there is an equivalent between the associated module categories
modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let A be an algebra with radical square zero and @Q the quiver of A. The
following are equivalent:

(1) A is representation-finite.

(2) The separated quiver Q° is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for 7-rigid-finiteness. A full subquiver
Q' of ° is called a single subquiver if, for any i € @y, the vertex set @ contains at most
one of 7T or .

Theorem 6. [1] Let A be an algebra with radical square zero and Q the quiver of A. The
following are equivalent:

(1) A is T-rigid-finite.
(2) Each single subquiver of Q° is a disjoint union of Dynkin quivers.
We give some comment for loops of a quiver.

Remark 7. Let @ = (Qo, Q1) be a quiver with a loop ¢, and Q' = (Qy, Q) the quiver
with Q) = Qo and Q] = Q1 \ {¢}. Then there is a natural bijection between the set of
single subquiver of ()° and those of Q. Hence A is 7-rigid-finite if and only if Ay is
T-rigid-finite.
Q:17) @1t —=1-
We give a main result of this note. Let G = (V, E) be a connected graph, where V is

the vertex set and F is the edge set. We define a quiver Q¢ = ((Qg)o, (Ra)1), called the
double quiver of G, as follows:

(QG)O = Va (QG)l = {Z —>ja Z<—] | (Z _]) € E}
For non-negative integers ¢y, ls, ..., £,, we define a graph G := ({,...,£,) as follows. G

is an n-cycle such that each vertex v; in the n-cycle is attached to a Dynkin graph A,
and the degree of v; is at most three.

Theorem 8. Let G be a connected graph with no loop. Then the following are equivalent:



(1) Ag,, is T-rigid-finite.
(2) G is one of the following graphs:
(a) Dynkin graphs of type A, D, and E,

(b) odd-cycles,
(c) (1,0,0,0,0),
(d) (£,0,0) (1<),
(e) (£,1,0) (1 << 4),
(f) (2,2,0),
(g) (1,1,1).
1 I 1
1 ! [ ¥ 1
\ 1 |
1 | | 1
/N | 1 | VRN
AR T AN Sy
3 4 1 PARN % S 3,
(1,0,0,0,0) 2/ \3 ? 3 2
(6,0,0) 2, (£,1,0) 2‘2 (2,2,0) 1,1,1)

We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver ) of A has a loop. By Remark 7, if there exists a
graph G in Theorem 8 (2) such that Q¢ is isomorphic to @ up to all loops, then Ag is
also 7-rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin
graphs from connected single subquivers of the separated quiver. First we remove ex-
tended Dynkin graphs of type A from the separated quiver. A graph is called an n-cycle
if it is a cycle with exactly n vertices. In particular, it is called an odd-cycle if n is odd,
and an even-cycle if n even. We write by @ the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there ezists a
single subquiver Q' of Q% such that Q' is an extended Dynkin graph of type A.

Proof. Since Q)¢ is bipartite, all cycles as a subgraph in Q¢ are even-cycles. Hence G
contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle
as a subgraph. By taking a minimal even-cycle G’ in G as a subgraph, @)%, includes G’ as

a full subgraph. Hence the assertion follows. O
6—>5 -~ <5t 3= <2%
/ AN / \ v N
]. 4+ 1_
N / N /7
2—3 2 - 3+ 5= < G+

By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G
is also bipartite, we have the following connection between G and Q%. A spanning tree of



G is a subgraph of G that includes all of the vertices of G and is a tree. A subtree of G
is a connected full subgraph of a spanning tree of G.

Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G' be a graph.
Then G is a subtree of G if and only if there exists a connected single subquiver Q' of Q%
such that Q' = G'. In particular, there is a naturally one-to-two correspondence between
the set of subtrees of G and the set of connected single subquivers of Q¢.

Proof. If G’ is a subtree of G, then there exists a connected subquiver @ of Qf with
@' = G'. By Lemma 10, Q' is clearly a full subquiver, and hence it is a single subquiver.
Conversely, assume that @' is a single subquiver Q' of Q%, with @’ = G’. By Lemma 10,
@' is a tree. Since Q' is a full subquiver, @’ is a subtree of G' by the definition of separated
quivers. O

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the sepa-
rated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we
have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:
(1) Ag,, is T-rigid-finite.
(2) G is a Dynkin graph.

Proof. Assume that G is a tree. G is Dynkin if and only if all subtrees of G are Dynkin.
Thus the assertion follows from Theorem 6 and Proposition 11. O

By Corollary 12, we may assume that G' contains exactly one odd-cycle and no even-
cycles. Namely, G is an odd-cycle such that each vertex v in the odd-cycle is attached to

a tree T),.
o—eo— 7y — e °

U/\\

V3 — @ — @
We remove extended Dynkin graphs of type D from the separated quiver Q.

Lemma 13. Fix a positive integer k and n = 2k+1. Let G be an n-cycle such that each
vertex v in the n-cycle is attached to a tree T,. Then G contains an extended Dynkin
graph of type D as a subgraph if and only if it satisfies one of the following conditions:

(a) There is a vertex v in the n-cycle such that the degree is at least four.

(b) There is a vertex v in the n-cycle such that the degree is exactly three and T, is
not Dynkin graph of type A.

(¢) k > 1 and there are at least two vertices in the n-cycle such that the degrees are
at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an
extended Dynkin graph of type D. Conversely, assume that G contains an extended
Dynkin graph of type D. Then D, has exactly one vertex whose degree is exactly four
and D, has exactly two vertices whose degree is exactly three for any integer ¢ > 4. We

can check that G satisfies one of (a), (b), and (c). O



Fix a positive integer k and n := 2k + 1. By Lemma 13, we may assume that G is one
of the following graphs:

(a) (6,,0...,0)if k > 2.
(b) <€1,€2,£3> with 61 2 gg 2 £3 ifk=1.

Finally, we remove extended Dynkin graphs of type E from the separated quiver Q%

Lemma 14. Fiz a positive integer k and n := 2k + 1. Assume that G = ({1,03,--- , ().

(1) Assume that k > 2. The following graphs (a), (b) and (c) are the minimal
graphs containing extended Dynkin graphs Fg, E7, and Eg respectively in the forms

(¢4, ,...,0>.
(a) (2,0,...,0) (k=22)
(b) (1,0,.. 0) (k> 3)
(c) (1,0,...,0) (k= 4)
Iy
1 1,
| |
1, 1 PN
/ \ | | 3 n‘—l
n i") n‘—l n—>5 n—2
i‘i —————— n‘—l 4 n =2 n‘—4 n‘—3

(2) Assume that k = 1. The following graphs (d), (e) and (f) are the minimal
graphs containing extended Dynkin graphs Eg, E7, and Eg respectively in the forms

<€17£27‘€3>'

(d) (2,1,1).

(e) (3,2,0), (2,2,1).

(f) (5,1,0), (4,2,0), (4,1,1).



12 | ]-2
| 1 |
11 15 ‘2 11
\ | 1 Ly \ 14
1 Ly ¥ | 1 |
VRN | 1 15 RN 13
3 13 PARN \ 2 3 \
\ \ \ 9 3 15 \ \ 1,
21 3, Ly \ \ 2 31 \
(2,1,1) \ % (3,2,0) 1, | (2,2,1) 1,
L \ \ 29 \
Lo o N
AN
N 2——3 23
2——3 | \ |
‘ 21 21 31
21 (5,1,0) | (4,2,0) (4,1,1)
25
Proof. We can check from the pictures above. O

Now we are ready to prove Theorem 8.

Proof of Theorem 8. If G is a tree, then the assertion follows from Corollary 12. We
assume that G is not a tree. By the argument above, we have the minimal set of graphs
including extended Dynkin graphs of type A, D, or E. Thus Ag, is T-rigid-finite if and
only if G is one of nontrivial full subgraphs Wlth the n-cycle of graphs in Lemma 14. The
assertion follows from that G is the desired graph. ]
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ON SILTING-DISCRETE TRIANGULATED CATEGORIES

TAKUMA ATHARA

ABSTRACT. The aim of this paper is to study silting-discrete triangulated categories.
We establish a simple criterion for silting-discreteness in terms of 2-term silting objects.
This gives a powerful tool to prove silting-discreteness of finite dimensional algebras.
Moreover, we will show Bongartz-type Lemma for silting-discrete triangulated categories.

1. INTRODUCTION

In the study of triangulated categories, the class of tilting objects is one of the most
important classes of objects, and tilting mutation for tilting objects often plays a crucial
role, e.g. categorification of cluster algebras [8, 10] and Broué’s conjecture in modular
representation theory of finite groups [11]. From viewpoint of mutation, it was pointed
out in [5] that one should deal with a more general class of silting objects than tilting
objects, and silting mutation for silting objects were introduced. Moreover, the set of
silting objects naturally has the structure of a partially orderd set which is closely related
with silting mutation [5]. When a silting object is fixed, the partial order yields the notion
of lengths of objects [3].

A problem is to understand the whole context of silting objects; e.g. to give a combi-
natorial description of silting objects. A triangulated category is called silting-connected
provided all silting objects are reachable each other by iterated silting mutation. In this
case, we can describe the combinatorial structure of the triangulated category in terms of
silting objects and the relationship given by silting mutation. The silting-discrete trian-
gulated categories are in some sense the simplest kinds of silting-connected triangulated
categories [3], that is, the triangulated category admits a silting object A such that for
any positive integer £ > 0, there exist only finitely many silting objects of the length ¢
with respect to A: a finite dimensional algebra is also said to be silting-discrete if the
perfect derived category of the algebra is silting-discrete. For example, we know that local
algebras, path algebras of Dynkin type and representation-finite symmetric algebras are
silting-discrete [5, 3].

We investigate silting-discrete triangulated categories and study the following question:

Question 1. When is a triangulated category silting-discrete?

The first aim of this pape is to give an answer to this question. A triangulated category
is said to be 2-silting-finite if for every silting object T, there exist only finitely many
silting objects of the length 2 with respect to T

A main result of this paper is the following theorem.

This work was partly supported by IAR Research Project, Institute for Advanced Research, Nagoya
University.

The detailed version of this paper will be submitted for publication elsewhere.



Theorem 2 (Theorem 16). A triangulated category is silting-discrete if and only if it is
2-silting-finite.

A great advantage of this theorem is that we can let Question 1 come down to the
question of the finiteness of certain modules for algebras: For a silting object A, there is
a one-to-one correspondence between silting objects of the length 2 with respect to A and
support 7-tilting modules for the endomorphism algebra of A [2, 9].

Therefore, Theorem 2 gives a powerful tool to prove that a given finite dimensional
algebra is silting-discrete. In fact, Theorem 2 will be applied in [1] and [4] to show that
the following algebras are silting-discrete:

e Brauer graph algebras of type odd;
e Preprojective algebras of Dynkin type Do, Er, Es.

The second aim of this paper is to study a generalization of famous Bongartz’s Lemma
[6], which says that every (classical) pretilting module is partial tilting. On the other hand,
a naive generalization of Bongartz’s Lemma for tilting objects in a triangulated category
fails: an easy example [12] shows that a pretilting object in a triangulated category is not
necessarily partial tilting. In the previous paper [3], we observed that it is reasonable to
consider Bongartz-type Lemma for silting objects in a triangulated category. Thus, we
discuss the following question:

Question 3. Is any presilting object partial silting?

In this paper, we give a positive answer to Question 3 for silting-discrete triangulated
categories.

Theorem 4 (Theorem 17). Any presilting object of a silting-discrete triangulated category
1s partial silting.

A point for the proofs of Theorem 2 and Theorem 17 is to use a kind of induction on
the length ¢ of a (pre)silting object T. To do this, we introduce the notion of “minimal
silting objects” for T', which is a minimal element in a poset consisting of certain silting
objects (see Definition 10 for details). The key result for the proofs of Theorem 2 and
Theorem 17 is the following theorem.

Theorem 5 (Theorem 11). Let A be a silting object and T' a presilting object of the length
C with respect to A. If there exists a minimal silting object P for T, then the length of T
with respect to P is at most £ — 1.

This paper is organized as follows. In section 2, we introduce the notion of minimal
silting objects and state a main theorem of this paper (Theorem 11). In section 3, we study
silting-discrete triangulated categories and give the theorems on equivalent conditions
of and Bongartz-type Lemma for silting-discrete triangulated categories (Theorem 16
and Theorem 17). In section 4, we give several examples of silting-discrete triangulated
categories. Furthermore, we will know from the final example (Example 23) that the
finiteness of silting objects of length 2 is not derived invariant.

Notation. Throughout this paper, let 7 be a Krull-Schmidt triangulated category and
assume that it satisfies the following property:

(F) For any object X of 7, the additive closure add X is functorially finite in 7.



For example, let R be a complete local Noetherian ring and 7 an R-linear idempotent-
complete triangulated category such that Homz(X,Y) is a finitely generated R-module
for any object X and Y of 7. Then 7 is a Krull-Schmidt triangulated category satisfying
the property (F).

2. MINIMAL SILTING OBJECTS

In this section, we study silting mutation and a main theorem of this paper is stated.
Let us start with recalling the definition of silting objects.

Definition 6. (1) We say that an object T in 7 is presilting (pretilting) if it satisfies
Homz (7T, T[i]) = 0 for any i > 0 (i # 0).
(2) An object T is said to be silting (tilting) if it is presilting (pretilting) and generates
7T by taking direct summands, mapping cones and shifts.
(3) A presilting object T is called partial silting provided it is a direct summand of some
silting object.
We denote by silt 7 the set of non-isomorphic basic silting objects in 7.

In the rest of this paper, we assume that 7 has a silting object.
It is known that the number of non-isomorphic indecomposable summands of any silting
object does not depend on the choice of silting objects.

Proposition 7. [5] Let T and U be silting objects of T. Then the number of non-
isomorphic indecomposable summands of T coincides with that of U.

For objects M and N of 7, we write M > N if Homz (M, N[n]) = 0 for any n > 0.
Note that > is not a partial order on 7. According to [5], we have that > gives a partial
order on silt 7.

We also recall silting mutation for silting objects.

Definition 8. Let T be a basic silting object of 7. For a decomposition T := X & M,
we take a triangle

X oy X[

with a minimal left add M-approximation f of X. Then puy(T) :=Y & M is again silting,
and we call it the left mutation of T with respect to X. Dually, define the right mutation
uk(T). (Silting) mutation will mean either left or right mutation. Mutation is said to be
wrreducible if X is indecomposable.

We get basic properties of silting mutation.

Proposition 9. [5, 3] With the notations as in Definition 8, the following hold:

(1) We have the inequality T > p1(T').

e right mutation py (py of with respect to Y is isomorphic to 1.
2) The righ jon 13- (5 (T <(T) with Y is i hic to T
(3) If X is indecomposable, then there is no silting object U satisfying T > U > puy(T).



(4) Let U be a presilting object with T > U which does not belong to addT. For Uy := U,
take triangles
fo

U, T Uy U1[1]
fo—1

Uy Ty Uir U[1]

0 T, .y, 0

where f; is a minimal right add T-approzimation of U; for 0 < ¢ < £. Let X be an
indecomposable summand of T. If X belongs to add Ty, then we have uy(T) > U.

We always use the following terminology.
Definition 10. We define a subset of silt 7 as follows:
VAT) ={UesitT | A>U > Al]and U > T},

where A is a silting object and T is a presilting object with A > T. We can take a
non-negative interger ¢ such that 7" > A[ﬁ]. Thus, one visualize such a U as follows:

/ \
\ /

Now we state the main theorem of this paper.

Theorem 11. If there exists a minimal element P in the poset V(A;T), then we have
T > Plt—1].

We can inductively get silting objects.

Corollary 12. With the notation as in Definition 10, assume that for any silting object
B with A > B > T, the poset V(B;T) admits a minimal element. Then there ezists a
silting object P in T satisfying P > T > PI1].

Proof. We may assume ¢ > 2. Since we have a minimal element A; in V(A;T), by
Theorem 11 it is obtained that A; > T > A;[¢ — 1]. As our assumption, we can repeat
this argument and have a sequence

A>A > > A>T > A1) > > A0 = 1] > A[(]

of silting objects with A;;; minimal in V(A;;T) for 0 < ¢ < £ — 2. Thus, we get the
desired silting object P := A,_;. O

From Corollary 12 and [3, Proposition 2.16], we immediately obtain the following corol-
lary.

Corollary 13. Under the assumption as in Corollary 12, T is a partial silting object.



3. SILTING-DISCRETE TRIANGULATED CATEGORIES

In this section, we discuss silting-discrete triangulated categories.
We begin with recalling the definition of silting-discrete triangulated categories.

Definition 14. A triangulated category 7 is said to be silting-discrete if there exists a
silting object A such that for any ¢ > 0, the subset {T" € siltT | A > T > A[(]} of silt T
is a finite set.

For a silting object A of 7, we denote by 2silt4 7 the subset of silt 7 consisting of all

basic silting objects 7" with A > T > A[1].
We can easily check the following lemma.

Lemma 15. Let A be a silting object of T. If 2siltaT is a finite set, then for every
presilting object T of T with A > T, the poset V(A;T) has a minimal element.

We say that 7 is 2-silting-finite if 2silty 7 is a finite set for any silting object T of 7.
Now the first main theorem of this section is stated.

Theorem 16. The following are equivalent:

(1) T is silting-discrete.

(2) It is 2-silting-finite.

(3) It admits a silting object A such that 2siltp T is a finite set for any iterated irreducible
left mutation P of A.

Proof. Tt is obvious that the implications (1)=(2)=-(3) hold.

We show that the implication (3)=-(1) holds. Let T be a silting object with A > T >
A[l] for some ¢ > 0. Since 2silt4 7 is a finite set, we observe that the poset V(A;T) has
a minimal element P by Lemma 15. It follows from Theorem 11 that the inequalities
P >T > P[{ — 1] hold, whence one has

{TesitT |A>T>Ac |J {UesitT |P>U>Ple—1]}.
Pesilta T
By [3, Theorem 3.5], the finiteness of 2silty 7 leads to the conclusion that P can be

obtained from A by iterated irreducible left mutation. Therefore, our assumption yields
that 2siltp 7 is also a finite set. Repeating this argument leads to the assertion. ]

We remark that the finiteness of 2siltp 7 depends on the choice of silting objects P:
For a left mutation P of a silting object A, the set 2siltp 7 is not necessarily a finite set
even if 2silt4 7 is finite (see Example 23).

Finally, we have the second main theorem of this section, which is a direct consequence
of Corollary 13.

Theorem 17. If T is silting-discrete, then every presilting object is partial silting.

4. EXAMPLES

This section is devoted to giving several examples of silting-discrete triangulated cate-
gories.



The first example is an observation from the viewpoint of triangle dimensions in the
sense of Rouquier [13]: a triangulated category 7 has triangle dimension 0 (dim7 = 0)
if 7 =add{M][i] | i € Z} for some object M of 7.

Example 18. If dim7 = 0, then 7 is silting-discrete.

In the rest of this paper, let A be a finite dimensional algebra over an algebraically
closed field k which is indecomposable and basic. We denote by K"(proj A) the bounded
homotopy category of finitely generated projective A-modules. Then it is a Krull-Schmidt
triangulated category satisfying the property (F).

An algebra A is said to be silting-discrete if KP(proj A) is silting-discrete.

We give several examples of silting-discrete algebras. The most easiest example of
silting-discrete algebras is the class of local algebras [5].

We characterize silting-discrete hereditary algebras.

Example 19. Assume that A is hereditary. Then the following are equivalent:

(1) A is silting-discrete;
(2) Tt is of Dynkin type A, D, F;
(3) 2silty (KP(proj A)) is a finite set.

Proof. We can easily show the implications (2)13—'&8(1)1):&}(3) E—ﬁg(Q) O

A concept of derived-discrete algebras was introduced in [14]: an algebra A is said to
be derived-discrete if for every positive element z of Ko(A)®), there exist only finitely
many isomorphism classes of indecomposable objects X of the bounded derived cate-
gory DP(mod A) such that (dimH*(X));ez = x where Ky(A),dimM and H* stand for
the Grothendieck group of mod A, the dimension vecter of a module M and the i-th
cohomological functor.

Recently, the following result was proved by Broomhead-Pauksztello-Ploog.

Example 20. [7]Any derived-discrete algebra with finite global dimension is silting-
discrete.

We know two classes of silting-discrete symmetric algebras.

Example 21. [3, 1] An algebra A is silting-discrete if it is either

(1) a representation-finite symmetric algebra or
(2) a Brauer graph algebra of type odd.

The following example was shown by a joint work with Y. Mizuno.

Example 22. [4] The preprojective algebra of Dynkin type Da,(n > 2), E7, Fy is silting-
discrete.

We close this paper by giving an example which says that the finiteness of 2siltp 7
depends on the choice of silting objects P.



Example 23. Let A be the algebra presented by the quiver

x1 2 X9
1/ \4
N,

with relations z;z9 = 0 = y;y2. Then 2silty (KP(proj A)) is a finite set. Now, let T :=
Hp,ip,ip, (A), which is isomorphic to a tilting module whose endomorphism algebra I' is
the path algebra obtained by the quiver

1/2\4 .
~,

We conclude from Example 19 that 2siltr(K(projI')), hence 2silty(KP(proj A)), is not a

finite set.
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TILTING COMPLEXES OVER PREPROJECTIVE ALGEBRAS OF
DYNKIN TYPE

TAKUMA ATHARA AND YUYA MIZUNO

ABSTRACT. In this note, we explain a connection between braid groups and tilting com-
plexes over preprojective algebras of Dynkin (A,D,E) type. More precisely, we classify
all tilting complexes by giving a bijection with elements of the braid groups.

1. INTRODUCTION

Derived categories are nowadays considered as a fundamental object in many branches
of mathematics including representation theory and algebraic geometry. One of the im-
portant problems is to study their equivalences. By Rickard’s Morita theorem for derived
categories, it is known that derived equivalences are controlled by tilting complexes [28].
Tilting theory provides several useful methods for studying tilting complexes and, in par-
ticular, mutation plays a significant role. Roughly speaking, mutation is an operation,
for a certain class of objects, to obtain a new object from a given one by replacing a
summand. In the case of tilting modules, their mutation was formulated by Riedtmann-
Schofield and Happel-Unger [30, 16, 32]. For example, APR (Auslander-Platzeck-Reiten)
tilting modules [5] and Okuyama-Rickard complexes [29, 27, 18] can be regarded as a
special case of tilting mutation. One of the negative aspects of tilting mutation is that
some summands of a tilting complex can not be replaced to get a new one and hence we
can not repeat tilting mutation. To remove this disadvantage, Aihara-Iyama studied a
wider class of mutation, called silting mutation and it is shown that silting mutation is
always possible and it admits a combinatorial description [4].

We give a further development of tilting (silting) theory and we determine all tilting
complexes over preprojective algebras of Dynkin type.

2. MAIN RESULTS

2.1. Preprojective algebras. Preprojective algebras was first introduced by Gelfand-
Ponomarev [15], and later formulated and developed in [14, 7]. Since then, they are one
of the fundamental objects in the representation theory (refer to a survey paper [31]).
Let K be an algebraically closed field and @) a finite connected acyclic quiver. We
denote by @ the double quiver of ), which is obtained by adding an arrow a* : j — i
for each arrow a : i — j in Q1. The preprojective algebra Ag = A associated to @ is the
algebra KQ/I, where I is the ideal in the path algebra K@ generated by the relations of

The detailed version of this paper will be submitted for publication elsewhere.



the form:
Z (aa™ — a*a).
ac@Q1
Let @ be a Dynkin quiver and e; the primitive idempotent of A associated with i € Q.
Then the preprojective algebra of () is finite dimensional and selfinjective [11, Theorem
4.8]. We denote the Nakayama permutation of A by o : Qp — Qo (i.e. D(Aeyq)) = €A,
where D := Homg(—, K)).
Note that Ag does not depend on the orientation of ().

2.2. Weyl group. We refer to [8, 19] for basic properties of the Weyl (Coxeter) group.
Let @ be a quiver of type A, B(C'), D, E and F. The Weyl group Wy, associated to @ is
defined by the generators s; (i € Q) and relations (s;s;)™() = 1, where

1 if i = j;
o 2 if no edge between ¢ and 7;
m(i,j) =9 3 if there is an edge i — j,
4 if there is an edge @ L j-

Each element w € Wy can be written in the form w = s;, - - - s;,. If k is minimal among
all such expressions for w, then k is called the length of w and we denote by I(w) = k. In
this case, we call s;, - - - 55, a reduced expression of w.

Let o be the Nakayama permutation of A. Then ¢ acts on an element of the Weyl group
Wa by 0(w) = Se(i,)So(is) - So(i) for w = s;,5,, - s;, € Wg. We define the subgroup
W§ of Wq by

Wg ={weW|o(w)=w}

Then we have the following result. (See [13, Chapter 13]).

Theorem 1. Let Q) be a Dynkin (A,D,E) quiver and Wq the Weyl group of Q. Let
Q' = Q if Q is type Doy, E7 and Eg. Otherwise, let Q' be a quiver, respectively, given by
the following type.

‘Q Agn1, Azn | Dont1 | B
‘ Ql Bn BQn F4

Then W§ 1s isomorphic to Wey.

We call the quiver @' given in Theorem 1 the folding quiver of Q.

Example 2. Let @ be a quiver of type A;. Then one can check that W7 is given by
(51, (5284), (8355)) and this group is isomorphic to Wy, where @' is a quiver of type Bs.

2.3. Support 7-tilting modules. The notion of support 7-tilting modules was intro-
duced in [2], as a generalization of tilting modules. We refer to [2, 21] for several nice
properties of support 7-tilting modules.

Let A be a finite dimensional algebra and we denote by 7 the AR translation [6].

Definition 3. We call a A-module X 7-tilting if X is Homu (X, 7X) = 0 and | X| = |A],
where | X | denotes the number of non-isomorphic indecomposable direct summands of X.

Moreover, we call a A-module X support 7-tilting if there exists an idempotent e of A
such that X is a 7-tilting (A/(e))-module.



We denote by s7-tilt A the set of isomorphism classes of basic support 7-tilting A-
modules.

Remark 4. We note that support 7-tilting modules can be described as pairs. These
definition are essentially same.

Now let @ be a Dynkin quiver with Qo = {1,...,n} and A the preprojective algebra of
Q. We denote by I; :== A(1 — ¢;)A for i € Qy. We denote by (Iy, ..., I,) the set of ideals
of A which can be written as

L5, I,
for some k > 0 and iy, ...,4 € Q.
Then following result plays an important role in this note.
Theorem 5. [9, 25] Under the above notation,
(a) There exists a bijection Wg — (I1, ..., I,), which is given by w — I,, = I;, I;, - - - I;
for any reduced expression w = s;, -+ S, .

(b) It gives a bijection between the elements of the Weyl group Wq, and the set sT-tilt A
of isomorphism classes of basic support T-tilting A-modules.

k

We remark that the above ideals I, are tilting modules in the case of non-Dynkin type
in [20, 9.

2.4. Silting complexes. Silting complexes are a generalization of tilting complexes,
which were introduced by Keller-Vossieck [23]. They were originally invented as a tool for
studying tilting complexes. Nonetheless, silting complexes have turned out to have deep
connections with several important complexes such as t-structures [10, 24, 12, 22].

We recall the definition of silting complexes as follows.

Definition 6. Let A be a finite dimensional algebra and K" (projA) the bounded homotopy
category of the finitely generated projective A-modules.

(a) We call a complex P in KP(projA) is presilting (respectively, pretilting) if it satisfies
Homo (projay (P, Pli]) = 0 for any ¢ > 0 (respectively, i # 0).

(b) We call a complex P in KP(projA) silting (respectively, tilting) if it is presilt-
ing (respectively, pretilting) and the smallest thick subcategory containing P is
KP(projA).

We denote by silt A (respectively, tilt A) the set of non-isomorphic basic silting (respec-
tively, tilting) complexes in KP(projA).

For complexes P and @Q of KP(projA), we write P > @ if Homyo (proja) (P, Q[i]) = 0 for
any ¢ > 0. Then the relation > gives a partial order on silt A [4, Theorem 2.11] (cf. [17]).

Moreover, a complex T' € KP(projA) is called 2-term provided it is concerned in the
degree 0 and —1. We denote by 2-silt A (respectively, 2-tilt A) the subset of silt A (respec-
tively, tilt A) consisting of 2-term complexes. Note that a complex T' is 2-term if and only
it A>T > A[1].

Then we have the following nice correspondence.

Theorem 7. [2, Theorem 3.2] Let A be a finite dimensional algebra. There exists a
bijection
sT-tilt A « 2-silt A.



By the above correspondence, we can give a description of 2-term silting complexes by
calculating support 7-tilting modules, which is much simpler than calculations of silting
complexes.

From now on, let @ be a Dynkin quiver and A the preprojective algebra of (). Then,
as a corollary of Theorem 5 and 7, we have the following corollary.

Corollary 8. We have a bijection
WQ — 2-silt A.

Thus we can parameterize 2-term silting complexes by the Weyl group. Moreover,
we can describe 2-term tilting complexes in terms of the Weyl group by the following
proposition.

Proposition 9. Let v := DHomp(—, A) the Nakayama functor of A and o : Qo — Qo
the Nakayama permutation of A. Then v(I,) = I, if and only if o(w) = w. In particular,
We have a bijection
W(g — 2-tilt A.
Then by Theorem 1, we can understand W as another type of the Weyl group.

Example 10. Let () be a quiver of type A3 and A the preprojective algebra of ). Then
the support T-tilting quiver of A (]2, Definition 2.29]) is given as follows.

3
321

The framed modules indicate v-stable modules [26] (i.e. I, = v([,,)), which is equivalent
to say that o(w) = w by Proposition 9. Hence Theorem 1 implies that these modules
correspond to the subgroup Wg = ((s1s3), s2) and it is isomorphic to the Weyl group of
type Bs.



Next we use (silting) mutation. Let A = X @Y. We denote by p1x(A) the left mutation
of A with respect to X. It is not necessarily tilting in general (cf.[1]). However, if it is
tilting, then we have the following nice result.

Proposition 11. Assume that px(A) is a tilting complex, then we have an isomorphism
Ende(ProjA) (,U,)((A)) =~ A,

Togher with this proposition, the finiteness of 2-silt A implies that tilting-discreteness
of A and we conclude that any tilting complex is obtained from A by iterated mutation
(see [3]). Then we extend Proposition 9 and obtain the following consequence.

Theorem 12. Let Q be a Dynkin quiver, A the preprojective algebra of Q@ and Q' the
folding quiver of Q). We denote the braid group by Bg,. Then we have a bijection

Thus we can parametrize any tilting complex by the braid group.
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GORENSTEINNESS ON THE PUNCTURED SPECTRUM

TOKUJI ARAYA AND KEI-ICHIRO IIMA

ABSTRACT. In this article, we shall characterize torsionfreeness of modules with respect
to a semidualizing module in terms of the Serre’s condition (S,,). As an application we
give a characterization of Cohen-Macaulay rings R such that R, is Gorenstein for all
prime ideals p with height less than n.

1. INTRODUCTION

Auslander and Bridger introduce a notion of n-torsion free as generalization of reflexive
[1]. Evans and Griffith give a characterization of n-torsionfree modules [3].

The notion of n-torsionfree with respect to a semidualizing module has been intro-
duced by Takahashi [6]. In this article, we study an n-torsionfreeness of modules with
respect to a semidualizing module in terms of the Serre’s condition (S,). Recently, Dibaei
and Sadeghi [2] give a similar property independently.

Proposition 1. Let n be a non-negative integer. Assume that R satisfies the conditions
(GS_)) and (S,). Then the following statements are equivalent for an R-module M :
(1) M is n-C-torsionfree,
(2) There exists a eract sequence 0 — M — PL — -+ — P& such that each Pg is
a direct summand of direct sum of finite copies of C' and that C-dual sequence
Pt .. = PLT — MY — 0 is ezact. Here, (—)T = Hom(—,C).
(3) M is n-C-syzygy,
(4) M satisfies the condition (Sy,).

The following throrem is a main theorem of this article.
Theorem 2. Let R be a Cohen-Macaulay local ring with a dualizing module w. For
non-negative integer n, the following conditions are equivalent:

(1) Cy is dualizing Ry-module for all prime ideal p of hight at most n,
(2) (Sps1)(R) = Q¢ (modR),
(3) w e QLM (modR).

This theorem recovers a result of Leuschke and Wiegand [5] which gives a characteri-
zation of Cohen-Macaulay rings R such that R, is Gorenstein for all prime ideals p with
height less than n.

The detailed version of this paper will be submitted for publication elsewhere.
The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 26400056.



2. PRELIMINARIES

Throughout the rest of this article, let R be a commutative noetherian ring. All modules
are assumed to be finitely generated. In this section, we give some notions and properties.

An R-module C is called semidualizing if the homothety map R — Hompg(C,C) is an
isomorphism and if Ext’(C,C) = 0 for all i > 0. A rank 1 free module R and a dualizing
module w over Cohen-Macaulay local rings are typical examples of semidualizing modules.
From now on, we fix a semidualizing module C' and put (—)" = Homg(—, C).

Let --- — P, 2 Py — M — 0 be a projective resolution of an R-module M. We define

a C-transpose module TrcM of M the cokernel of PJ if> PlT. We remark that TroM is
uniquely determined up to direct summands of finite direct sums of copy of C. Note that
if C' is isomorphic to R then C-transpose coincides with ordinary (Auslander) transpose.
An R-module M is called n-C-torsionfree if Extiy(TreM,C) =0 for all 1 <4 < n.

We denote by Ay, the natural map M — Mt n-C-torsionfreeness has following prop-
erties similar to ordinary n-torsionfreeness [1]. One can show this by diagram chasing

(c.t. [6]).

Proposition 3. Let M be an R-module.
(1) M is 1-C-torsionfree if and only if Ay is a monomorphism,
(2) M is 2-C-torsionfree if and only if Ay is an isomorphism,
(3) Let n > 3. M us n-C-torsionfree if and only if Ay is an isomorphism and if
Exty(MT,C) =0 forall1 <i<n-—2.

An R-module M is called n-C-syzygy if there exists an exact sequence 0 — M — P} —
P% — .-+ — PZ such that each PZ is a direct summand of finite direct sums of copy of
C. We set Q% (modR) the class of n-C-syzygy modules.

We say that an R-module M satisfies the Serre’s condition (S,) if depthp M, >
min{n,dim R,} for each prime ideal p of R. We denote by (5,)(R) the class of mod-
ules which satisfies (5,,)-condition.

We say that R satisfies the condition (GS) if injective dimension of C,, (as an R,-module)
is finite for all prime ideal p of height at most n. In this case, R, is Cohen-Macaulay local
ring with canonical module C, for all prime ideal p of height at most n. Note that R
satisfies (GF) if and only if R, is Gorenstein local ring for all prime ideal p of height at
most n.

3. PROOFS
In this section, we give a proof of the Proposition 1 and the Theorem 2.

Proof of Proposition 1.

(1) = (2). We prove by induction on n. We assume n = 1. Let f: R" — M be a left
add R-approximation of M. Then f is epimorphism. Since M is 1-C-torsionfree, Ay, is
monomorphism and so is fTA\y : M — M — (R")T = C". One can check (fTA\y)7 = f.

Assume n > 2. Since M is 1-C-torsionfree, there exists a short exact sequence 0 —
M — PL — N — 0 such that the daggar dual sequence 0 — NT — (PL)T — MT — 0 is
exact. Then we have a following commutative diagram:



0 —— M —— P N 0

)\I\/Il )‘Pél )\NJ,
0 — Mt —— pAf Nt Exth(M',C) — 0.

Since Extly(NT, ) = Extif'(MT,C) for each i > 0, N is (n — 1)-C-torsionfree. By
induction assumption, there exists a exact sequence 0 — N — P2 — --- — P2 such that
the daggar dual sequence (P2) — .- — (P2)! — NT — 0 is exact. Conbining exact
sequences, we get an exact sequence 0 — M — P — P2 — --- — PgZ such that the
daggar dual sequence (P2)T — -+ — (PL)T — MT — 0 is exact.

The implication (2) = (3) is obvious by the definition.

Since depthy C, = depthy R, for all prime ideal p, C' satisfies (S,). Thus one can
check the implication (3) = (4) by using depth lemma.

We prove the implication (4) = (1) by induction n. Assume n = 1. Let p be an
associated prime ideal of M. Since M satisfies the condition (S;), we have dim R, = 0.
Furthermore, the assumption that R satisfies (G§') implies that C, is a dualizing module
and that Hompg (M, C), = Hompg, (M,, Cy) # 0. In particular, Homg(M,C) # 0.

Let f1, fa, ..., fm be a generating system of Hom(M, C) and put f ='(f1, fa, ..., fmn) :
M — C®™. Suppose that N = ker f is not zero. Let q be an associated prime ideal of
N. Since q is also an associated prime ideal of M, we have dim R, = 0. Noting that C,
is dualizing module over Ry, we see that f; is a monomorphism. This yields that N; = 0.
This contradicts that q is an associated prime ideal of N. Hence f is a monomorphism.

Since f1tAy; = Agem f is a monomorphism, we obtain that A, is a monomorphism.
This means that M is 1-C-torsionfree by Proposition 3.

Assume n > 2. Since M satisfies the condition (S), M is 1-C-torsionfree. In particular,
there exists a short exact sequence 0 - M — Po — N — 0 such that the daggar dual
sequence 0 — NT — (Po)T — MT — 0 is exact. Then we get a following commutative
diagram:

0 — M P N 0
/\NIJ/ )\Pcl )\NJ/
0 —— Mt P NTt Exth(MT,C) —— 0.

Note that Exth(NT, ) = Exti ' (MT,C) for each i > 0. It is enough to prove that N
satisfies the condition (S,—1). Indeed, if N satisfies the condition (S,-1), N is (n —1)-C-
torsionfree by induction assumption. Then we can show that M is n-C-torsionfree by the
above commutative diagram.

From now on, we shall show that N satisfies the condition (S,-1). Let p be a prime
ideal. If dim R, > n, we have depthp M, > min{n,dim R,} = n. Therefore we obtain
deptth N, > n —1 by depth lemma.

Assume dim R, < n — 1. Since R satisfies the condition (GS_,), R, is Cohen-Macaulay
with canonical module C,. Inequalities depthp M, > min{n,dimR,} = dimR, =

depthp Ry gives that M, is a maximal Cohen-Macaulay Ry-module. Thus so are (M),
R, and (N,)T.



It comes from a commutative diagram:

0O — M, — (Po)y, — N, —— 0

Any lg APo)p | =2 ANy l

0 — (M)l — (Po)p™ —— (V,)hh — 0,

we can see that Ay, is an isomorphism and that N, = (N,)"" is a maximal Cohen-
Macaulay R,- _module. Therefore we have depthp Ny, = dim R, > min{n — 1,dim R, }.
Thus N satisfies the condition (S,_1). O

Now, we can prove the Main theorem.

Proof of Theorem 2.

(1) = (2) It is obvious by Proposition 1.

(2) = (3) A dualizing module w satisfies the Serre’s condition (S,,), so we have w € Q(
mod R).

(3) = (1) There is an exact sequence

0—w—>PL—Pi— - > Ps—M-—0

such that each P} is a direct summand of direct sum of finite copy of C'. For any prime
ideal p of height less than n, (Q’é—lM )p is a maximal Cohen-Macaulay R,-module. Then
the exact sequence 0 — w, — (PL), — (% 'M), — 0 splits. This indicates w, = C,.
Thus we have idg, C, = idg, w, < cc. O

4. EXAMPLE

Jorgensen, Leuschke and Sather-Wagstaff [4] have been determined the structure of
rings which admits non-trivial semidualizing modules.

We give a class of Cohen-Macaulay local rings R which have a non-trivial semidualizing
module C' by using their result. Moreover, C), is a dualizing ,-module for all non-maximal
prime ideal p of R.

Proposition 4. Let k be a field and S = k[[x1, T2, . .., Tm, Y1, y2]] be a formal power series
ring. For fi, fo,..., fr € K[[x1, 22, ..., 20| and £ > 2, we set ideals I = (f1, fa, ..., [+)S
and Iy = (y1,y2)"S. Assume that T = S/1 is a (d+2)-dimensional Cohen-Macaulay ring
which is not Gorenstein and that T satisfies the condition (GL,,). Putting R =T/I, and
C = Ext?.(R,T), then the followings hold:

(1) R is d-dimensional Cohen-Macaulay ring,
(2) C is neither R nor dualizing R-module,
(3) R satisfies the condition (GS).

Proof. (1) is clear. (2) is comes from [4]. We show (3). Let p be a prime ideal of R with
height at most n. Since P = pS is a prime ideal of S with height at most n + 2, we have
that S, = Sp is Gorenstein. Therefore C}, = Ext?gp(Rp, Sp) is a canonical R,-module. O

In the end of this article, we give examples of 1-dimensional Cohen-Macaulay rings R
and semidualizing module C' such that R satisfies the condition (G§') but not the condition
(GE) for all n.



Example 5. Let k be a field and let S = k[, 2o, 23, y1,42)]/ (25 — z123, 1273, 73)
be a 3-dimensional Cohen-Macaulay local ring which is not Gorenstein. We set R =
S/(y?,y192, y3) which is a 1-dimensional Cohen-Macaulay local ring. Note that all the
prime ideals of R are p = (x9, z3,y1,y2) and m = (21, 2, 23,91, y2). It is easy to see that
S, is Gorenstein but R, is not Gorenstein. In particular, R does not satisfy the condi-
tion (GF). Putting C' = Ext3(R, S), one can check that C is a semidualizing R-module
which is neither R nor canonical module. Since S, is Gorenstein, we can see that C, is a
canonical module over R,. This yield that R satisfy the condition (G§).

(1]
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TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE
ALGEBRAS OF DYNKIN TYPE

HIDETO ASASHIBA AND KEN NAKASHIMA

ABSTRACT. All algebras are assumed to be basic, connected finite-dimensional algebras
over an algebraically closed field. We give an easier way to calculate a bijection from the
set of isoclasses of tilted algebras of Dynkin type A to the set of configurations on the
translation quiver ZA.

INTRODUCTION

This work is a generalization of Hironobu Suzuki’s Master thesis [7] that dealt with
representation-finite self-injective algebras of type A in a combinatorial way. Throughout
this paper n is a positive integer and k is an algebraically closed field, and all algebras
considered here are assumed to be basic, connected, finite-dimensional associative k-
algebras.

Let A be a Dynkin graph of type A, D, E with the set Ag := {1,...,n} of vertices. We
set C,, to be the set of configurations on the translation quiver ZA (see Definition 1.6),
and T, to be the set of isoclasses of tilted algebras of type A. Then Bretscher, Léiser and
Riedtmann have given a bijection ¢: T,, — C,, in [1]. But the map c is not given in a
direct way, it needs a long computation of a function on ZA. In this paper we will give
an easier way to calculate the map ¢ by giving a map sending each projective A-module
over a tilted algebra A in T,, to an element of the configuration c(A).

We fix an orientation of each Dynkin graph A to have a quiver A as in the following
table.

A A, (n>1) D, (n>4) E, (n=06,7,8)
on on
& O——0——> -+ —>0 | O T O O T O
1 2 n |1 n—2 n—-1]1 n—3 n—2 n-1
ma n 2n —3 11, 17, 29, respectively

This orientation of A gives us a coordinate system on the set (ZA)g := Z x Aq of vertices
of ZA := ZA as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full
subquiver S of ZA consisting of {(0,7) | i € Ag} is isomorphic to A.

Let A be a tilted algebra of type A. Then by identify A with the (0, 0)-entry of the
repetitive category A, the vertex set of AR-quiver I'4 is embedded into the vertex set
of the stable AR-quiver ,['; (= ZA) of A. Further the configuration C := ¢(A) of ZA
computed in [1] is given by the vertices of ZA corresponding to radicals of projective

The detailed version of this paper will be submitted for publication elsewhere.



indecomposable A-modules. Note that the configuration C has a period ma listed in the
table, thus C = 7™aZF for some subset F of C. By P = {(p(i),i) | i € Ao} we denote the
set of images of the projective vertices of I'4 in ZA and set

NP :={(m,i) € (ZA)o | p(i) < m,i € Ag}.

Since the mesh category k(ZA) is a Frobenius category, it has the Nakayama permutation
v on (ZA)y that is defined by the isomorphism

k(ZA)(x,-) =2 Homg(k(ZA)(-, vz), k)

for all x € (ZA)o. The explicit formula of ¥ is given in [3, pp. 48-50]. (Note that it
should be corrected as v(p,q) = (p+ ¢+ 2,6 —q) if ¢ < 5 when A = Fj as pointed
out in [1, 1.1]). In this paper we will define a map v/: P — NP using the supports of
starting functions dimy k(ZA)(z,-): NP — Z for x € NP (cf. [3, Fig. 15]). Then v/ has
the following property.

Lemma 0.1. Let x € P and P be the projective indecomposable A-module corresponding
to x. Then v'x corresponds to the simple module top P.

In this paper, we make use of modules over the algebra

A o
b= [DA A]

to compute an F above (the configuration (see Definition 3.9) of B gives F.) We will
define a map v := v from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation o if A is hereditary.

Lemma 0.2. Assume that a verter x € ZA corresponds to a simple A-module S and let
Q be the injective hull of S over A. Then v(x) corresponds to rad Q, and hence v(z) € C.

Combining the lemmas above we obtain the following.
Proposition 0.3. If x € P, then v(v'x) € C.
This leads us to the following definition.
Definition 0.4. We define a map c4: P — C by ca(z) := v(v/z) for all x € P.
The image of the map c4 gives us an F above, namely we have the following.
Theorem 0.5. The map c4 is an injection, and we have c(A) = 722 Tm cy.
Corollary 0.6. If A is hereditary, then cqa = vV’ and we have c¢(A) = 7% Tm /.

Section 1 is devoted to preparations. In Section 2 we will give the complete list of inde-
composable projectives and indecomposable injectives over the triangular matrix algebra
B. In Section 3 we state our main results.



1. PRELIMINARIES

1.1. Algebras and categories. A category C is called a k-category if the morphism sets
C(xz,y) are k-vector spaces, and the compositions C(y, z) x C(z,y) — C(x, z) are k-bilinear
for all z,y,z € Cy (Cy is the class of objects of C, we sometimes write € C for z € Cp).
In the sequel all categories are assumed to be k-categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category cat A from an algebra A as
follows.

(1) We fix a decomposition 1 = e; + - -+ + e, of the identity element 1 of A as a sum
of orthogonal primitive idempotents.

(2) We set the object class of cat A to be the set {eq,...,e,}.

(3) For each pair (e;,e;) of objects, we set (cat A)(e;, ;) := e;Ae;.

(4) We define the composition of cat A by the multiplication of A.
The obtained category cat A is uniquely determined up to isomorphisms not depending on
the decomposition of 1. The category C' = cat A is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C' the algebra C(z,z) is local.
(3) For each pair (z,y) of objects of C' the morphism space C(z, y) is finite-dimensional.

A small category with these three properties is called a spectroid® and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category cat A is a finite spectroid. Conversely we can construct a matrix algebra
from a finite spectroid C' as follows.

alg C = {(Myg)syec | My € C(x,y), Yo,y € C}.

Here we have alg cat A = A, cat alg C' = C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set {y € C' | C(x,y) #
0 or C(y,z) # 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

Remark 1.1. We can construct the “path-category” k@ from a locally finite quiver @) by
the same way as in the definition of the path-algebra. The only different part is in the
following definition of compositions: For paths p,v with? s(u) # t(v), it was defined as
pv = 0 in the path-algebra, but in contrast the composition ur is not defined in the
path-category.

A locally bounded spectroid C'is also presented as the form k@ /I for some locally finite
quiver () and for some ideal I of the path-category k@ such that I is included in the ideal

L3 terminology used in [4]

2Here s(p) and t(v) stand for the source of p and the target of v and compositions are written from
the right to the left.



of k@ generated by the set of paths of length 2. Here the quiver ) is uniquely determined
by C' up to isomorphisms. This @ is called the quiver of C'.

A (right) module over a spectroid C'is a contravariant functor C' — Mod k. From a usual
(right) module over an algebra A we can construct a contravariant functor cat A — Mod k
by the correspondence e; — Me; for each point e; in cat A, and f +— (-f: Me; — Me;)
for each f € ejAe; = (cat A)(e;, e;). Conversely, from a contravariant functor F': cat A —
Modk we can construct an A-module @, F(e;); and these constructions are inverse to
each other. In this way we can identify A-modules and modules over cat A.

The set of projective indecomposable modules over a spectroid C'is given by {C(-, x) }zec
up to isomorphism, and finitely generated projective C-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C' by the same way as those over algebras.

The dimension of a C-module M is defined to be the dimension of @, . M (x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents {ey, ..., e}
(1) The repetitive category Aof Aisa spectroid defined as follows.
Objects: Ay := {2l := (z,i) |z € {e1,...,e,},i € Z}.

Morphisms: Let 2 yUl € A;. Then we set

o (/0= (f0)| f € Alw,)} (G =1)
0 otherwise,

Compositions: The composition A(yll, 28) x Azl ylil) — Azl 2H) is de-
fined as follows.
(i) If j =4,k = j, then we use the composition of A:

Ay, z) x A(z,y) — A(z, 2).
(ii) If j =i,k = j+1, then we use the right A-module structure of DA(-, ?):
DA(z,y) x A(x,y) — DA(z, x).
(iii) If j =i+ 1,k = 4, then we use the left A-module structure of DA(-,?):
Ay, z) x DA(y,x) — DA(z,x).

(iv) Otherwise the composition is zero.
(2) For each i € Z, we denote by A the full subcategory of A whose object class is
(ol |z e {ey,... en}}.
(3) We define the Nakayama automorphism v, of A as follows: for each i € Z,z,y €
A, f € A(z,y) and ¢ € DA(y,x),

va(al) = 2,y (1) = fEP 0y () = i,



Remark 1.3. (1) If a spectroid A is locally bounded, then so is A.

(2) When A is an algebra, the set of all Z x Z-matrices with only a finite number of
nonzero entries whose diagonal entries belong to A, (i + 1,4) entries belong to DA for all
i € Z, and other entries are zero forms an infinite-dimensional algebra without identity
element, which is called the repetitive algebra of A. The repetitive category Ais nothing
but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra
(= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free* action of
a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C'/G are the G-orbits Gz of objects z of C.
(2) For each pair Gz, Gy of objects of C/G we set

(C/G)(Gz,Gy) = Gfdawe [ Clab) ] wfoe = g(ofa), forall g € G

(a,b)eGrxGy

(3) The composition is defined by

(dhc)c,d : (bfa)a,b = (Z dhb . bfa) .
a,d

beGy

for all (5fa)ap € (C/G)(Gz,GY), (ahe)ea € (C/G)(Gy,Gz). Note that each entry
of the right hand side is a finite sum because C' is locally bounded.

A functor F': C — (' is called a Galois covering with group G if it is isomorphic to
the canonical functor w: C' — C'/G, namely if there exists an isomorphism H: C/G — C'
such that F = Hr.

Remark 1.5. If A is an algebra and a group G acts freely on the category A, then A/ G
turns out to be a self-injective spectroid. In particular, when 121/ G is a finite spectroid,
it becomes a self-injective algebra. In this way we can construct a great number of self-
injective algebras.

Definition 1.6. From a quiver ) we can construct a translation quiver ZQ as follows.
® (ZQ)o == Z % Qu,
* (ZQ)1 :=Zx QU{(i,o') | i € Z,a € Qu},
e We define the sources and the targets of arrows by
(i,0): (i, s(@) = (i,t(a)), (i,0): (i, t() = (i + 1, s(e))
for all (i,) € Z x Q1.
e We take the bijection 7: (ZQ)o — (ZQ)o, (i, ) — (i — 1,z) as the translation.

In addition, we can define a polarization by (i + 1,a) — (i,¢), (i,&’) — (i,a). Note
that by construction the translation quiver Z) does not have any projective or injective
vertices.
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For example,

Remark 1.7. When @ is a Dynkin quiver with the underlying graph A, the isoclass of ZQ
does not depend on orientations of A, therefore we set ZA := ZQ).
2. TRIANGULAR MATRIX ALGEBRAS

Definition 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a category
C =C(R,S, M) as follows.
Objects: Co :={(X,Y, f) | Xg € mod R,Ys € mod S, f € Homu (Y ®¢ M, X)}.
Morphisms: Let (X,Y, f), (X', Y, f') € Co. Then we set
Y @s M- x

C((X,Y, ), (X, Y', 1) := 4 (¢o, ¢1) € Homp(X, X') x Homg(Y,Y") ¢1®1MJ/ O J/zﬁo
Y/ ®SM?X/

Compositions: Let (X,Y, f), (X", Y, /), (X", Y", f") € Cy and let
(6o, ¢1) € CU(X, Y, f), (X", Y7, f9), (¢, 1) € CUX Y, f), (X" Y7, f7)).
Then we set
(¢0: #1) (b0, D1) := (Do, d161) € C((X, Y, f), (X", Y, ).
Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule. Then

mod {R 0

I, S} ~C(R,S,M).

Recall that an equivalence F' : mod L\}Ef g] — C(R, S, M) is given as follows.

Objects: For each L € (mod T,
F(L) := (Lex, Lea, f1),

where ¢; = Fé? 8},52 = [8 10] and fr @ Lea ® M — Ley is defined by
s

frlega®@m) =1 L(’)L 8] foralll € L and m € M.

Morphisms: For each o € Homy(L, L'),

F(Oé) = (a |L61>a |L52)'



A 0
DAl Ci=C(A A DA).

Then we have mod B ~ C by Proposition 2.2. By this equivalence, we identify mod B
with C.

Let A be a tilted algebra of type A, and set B :=

Let {ey,...,en} be a complete set of orthogonal local idempotents of A. Then as is
easily seen

{6[10]7 R e%”, 6[11], ey eg]} is a complete set of orthogonal local idempotents of B, and
{e[lo]B, ey ei?]B, e[ll]B, e ,eLl]B} is a complete set of isoclasses of projective indecompos-

able B-modules. The following is immediate.

Proposition 2.3. For eacht=1,...,n, we have
F(e"B) = (¢;4,0,0),
F(ez[l]B) (ei(DA), e; A, can).

I

In addition {D(Be[lo]), ce D(Bei?]), D(Be[ll]), e D(Beg])} is a complete set of iso-
classes of injective indecomposable B-modules. The following two statements are obvious.

Lemma 2.4. For eachi=1,...,n, we have

(1) D {(515362. 8} = {D(B}ei) e?A

@0l )= ] o)

Proposition 2.5. For eachi=1,...,n, we have
F(D(Bel")) 2 (e;(DA), e;A, can) 2 el B,
F(D(BelY) = (0,e:(DA),0).

(3

], and

3. CONFIGURATIONS

Definition 3.1. Let A be a standard representation-finite self-injective algebra. Then we
set

Cx :={[rad P] € I'y | P : projective(-injective) A-module},

which is called a configuration of A.

Definition 3.2. Let I' be a stable translation quiver, and C be a subset of I'y. Then we
define a translation quiver I'¢c by

(Fc)o = F() LJ {pz I xr € C},
(Te)r ==T1U{z = p,, pp — 7 'z},

where the translation of I'¢c is the same as that of I'. In particular, p, are projective-
injective® vertices for all 2 € C.

4The word “projective-injective” stands for projective and injective.



Remark 3.3. The quiver of mod A is the full subquiver ,I'y of 'y with
(sT'a)o := {z | = is a stable vertex of T's}

(namely (T"y is obtained from T'y by removing all projective vertices), which is a stable
translation quiver. Then it holds that Cy C (;T's)o, and we have

(sT'a)c, =T (3.1)

Theorem 3.4. Let A be a standard representation-finite self-injective algebra and A the
Dynkin type of A. Then the following hold.

(1) (Waschbiisch [5, 8]) There exist a tilted algebra A of type A and an automorphism
¢ of A without fized vertices such that A = A/(¢).

(2) (Riedtmann [6]) There is an isomorphism f : JI'; — ZA. Denote also by ¢ the
automorphism of ;I ; induced from ¢ canonically, and define an automorphism ¢’
of ZA by the following commutative diagram:

¢l O ‘/(Ib’
s‘F A
S ZA.
Then we have [I'y = I ;/(¢) = ZA/(¢').
By the formula (3.1) to compute T'y, it is enough to solve the following problem.

Problem 1. Let A be a standard representation-finite self-injective algebra, which has
the form A/(¢) for some tilted algebra A of Dynkin type and an automorphism ¢ of A
by Theorem 3.4. Then compute Cp from A.

Remark 3.5. Let f': ;T'yx — ZA/{¢') be an isomorphism, and set C := f'(Cy). Then we
have

Pa = (Ta)ey = (ZA/(d))c-
Thus we can compute I'y by Theorem 3.4(2) if we can obtain the set C.

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let R be a locally representation-finite and locally bounded k-
category, and G be a group consisting of automorphisms of R that acts freely on R. Then
the AR-quiver I'r of R has an induced G-action, and we have I'r/G = T'g/q.

Definition 3.7. Let A be a tilted algebra of Dynkin type. Then we set
C; = {[rad P] € T | P : projective(-injective) A-module},
which is called the configuration of A.

Corollary 3.8. Let A be a tilted algebra of Dynkin type, and ¢ be an automorphism offl
without fized vertices. Then we have

Ci/(¢) = Ca.

Therefore to solve Problem 1, it is enough to consider the following.



Problem 2. In the same setting as in Problem 1, compute C; from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type A, and set
A 0
5= )
By (1), I'4 has a section § whose underlying graph is isomorphic to A.

Definition 3.9. We call the following set the configuration of B:
Cp :={[rad P] € ' | P : projective-injective B-module}.
3.1. Relationship among fl, B and A. We set as follows:

Iy = (el [ieZ\{0,1},5 € {1,...,n}),
L= (el [iezZ\{0},j€{L,....n}),
L=l iez\{1},j€{L,....n}).

Then A/Iy; = B, A/l = A%~ A) and A/I; = AY(= A). We also have

0 0
o A0 5 Alll
B/{DA 0]_A % Alll.

We have the following surjective algebra homomorphisms

Al0]
(

A‘»B—))A[O] xAl]

>

Al

which induce the following embeddings of categories

/Od A[O]

mod A \U—>mod B

I

mod Al



We regard mod A C mod B by the embedding mod A = mod AlY) = mod B. The em-
beddings above give us the following embeddings of vertex sets of AR-quivers:

)A@)o = (Ta)o

(Ta)o ~—('p)o

\
(I'am)o-

We define an ideal k(ZA)T of the mesh category k(ZA) as follows:
K(ZA)T == ((ZA)y + Izn).

Then the values of ma := min{m € N | (k(ZA)")" = 0,Vi > m} are known as follows:

n (A = An)
2n—3 (A=D,)
ma =4 11 (A = Eg) .
17 (A=En)
29 (A= Ey)

We see the following by [1].

Proposition 3.10. Let: =0, 1.
(1) The full subquiver Sg] of T'p with the vertex set 0;(Sy) forms a section of sT'p.
(2) The full subquiver SE] of I' 4 with the vertex set 00;(Sy) forms a section of ;I 4.
Remark 3.11. A quiver @) without oriented cycles will be regarded as a poset by the order
defined as follows:

For each z,y € Qy, x < y :<there is a path in @ from z to y.
Definition 3.12. (1) We set Hp to be the full subquiver of I'g defined by the set
(Hp)o :=={x € (Tp)o | a = = < b for some a € (S9)o,b € (Sh))o}

of vertices.
(2) We set HE’I] to be the full subquiver of I'; defined by the set

(HE{’H)O ={x e (T4)o|a=<2=bfor some a e (SE)])O,b € (SE])O}

of vertices.

Proposition 3.13. (1) The map o : (T'g)g — (L' 4)o is uniquely extended to a quiver
isomorphism Hg — 'Hg’l]‘

(2) We have SE] = T_"LASE]. We set Sgn] = T‘”"”ASE] for alln € Z.



(3) Set H[X’"H] = 7T (H[g’l]) for alln € Z. Then for each i = 0,1

neL
[n+1]y [nn+1]y [n+1,n+2]\

Roughly speaking, I' ; is obtained by connecting infinite copies of Hp on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

- A 0 Al 0 .
Therefore A is a tilted algebra of type As. Moreover B = {DA A} = {(DA)[O] Am} is

an algebra given by following quiver with relations.



Then I'p is given as follows (elements of Cg are encircled).

In the above, Hp is given by the full subquiver consisting of vertices between the left
section and the right section. A is given by the following quiver with relations.




Then T4 is follows (each element of C; is encircled by a broken or solid line, in particular
solid circles present elements of Cp). In this case we have ma = 3.

2[1]
(| 10113001 |;
2(0]

1[113[01) -

The following is immediate from Proposition 3.13.
Corollary 3.15. We have C; = 7720 (Cp).
By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type A, and B as above. Then give the
configuration Cp from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal PZ of mod B as follows and set mod B :=
(mod B)/PZ. For each X,Y € (mod B),

PL(X,Y):={f € Homp(X,Y) |f factors through a projective-injective B-module }
Let (:?) mod B — mod B be the canonical functor and set
Homp (X, V) := (mod B)(X,Y)
for all X,Y € mod B. Thus X = X for all X € (mod B), and f = f + PZ(X,Y) for all
f € Homp(X,Y).
(2) We denote by modpz B the full subcategory of mod B consisting of B-modules

without projective-injective direct summands.
(3) Let X and Y € modpz B. Then it is well known that PZ(X,Y) C radp(X,Y). We

set radz(X,Y) = radg(X,Y)/PI(X,Y).
Definition 3.17. For AR-quiver I's of B, we define the full translation subquiver I's as
follows. 5

(T'p)o :={X € (I'p)o | X is not projective-injective. }

Moreover we set R
supp(sx) == {Y € (I'p)o | sx(Y) # 0},



where the map sx : (TB)o — Zsy is defined by sx(Y) := dim Homg(X,Y) (Y € (I'p)o)
for all X € (I'g)o.

Definition 3.18. Let P be a projective indecomposable A-module, and rad P = @,_, R
with R; indecomposable for all i. Then we define a full subquiver Rp of I'g by

(Rp)o := supp(sp) \ (U Supp(sRi)> :

i=1

Definition 3.19. We regard the subquiver Rp as a poset by Remark 3.11. For a projec-
tive indecomposable A-module P, we set

V'(P) :=minRp.
Example 3.20. In the following figure, the vertices inside broken lines form supp(sp)
and those inside doted lines form (|J;_, supp(sg,)). Therefore the subquiver Rp consists

of the vertices inside solid lines, and v/(P) is the minimum element of Rp. Projective
vertices are presented by white circles o.

\/\/\/\/

We have the following the proof of which is omitted.
Proposition 3.21. Let P be a projective indecomposable A-module. then v'(P) = top P.

We will give an alternative definition of the map v/ below, which is easier to compute
than the first one.

Definition 3.22. Let P € mod B be projective.
(1) Let Pp be the full subcategory of mod B consisting of projective modules @ such
that P is not a direct summand of Q.



(2) We define an ideal Zp of mod B and the factor category mod” B := mod B/Zp of
mod B by setting

Ip(X,Y) :={f € Homp(X,Y) |f factors through an object in Pp},

and set

Homp(X,Y) := Homp(X,Y)/Zp(X,Y)
for all X|Y € mod B. Let Q mod B — mod” B be the canonical functor. Thus X = X
for all X € (mod B)y and f = f +Zp(X,Y) for all f € Homp(X,Y).

supp(sp) :={X € (I'p)o | sp(X) # 0} € (I'p)o
where the map sp : (U)o — Zso is defined by sp(X) := dim Homb(P, X) (X € (I'p)o)
for all P € (T'p)o.
The easier way to compute ¢/ is given by the following three statements, which we state
without proofs.

Lemma 3.23. Let QQ and X be in mod B. If Q) is projective and there is an epimorphism
Q — X, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If f : X — top P is nonzero in mod B, then f # 0.
Proposition 3.25. Let P be a projective indecomposable A-module. Then we have
max supp(sp) = top P.
Thus V'(P) = max supp(sp).
Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q) the injective hull of S in mod B. Then
the left (mod B )-module Homp(S,-) has a simple socle, and

soc ﬁgr/nB(S, —) = ﬁgr/ng(rad Q, 7)/riavd(rad Q,—).

It follows by the lemma above that the poset supp(ss) has the maximum element for
each simple A-module S. We then set v5(S) to be the maximum element. The following
is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B.
Then we have vp(S) = rad Q.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let P be a complete set of representatives of isoclass of indecomposable
projective A-modules. Then we have

Cg =vp(V'(P)).
Hence as is stated before, C, is obtained as follows.
Theorem 3.29.
Ca = C4/(9) = (1720 (C))/(¢) = (T""2avpV/(P))/(9)-
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ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY
GROUP OF A MONOMIAL ALGEBRA SATISFYING A
SEPARABILITY CONDITION

AYAKO ITABA, TAKAHIKO FURUYA AND KATSUNORI SANADA

ABSTRACT. This paper is based on [14]. In this paper, we consider the finite connected
quiver Q having two subquivers QY and Q® with @ = QMWuUQE® = (le) UQE)Z)., le) U
ng). Suppose that Q® is not a subquiver of Q) where {7, j} = {1,2}. For a monomial
algebra A = kQ/I obtained by the quiver @, when the set AP(n) (n > 0) of overlaps
constructed inductively by linking generators of I satisfies a certain separability condi-
tion, we propose the method so that we easily construct a minimal projective resolution
of A as a right A°~-module and calculate the Hochschild cohomology group of A.

Key Words: Monomial algebra, associated sequence of path, Hochschild cohomology,
path algebra.

2010 Mathematics Subject Classification: 16E40, 16G20.

1. INTRODUCTION

For a finite-dimensional algebra A over a field k, the Hochschild cohomology groups
HH"(A) of A is defined by

HH"(A) := Ext’i.(A, 4) (n > 0),

where A®:=A°? @, A is the enveloping algebra of A. Note that there is a natural one to
one correspondence between the family of A-A-bimodules and that of right A®-modules.
Moreover, the Hochschild cohomology rings HH*(A) of A is the graded algebra defined by

HH"(A) := Ext’.(4, A) = @) Ext/yo(4, A)
i>0
with the Yoneda product.

The low-dimensional Hochschild cohomology groups are described as follows:

e HH’(A) = Z(A) is the center of A.

e HH'(A) is the space of derivations modulo the inner derivations. A derivation is
a k-linear map f : A — A such that f(ab) = af(b) + f(a)b for all a,b € A. A
derivation f : A — A is an inner derivation if there is some z € A such that
f(a) = ax — za for all a € A.

One important property of Hochschild cohomology is its invariance under Morita equiv-
alence, stable equivalence of Morita type and derived equivalence.

The detailed version of this paper has been submitted for publication elsewhere.



Let k be an algebraically closed field and @ a finite connected quiver. Then k() denotes
the path algebra of @Q over k in this paper. Let I be an admissible ideal of kQ. If I is gen-
erated by a finite number of paths in @, then [ is called a monomial ideal and A := kQ/I a
monomial algebra. For a finite-dimensional monomial algebra A = k@Q/I, using a certain
set AP(n) of overlaps constructed inductively by linking generators of I, Bardzell gave a
minimal projective A°-resolution (P, @) of A in [3] (so called Bardzell’s resolution). By
using Bardzell’s resolution, the Hochschild cohomology of monomial algebras are studied
in the following papers [11], [12], [9], etc.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional
algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can
we use calculations of the Hochschild cohomology groups of quiver algebras obtained by
subquivers of the original quiver?

In this paper, for a finite-dimensional monomial algebra A, we propose a method so that
we easily calculate the Hochschild cohomology groups of A under some conditions. Let )
be a finite connected quiver and Q@ (i = 1,2) a subquiver of @ such that Q = QMuUQ® =
(Q(()l) U Q(()z), Q" UQY). Let 1 = (X) (vesp. I® = (Y')) be a monomial ideal of kQ"
(resp. kQ®) for X (resp. Y) a set of paths of kQM) (resp. kQ®)) and I = (X,Y) a
monomial ideal of kQ. We assume that [ and I (i = 1,2) are admissible ideals. Then
we define A = kQ/I, Agy = kQW/IM and A = kQ®/I®. Hence A and A are
finite-dimensional monomial algebras for ¢ = 1,2. For the monomial algebra A, under a
separability condition (i.e. le) N Q?) = @), we investigate the minimal projective A°-
module resolution of A given by Bardzell ([3]). Moreover, under an additional condition,
we show that, for n > 2, the Hochschild cohomology group HH"(A) of A is isomorphic to
the direct sum of the Hochschild cohomology groups HH"(A(y)) and HH"(A(y)).

Throughout this paper, for all arrows a of @), we denote the origin of a by o(a) and the
terminus of a by t(a). Also, for simplicity, we denote ®; by ®.

2. THE SET AP(n) OF OVERLAPS AND BARDZELL’'S RESOLUTION

2.1. The set AP(n) of overlaps. In this section, following [3] and [11], we will summa-
rize the definition of the set AP(n) (n > 0) of overlaps.

Definition 1. A path ¢ € kQ overlaps a path p € kQ with overlap pu if there exist u, v
such that pu = vg and 1 < I(u) < I(gq), where I(z) denotes the length of a path = € kQ.

Note that we allow I(z) = 0 here.
¢

¥4
A path ¢ properly overlaps a path p with overlap pu if ¢ overlaps p and I(v) > 1.

Let A = kQ/I be a finite-dimensional monomial algebra where I = (p) has a minimal
set of generators p of paths of length at least 2.

Definition 2. For n =0, 1,2, we set
e AP(0) := Qo =(the set of all vertices of Q);



e AP(1) := Q1 =(the set of all arrows of Q);

e AP(2) :=p.
For n > 3, we define the set AP(n) of all overlaps R" formed in the following way: We
say that R? € AP(2) maximally overlaps R"~' € AP(n — 1) with overlap R" = R" ' if
(1) R*~! = R"2p for some path p and R"~2 € AP(n — 2);
(2) R? overlap p with overlap pu;
(3) there is no element of AP(2) which overlaps p with overlap being a proper prefix of

pu.

The construction of the paths in AP(n) may be illustrated with the following picture
of R™:

nr 2
In short, overlaps are constructed by linking generators of an admissible monomial ideal
I. A sequence of those generators of I is called the associated sequence of paths ([10]).

2.2. Bardzell’s resolution. For a monomial algebra A = kQ/I, by using the set AP(n),
Bardzell determined a minimal projective A°-resolution (P, ¢.) of A in [3].

Definition 3. Let (F.,, ¢s) be the minimal projective A®- resolution of A in [3]. Then, for
n > 0, we set
P,= J[ AMo(R") ®t(R"A.
R"e€AP(n)
From [3], if R***" € AP(2n + 1), then there uniquely exist R;", RY" € AP(2n) and
some paths a;, by such that R***' = R¥"a; = by R}

R2n+l
R;%" o
be Ry
For even degree elements R?® € AP(2n), there exist r > 1, R?"~' € AP(2n — 1) and
paths p;, ¢ for [ = 1,2,...,r such that R* = pyRZ" 'q, = --- = p,R?" "¢,
R'/n
P nr! [
Pr Rt ar

Remark 4. Note that o(R}") ® a; € Ao(R3") ® t(R¥")A and b, @ t(R") € Ao(R}")®
t(RZ")A. Also, note that p; ® ¢ € Ao(R™ ™) @ t(R"1)A.



Definition 5. The map ¢ony1 : Panyr —> Pay is given as follows. If R**™ = R"q;
= bR € AP(2n + 1), then

o( R @ t(R*™ ) —s O(R?n) ® a; — by @ t(R™).

The map ¢y, : P, — Py,_1 is given as follows. If R*" = p,R}" 'q; = --- = p,R*" ¢,
then

O(RZn) ® t(Rzn) — Zpl (%9 qr.
=1
The following result is the main theorem in [3].
Bardzell’s Theorem ([3, Theorem 4.1]) Let @ be a finite quiver, and suppose that
A = kQ/I is a monomial algebra with an admissible ideal I. Then the sequence

e NN ANy - NN N

is a minimal projective resolution of A as a right A®-module, where 7 is the multiplication
map.

3. THE DECOMPOSITION OF HOCHSCHILD COHOMOLOGY GROUPS

We recall our setting.
«Q=QMuQ,
e /) = (X) be a monomial ideal generated by X a set of paths of QM)
o [ = (Y) a monomial ideal generated by Y a set of paths of EQ®@,
e [ = (X,Y) a monomial ideal of k@,
o A=kQ/I, Ayy = kQW/IW, Ay = kQ® /I?): finite-dimensional algebras,
e AP(2):=XUY, APW(2) := X, AP?(2) =Y.
Then, as in the definition of AP(n) of overlaps, we define APM (n), AP (n). Moreover,
we define projective A°-modules as follows:

PO = [ Ao(R")®tR"A,
RreAP()(n)

PP = [ Ao(R")®tR")A,
RreAP®)(n)

P,= J[ Ao(R")®tR"A.
RM€AP(n)

To prove our main result, we need the following lemma. As mentioned in Introduction,
we consider the separability condition APM(1)N AP®(1) = @.

Lemma 6. Let i € {1,2}. If we assume APM (1) N APP(1) = @, then we have the
following:
(a) For alln > 1, AP(n) = APW(n) U AP®(n).

(b) For alln > 1, APM)(n)N AP®(n) = 2.



(c) Let n > 1 and p" € AP(n). Then R™ is a path of kQY if and only if R* €
AP (n).

By Bardzell’s Theorem and Lemma 6, we have the following proposition.

Proposition 7. ([14, Proposition 3.2]) If the condition le) N Q(Z) & holds, then, in
the following minimal projective resolution of A:

S P P, S s 2P PO Py T A — 0,

foranyn > 1, P, is isomorphic to P(l)@P(Q) as right A®-modules and ¢, 11 = QS(l)l@ngﬁi)_l,
where ¢7(f)+1 : P,(l’ll — Py (i = 1,2) is the restriction of ¢ny1-

Remark 8. For i = 1,2, b, € Awo(R"), a; € t(RF") A, p € A(i)o(RQ-"H) and ¢ €
HRZ YAy actually hold. So, for n > 1, ¢ sends [[pnsieapo Ynrn) Apo(R™H@
tR") A t0 [T greapt (ny Awo(R™) @t(R")Agy (not just to [ zne ap Ao(R”)@t(R”)A)
Therefore, (I]gneapw(n) A(,)O(RT) ® t(R")Apy; ¢n+1)n21 is exactly a part of degree n > 1

for the minimal projective resolution of Ay (i = 1,2).

The following theorem is our main result.

Theorem 9. ([14, Theorem 3.3]) If the condition le) N Q?) = & holds and, for each
i=1,2, o( R")At(R™) = o( R")Ayt(R"™) holds for any n > 1 and any R™ € APY(n), then
we have the direct sum decomposition of Hochschild cohomology groups

HH"(A) =2 HH"(Aq)) @ HH"(A(2))
for any n > 2.

Remark 10. For n = 0, 1, the above equation fails in general (see Example 14 for the case
n=1).

If Qg,l) N Q(()Q) = {vg} and vgAvg = kv, then we have le) Q(g) @. Also, by Lemma
6 and Theorem 9, we have the following corollary.

Corollary 11. ([14, Corollary 3.4]) In the case Q(()l) N QgZ) = {w} and voAvy = kv, we
have the direct sum decomposition of the Hochschild cohomology groups

HH"(A) = HH" (A1) & HH"(A(2))
for any n > 2.

Remark 12. Hence, for a finite dimensional monomial algebra obtained by linking some
quivers bound by monomial relations successively, we can also decompose the Hochschild
cohomology groups as in Corollary 11.



4. EXAMPLES

In this section, we give two examples of monomial algebras satisfying the condition
APH(1) N APA(1) = 2.

Example 13. Let @) be a quiver

a2 UIZ\

2 (3
a\]\ /; |
Vo

an/‘ ‘\hn,

!
Un-1 Upi_;

n— bnr,
S N

Up—2 . ! _9
Un—2 Upr o 2 .
bound by
I :<a1a2 Oy, 2043 0 Qs - vy ApQ1 0 A—ppmt-1,

biba -+ by babs - b1y - by b i)
for any integers m, m’ > 2 with m < n and m’ < n’. We set the algebra A = kQ/I. Let

QW be the subquiver of Q bound by IV = (ayay - - - Gy, 2a3 - Apg1, - -, A1 -+ g1
and Q® be the subquiver of @ bound by I® = (byby-- by, bobg byt ..., bub

e b i), where QY N QMY = {vo} and Q1Y N QP = @, We set Ay = kQW /1)

) !
L vz \ Vg 7
T as a ) 1 b by
U1 vy 2
a\ /;1
Q(l) Vg Q(Z) - Up
Iy / ‘\bn,
Un—1 1);’71
an,l/4 %,71 .
e Up—9
o VUp—2 U;Lr, bn’72__

for ¢ = 1,2. Then the condition of Corollary 11 is satisfied. Applying Corollary 11,
we obtain the direct sum decomposition of the Hochschild cohomology groups HH"(A) =
HH"(Aq))®HH"(A(g)) for any n > 2. Also, since A (i = 1,2) is a self-injective Nakayama
algebra, we know the dimension of HH"(A;) from [5, Propositions 4.4, 5.3] for i = 1,2,
and so we have the dimension of HH"(A) by the decomposition above.

Example 14. Let () be a quiver



//\Y
\\//

bound by I = (aag, asa3, azaq, asay, bibse, babs, byby, byb1). We set the algebra A = kQ/I.
Let Q) be the subquiver of @ bound by IV = (aas, asas, asay,asa;) and Q) be the
subquiver of Q bound by ) = (b1bg, bobs, bsby, byby), where Qél) N Q(()l) = {vg,v1} and
Qe =

We set A(l) = kQ ) /10 for i = 1,2. Then APW(1) N AP®) (1) = & holds and for each
i =1,2, o( R")At(R") = o( R")A;t(R") holds for any n > 1 and any R" € APY(n). Ap-
plying Theorem 9, we obtain the direct sum decomposition of the Hochschild cohomology
groups HH"(A) = HH"(A(y)) @ HH"(A(9)) for any n > 2.

Vg Vg
an b4
QW vy vy QP . vh g

(£ b2
a3 b3

(2 (A

On the other hand, by direct computations, we have dimy HHl(A) = 3 and dimy
HH'(A¢;)) =1 (i = 1,2). Hence the above decomposition does not hold for n = 1.
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DUALITIES IN STABLE CATEGORIES

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. We provide a sufficient condition for a left and right noetherian ring A to
have finite selfinjective dimension on one side and, as a corollary to it, we also provide
a necessary and sufficient condition for A to have finite selfinjective dimension on both
sides.

Let A be a left and right coherent ring. We denote by Mod-A the category of right
A-modules and by mod-A the full subcategory of Mod-A consisting of finitely presented
right A-modules. We consider left A-modules as right A°°-modules, where A°P denotes
the opposite ring of A. For each n > 0 we denote by G7% the full subcategory of mod-A
consisting of X € mod-A with Ext’,(X, A) = 0 for 1 <4 < n and, for convenience’s sake,
we set G4 = mod-A. We set Cy = @ E4(S), where S runs over the non-isomorphic simple
modules in Mod-A. Such a module C'4 is unique up to isomorphism and called a minimal
cogenerator for Mod-A. Extending [9, Lemma A] to coherent rings, we showed in [5] that
if flat dim C'yor < 00 and flat dim C'y < oo then flat dim C'yop = flat dim C'4.

In this note, we first show that for any n > 0 we have flat dim Cyep = flat dim Cy < n
if and only if for any X € mod-A there exists an exact sequence 0 - 7 - Y — X — 0
in mod-A with Y Gorenstein projective and proj dim Z <n — 1.

Next, we provide a condition which implies flat dim Cae0 < n. It is obvious that Cep
is flat if and only if G4 = G. Since for any X € mod-A there exists an exact sequence
0= Z —=Y — X — 0in mod-A with Y € G} and Z projective, it follows that
flat dim Cyop < 1 if and only if G} = G%. So, in the following, we assume n > 2.

We denote by D(—) both RHom% (—, A) and RHom®%.,(—, A). Our main theorem states
that flat dim Cuer < 7 if the following three conditions are satisfied: (a) G% = G4 (b)
H'(Do’,, (0<n(DX))) = 0 for all X € G4 2 and i < —2; (c) for any X € mod-A
there exists an exact sequence 0 — Z — Y — X — 0 in mod-A with Y € G} % and
proj dim Z < n — 1. In the above, the condition (¢) is always satisfied for n = 2 and 3.
Also, as a corollary to this theorem, we show that flat dim C'sop = flat dim Cy < n if
and only if the following three conditions are satisfied: (a) G consists only of Gorenstein
projectives; (b) H'(Do%, (0<,(DX))) = 0 for all X € G%2? and i < —2; (c) for any
X € mod-A there exists an exact sequence 0 — Z — Y — X — 0 in mod-A with
Y € G4 % and proj dim Z < n — 1.

The detailed version of this paper will be submitted for publication elsewhere.



1. STABLE MODULE THEORY

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by P4 the full
subcategory of mod-A consisting of projective modules. We denote by A°P the oppo-
site ring of A and consider left A-modules as right A°°-modules. In particular, we de-
note by Homu(—, —) (resp., Hom e (—, —)) the set of homomorphisms in Mod-A (resp.,
Mod-A°P).

In this note, complexes are cochain complexes and modules are considered as complexes
concentrated in degree zero. We denote by X(Mod-A) the homotopy category of com-
plexes over Mod-A, by K~ (Py4) the full triangulated subcategory of K(Mod-A) consisting
of bounded above complexes over P4 and by K~*(P,4) the full triangulated subcategory
of X~ (Pa) consisting of complexes with bounded cohomology. We denote by D(Mod-A)
the derived category of complexes over Mod-A. Also, we denote by Hom%(—, —) the
associated single complex of the double hom complex and by RHom?%(—, A) the right
derived functor of Hom%(—, A). We refer to [2], [4] and [8] for basic results in the theory
of derived categories.

Definition 1. For a complex X* and an integer n € Z, we denote by Z"(X*), Z"(X*)
and H"(X*) the nth cycle, the nth cocycle and the nth cohomology, respectively, and
define the following truncations:

Oan(X®) i 5 X2 5 X7 5 ZM(X®) 50— -

0Ly (X®)ie = 0= ZM(X®) — XM X

Note that for each n € Z we have additive functors
0<n(—),0%,(—) : D(Mod-A) — D(Mod-A)

which are not exact.

Definition 2 ([3]). A module X € Mod-A is said to be coherent if it is finitely generated
and every finitely generated submodule of it is finitely presented. A ring A is said to be
left (resp., right) coherent if it is coherent as a left (resp., right) A-module.

Throughout the rest of this note, A is assumed to be a left and right coherent ring. Note
that mod-A consists of coherent modules and is a thick abelian subcategory of Mod-A in
the sense of [4].

We denote by DP(mod-A) the full triangulated subcategory of D(Mod-A) consisting
of complexes over mod-A with bounded cohomology. Note that the canonical func-
tor X(Mod-A) — D(Mod-A) gives rise to an equivalence of triangulated categories
K=P(Pa) = D"(mod-A).

We denote by D(—) both RHom%(—, A) and RHom%.,(—, A). There exists a bifunc-
torial isomorphism

eM‘,X' : HomD(Mod-AOP)(M.7 DX.) :) Hom@(Mod_A)(X', DM.)
for X* € D(Mod-A) and M* € D(Mod-A°P). For each X* € D(Mod-A) we set
Nxs = Opxe xe(idpxe) : X* — D*X* = D(DX*).



Definition 3 ([1] and [7]). A complex X* € DP(mod-A) is said to have finite Goren-
stein dimension if DX* € DP(mod-A°) and if nx. is an isomorphism. We denote by
DP(mod-A)¢qq the full triangulated subcategory of DP(mod-A) consisting of complexes of
finite Gorenstein dimension.
For a module X € D"(mod-A)iqq, we set
G-dim X = sup{ i >0 | Ext’,(X, 4) # 0}

if X # 0, and G-dim X = 0 if X = 0. Also, we set G-dim X = oo for a module
X € mod-A with X ¢ D(mod-A)sqq. Then G-dim X is called the Gorenstein dimension
of X € mod-A. A module X € mod-A is said to be Gorenstein projective if it has
Gorenstein dimension zero.

Note that a module X € mod-A is Gorenstein projective if and only if it is reflexive,
i.e., the canonical homomorphism

X — Homgor (Homa (X, A), A),z — (f — f(x))
is an isomorphism and Ext’y(X, A) = Ext’yo, (Hom (X, A), A) = 0 for i # 0.

Definition 4. For each X € mod-A, taking a projective resolution P* — X in mod-A,
we set Q"X = Z'7"(P*) for n > 0 and TrX = Z"'(Hom%(P*, 4)).

We denote by mod-A the residue category mod-A/P4 and by Hom 4(—, —) the mor-
phism set in mod-A. Then we have additive functors

Tr : mod-A — mod-A°® and Q" :mod-A — mod-A
for n > 0. We set Q = Q. Then Q7 is the nth power of Q for n > 0.

Proposition 5. For any n > 0 there exists a bifunctorial isomorphism
Hom o, (Tr(Q"X), M) = Hom ,(Tr(Q"M), X)
for X € mod-A and M € mod-A°P.

For each n > 0 we denote by G the full subcategory of mod-A consisting of X € mod-A
with Ext’y(X, A) =0 for 1 < i < n and, for convenience’s sake, we set G4 = mod-A.

Corollary 6 (cf. [6, Proposition 1.1.1]). For any n > 0 the pair of functors
TroQ": G4 /Pa— Ghop/Pacr and TroQ": Glhop/Pace — G4/ Pa
defines a duality.

Lemma 7. For any n > 0 the following are equivalent.

(1) g5 =gi™.
(2) Glhop comsists only of torsionless modules.

Lemma 8. For anyn > 1 and X € mod-A the following are equivalent.
(1) G-dim X <n.
(2) There exists an exact sequence 0 — Z — Y — X — 0 inmod-A with Y Gorenstein
projective and proj dim Z < n — 1.

Lemma 9. For any X € mod-A there exists an exact sequence 0 > Z —-Y — X = 0
in mod-A with Y € GY and Z € Pa.



2. APPLICATIONS

In the following, we denote by E4(—) an injective envelope of a module in Mod-A and
set Cy = @ E4(S), where S runs over the non-isomorphic simple modules in Mod-A.
Such a module Cy is unique up to isomorphism and called a minimal cogenerator for
Mod-A. We have seen in [5] that if flat dim Cuer < oo and flat dim C'y < oo then
flat dim Cyop = flat dim Cy.

According to Lemma 8, [5, Theorem 3.6] implies the following.

Proposition 10. For any n > 0 the following are equivalent.
(1) flat dim Cyer = flat dim Cy < n.
(2) For any X € mod-A there exists an exact sequence 0 = Z —Y — X — 0 in
mod-A with Y Gorenstein projective and proj dim Z <mn — 1.

Remark 11. For any n > 0, flat dim C4er < n if and only if Ext”™(—, A) vanishes on
mod-A. In particular, Cyes is flat if and only if GY = G}. Also, Lemma 9 implies that
flat dim Cyop < 1 if and only if G} = G3.

Throughout the rest of this note, we fix an integer n > 2.

Theorem 12. We have flat dim Caop < n if the following three conditions are satisfied:
(a) G4 = G5
(b) H(Dd%,, 1(0<n(DX))) =0 for all X € G % andi < —2;
(c) for any X € mod-A there exists an exact sequence 0 — Z =Y — X — 0 in
mod-A withY € 92_2 and pd Z <n—1.

In the above, the condition (c) is trivially satisfied if n = 2. Also, it follows by Lemma
9 that the condition (c) is satisfied for n = 3.

Corollary 13. We have flat dim Cyop = flat dim Cy < n if and only if the following
three conditions are satisfied:

(a) G consists only of Gorenstein projectives;

(b) H(Do%,,_(0<,(DX))) =0 for all X € G4 ? and i < —2;

(c) for any X € mod-A there exists an ezact sequence 0 — Z — Y — X — 0 in
mod-A with' Y € Qz_z and pd Z <n —1.
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BRAUER INDECOMPOSABILITY OF SCOTT MODULES

HIROKI ISHIOKA

ABSTRACT. Let p be a prime number and k an algebraically closed field of characteristic
p. Let G be a finite group and P a p-subgroup of G. In this article, we study the
relationship between the fusion system Fp(G) and the Brauer indecomposability of the
Scott kG-module in the case that P is not necessarily abelian. We give an equivalent
condition for the Scott kG-module with vertex P to be Brauer indecomposable.

1. INTRODUCTION

Let p be a prime number, G a finite group, and k an algebraically closed field of prime
characteristic p. For a kG-module M and a p-subgroup @ of G, we denote by M(Q) the
Brauer quotient of M with respect to Q. The Brauer quotient M (Q) has naturally the
structure of a kNg(Q)-module.

Definition 1. A kG-module M is said to be Brauer indecomposable if M (Q) is indecom-
posable or zero as a kQCq(Q)-module for any p-subgroup @ of G.

Brauer indecomposability of p-permutation modules is important for constructing stable
equivalences of Morita type between blocks of finite groups (see [2]).

Let P be a p-subgroup of G. We denote by Fp(G) the fusion system of G over P.
In [1], a relationship between fusion system Fp(G) and Brauer indecomposability of p-
permutation modules with vertex P was given. One of the main result in [1] is the
following.

Theorem 2 ([1, Theorem 1.1]). Let P be a p-subgroup of G and M an indecomposable
p-permutation kG-module with vertex P. If M is Brauer indecomposable, then Fp(G) is
a saturated fusion system.

In the special case that P is abelian and M is the Scott kG-module S(G, P), the
converse of the above theorem holds.

Theorem 3 ([1, Theorem 1.2]). Let P be an abelian p-subgroup of G. If Fp(G) is
saturated, then S(G, P) is Brauer indecomposable.

In general, the above theorem does not hold for non-abelian P. However, there are
some cases in which the Scott kG-module S(G, P) is Brauer indecomposable, even if P is
not necessarily abelian.

We study the condition that S(G, P) to be Brauer indecomposable where P is not
necessarily abelian. The following result gives an equivalent condition for Scott kG-
module with vertex P to be Brauer indecomposable.

The detailed version of this paper will be submitted for publication elsewhere.



Theorem 4. Let G be a finite group and P a p-subgroup of G. Suppose that M = S(G, P)
and that Fp(G) is saturated. Then the following are equivalent.

(i) M is Brauer indecomposable.

(ii) For each fully normalized subgroup @ of P, the module Resggg%)S(Ng(Q), Np(Q))
1s indecomposable.

If these conditions are satisfied, then M(Q) = S(Ng(Q), Np(Q)) for each fully normalized
subgroup @ < P.

The following theorem shows that Resgggé))s (N¢(Q), Np(Q)) is indecomposable if @
satisfies some conditions.

Theorem 5. Let G be a finite group, P a p-subgroup of G and Q a fully normalized
subgroup of P. Suppose that Fp(G) is saturated. Moreover, we assume that there is a
subgroup Hg of Na(Q) satisfying following two conditions:

(i) Np(Q) € Syl,(Hg)
(i) [Na(Q) : Hol = p* (a = 0)

Then Resgggg)g))S(Ng(Q), Np(Q)) is indecomposable.

The following is a consequence of above two theorems.

Corollary 6. Let G be a finite group and P a p-subgroup of G. Suppose that Fp(G) is
saturated. If for every fully normalized subgroup Q of P there is a subgroup Hg of Na(Q)
satisfies the conditions of 5, then S(G, P) is Brauer indecomposable.

Throughout this article, we denote by L Ng H the set {7L N H | g € G} for subgroups
L and K of G.
2. PRELIMINARIES

2.1. Scott modules. First, We recall the definition of Scott modules and some of its
properties:

Definition 7. For a subgroup H of G, the Scott kG-module S(G, H) with respect to H
is the unique indecomposable summand of Indng that contains the trivial kG-module.

If P is a Sylow p-subgroup of H, then S(G, H) is isomorphic to S(G, P). By definition,
the Scott kG-module S(G, P) is a p-permutation kG-module.
By Green’s indecomposability criterion, the following result holds.

Lemma 8. Let H be a subgroup of G such that |G : H| = p*(for some a > 0). Then
Indng 1s indecomposable. In particular, we have that

S(G, H) = Ind$.

Hence, for p-subgroup P of G, if there is a subgroup H of G such that P is a Sylow
p-subgroup of H and |G : H| = p“, then we have that

S(G, P) =2 IndSky.

The following theorem gives us information of restrictions of Scott modules.



Theorem 9 ([3, Theorem 1.7]). Let H be a subgroup of G and P a p-subgroup of G. If
Q 1is a mazimal element of P Ng H, then S(H, Q) is a direct summand of RCS%S(G, P).

2.2. Brauer quotients. Let M be a kG-module and H a subgroup of G. Let M be
the set of H-fixed elements in M. For subgroups L of H, we denote by Trg the trace map
Tri . MY — MY, Brauer quotients are defined as follows.

Definition 10. Let M be a kG-module. For a p-subgroup @ of G, the Brauer quotient
of M with respect to @) is the k-vector space

M(Q) = M?/(Y | TF(M™)).
R<Q
This k-vector space has a natural structure of kNg(Q)-module.
Proposition 11. Let P be a p-subgroup of G and M = S(G,P). Then M(P) =
Proposition 12. Let M be an indecomposable p-permutation kG-module with vertex P.
Let Q be a p-subgroup of G. Then Q <g P if and only if M(Q) # 0.

2.3. Fusion systems. For a p-subgroup P of G, the fusion system Fp(G) of G over P is
the category whose objects are the subgroups of P, and whose morphisms are the group
homomorphisms induced by conjugation in G.
Definition 13. Let P be a p-subgroup of G
(i) A subgroup @ of P is said to be fully normalized in Fp(G) if |[Np(*Q)| < |Np(Q)]
for all z € G such that *Q < P.
(ii) A subgroup @ of P is said to be fully automized in Fp(G) if p 1 |Ng(Q) :

Np(Q)Ca(Q)]-
(iii) A subgroup @ of P is said to be receptive in Fp(G) if it has the following property:
for each R < P and ¢ € Isor, ) (R, Q), if we set

N, :={g9 € Np(Q) | 3h € Np(R),cg0 9 =g@ocy},
then there is € Homz, (¢ (N, P) such that @ |g= ¢.
Saturated fusion systems are defined as follows.

Definition 14. Let P be a p-subgroup of G. The fusion system Fp(G) is saturated if
the following two conditions are satisfied:

(i) P is fully normalized in Fp(G).
(ii) For each subgroup @ of P, if @ is fully normalized in Fp(G), then Q is receptive
in Fp(G).

For example, if P is a Sylow p-subgroup of G, then Fp(G) is saturated.
3. SKETCH OF PROOF
In this section, let P be a p-subgroup of G and M the Scott module S(G, P).

Lemma 15. If Q < P is fully normalized in Fp(G), then Np(Q) is a mazimal element
of PNg Nea(Q).



By above lemma, we can show that S(Ng(Q), Np(Q)) is a direct summand of M(Q)
for each fully normalized subgroup @ of P. Therefore, we have that Theorem 4 (i) implies
4 (ii).

Assume that Theorem 4 (ii) holds. We prove that Resggé?({?)(M (Q)) is indecomposable
for each @ < P by induction on |P : Q|. Without loss of generality, we can assume that
Q is fully normalized. If M(Q) is decomposable, then by the following lemma, we can
show that there is a subgroup R such that @ < R < P and Resggg&) is decomposable,

this contradicts the induction hypothesis.

Lemma 16. Suppose that a subgroup Q of P is fully automized and receptive. Then for
any g € G such that Q < 9P, we have that Nop(Q) <ng @) Np(Q).

Hence, M(Q) is indecomposable, and isomorphic to S(Ng (@), Np(Q)). Consequently,
Theorem 4 (ii) implies 4 (i).
Theorem 5 is proved by using properties of Scott modules and the following lemma.

Lemma 17. If Q s fully automized subgroup of P, and there is a subgroup Hoy < N (Q)
containing Np(Q) such that |N(Q) : Hg| = p°, then Cq(Q)Hg = Na(Q).

4. EXAMPLE
We set p = 2 and
G = (a,z,y |a* =2* = ¢, =,
raxr = a ' ay = ya,xy = yz),
P = (a,zy).

Then G is a finite group of order 16, and P is isomorphic to the quaternion group of order
8. Hence, P is a non-abelian p-subgroup of G. One can easily show that G and P satisfy
the hypothesis of the Corollary 6. Therefore, S(G, P) is Brauer indecomposable.
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NOTES ON THE HOCHSCHILD HOMOLOGY DIMENSION AND
TRUNCATED CYCLES

TOMOHIRO ITAGAKI AND KATSUNORI SANADA

ABSTRACT. In this paper, we show that if an algebra KQ/I with an ideal I of KQ
contained in R{ for an integer m > 2 has an m-truncated cycle, then this algebra has
infinitely many nonzero Hochschild homology groups, where Ry denotes the arrow ideal.
Consequently, such an algebra of finite global dimension has no m-truncated cycles and
satisfies an m-truncated cycles version of the no loops conjecture.

1. INTRODUCTION

In [8], Happel remarks that if all the higher Hochschild cohomology groups vanish for
a finite dimensional algebra, then does the algebra have finite global dimension? This is
called “Happel’s question”. It is shown in [3] that this does not hold in general.

On the other hand, in [7], Han conjectures the homology version of Happel’s question,
that is, if all the higher Hochschild homology groups of a finite dimensional algebra vanish,
then is the algebra of finite global dimension? Moreover, he shows that the counter
example of Happel’s question in [3] satisfies Han’s conjecture in [7].

In [4], Han’s conjecture is approached with focusing on the combinatorics of quiv-
ers of algebras. Specifically, it is shown that all algebras having a 2-truncated cycle in
which the product of two consecutive arrows is always zero, have infinitely many nonzero
Hochschild homology groups. Consequently, 2-truncated cycles version of the well-known
“no loops conjecture”holds: algebras of finite global dimension have no 2-truncated cy-
cles. In addition, for arbitrary integer m > 2, an m-truncated cycles version of the “no
loops conjecture”is conjectured. In particular, it is shown that monomial algebras satisfy
an m-truncated cycles version of the “no loops conjecture”. For finite dimensional ele-
mentary algebras, in [9], it is shown that the no loops conjecture can be derived from an
earlier result of Lenzing in [12] (cf. [10]).

In this paper, we show the following assertion: Let K be a field, @) a finite quiver,
Rg the arrow ideal of KQ and m > 2 a positive integer. If an algebra K@ /I with an
ideal I C K@ contained in Rf has an m-truncated cycle, then KQ /I has infinitely many
nonzero Hochschild homology groups (Theorem 6). Consequently, in the case I is an
admissible ideal of K@) which is contained in Rg, then KQ/I satisfies an m-truncated
cycles version of the “no loops conjecture”. That is, if K@ /I has finite global dimension,
then it contains no m-truncated cycles (Corollary 7). This result generalizes the result
[4, Corollary 3.3].

The detailed version of this paper has been published in Archiv der Mathematik.



2. PRELIMINARIES

Let K be a commutative ring and A a unital K-algebra. Thus, there exists a nonzero
ring homomorphism K — A, whose image is contained in the center of A. We assume
that A is finitely generated as a K-module. Throughout the paper, ® denotes ®x for the
sake of simplicity.

For each n > 1, we denote the n-fold tensor product A ® -+ ® A of A over K by A®"
and the enveloping algebra of A by A°.

Definition 1 ([13]). The Hochschild complex is the following complex:
o M@AT B MeATTT S S @A S e AD M,
where M is a left A°-module, the module M ® A®" is in degree n, and the map b :
M @ A®" — M @ A®"! is given by the formula
@@ - ®ay) =201 Qay® -+ @ ay

n—1
+ Z(—l)i(x Ra Q@ Qa1 @ ®ay) + (—1)"apx @ a1 @+ @ ap_1.
=1

The n-th Hochschild homology group HH, (A, M) of A with coefficients in the left A°-
module M is defined by the n-th homology group of the Hochschild complex above. In
particular, HH,(A, A) is simply called the n-th Hochschild homology group of A, which
is denoted by HH,,(A).

It is well known that if the unital K-algebra A is a projective K-module, then the
n-th Hochschild homology group HH,(A) is given by Tor? (A, A). Now we recall the
definition of the bar resolution of A.

Definition 2 ([13]). Let A be a unital K-algebra. The following resolution of the left
A°-module A denoted by CP* is called the bar resolution:

O e . L 0/ R )
where p is multiplication and b is defined by ¥'(ap ® -+ ® a,) = Z?;()l(—l)i(ao ® - ®
i1 @ - @ ay).

Let A and B be two K-algebras and suppose that f : A — B is a K-algebra homo-
morphism. Then f is a homomorphism of rings, the composition map of f and the map
K — A giving the K-algebra structure of A is equal to the map K — B giving the
K-algebra structure of B. This implies that bf®"+) = f&n therefore {f®"},cn is a
chain map between the Hochschild complex of A and the one of B. For each n > 0, this
map of Hochschild complexes induces a map f©™+Y) . HH, (A) — HH,(B) of Hochschild
homology groups. The following fact is the key of the main theorem in [4]: if we can
show that the image of HH,(A) — HH,(B) is nonzero, then this forces HH,(A) to be
nonzero. This fact is also important for our main theorem.

Finally, in [4], the Hochschild homology dimension of the algebra A is defined by

HHdim A = sup{n € Z| HH,,(A) # 0},

which is treated in the main theorem.



3. THE HOCHSCHILD HOMOLOGY OF TRUNCATED QUIVER ALGEBRAS

In this section, for a truncated quiver algebra we give elements in the complex, induced
by Skdéldberg’s projective resolution P, which correspond to nonzero homology classes.

Let @ = (Qo, @1, s,t) be a finite quiver. For an arrow « € @y, its source and target are
denoted by s(a) and t(a), respectively. A path in @ is a sequence of arrows ajag - - - ay,
such that #(a;) = s(ayy1) for i =1,...,n — 1. The set of all paths of length n is denoted
by Q.

For a path v of @, |y| denotes the length of v. A path + is said to be a cycle if |y| > 1
and its source and target coincide. The period of a cycle 7 is defined by the smallest
integer i such that v = §’ (j > 1) for a cycle § of length 4, which is denoted by per~y. A
cycle is said to be a basic cycle if the length of the cycle coincides with its period. It is also
called a proper cycle [7]. Denote by Q¢ (respectively QP) the set of cycles (respectively
basic cycles) of length n. Let G, = (g) be the cyclic group of order n and the path
Qg - 10y, a cycle where o is an arrow in (). Then we define the action of G,, on Q)
by g (aq+ p_100) = @y - ay_1, and Q% /G, denotes the set of all G,-orbits on
Q¢. Similarly, G, acts on Qb, and Qb /G, denotes the set of all G,-orbits on Q°. For
7y € Q5 /Gy, we denote by per ¥ the period of v, that is per ¥ := per+. For convenience
we use the notation Q5/Gy for the set of vertices Q.

Skoldberg gives an projective resolution P of a truncated quiver algebra A. Moreover,
by means of the complex €, EBﬁle sG; K5 given by the following isomorphism:

A@u P, 55 Ay KT S5 @ Ksn,
i YEQS/Gi
he gives the module structure of HH,(A), where the set T*) is given by

F(z) o Qcm if i =2¢c (C Z 0),
"] Qemg1 fi=2c+1(c>0).

In order to prove our main theorem, we investigate elements in A @ e I'*) which corre-
spond to nonzero homology classes.

Lemma 3. Let K be a field and A = KQ/RS a truncated quiver algebra. For an element
5 € Q%) Gem with v = a1+ (1, ..., 0em € Q1), the following elements correspond
to non-zero homology classes:

a(c—l)m+i+1 e acmal P ai71 ® ai - a(c—l)m+i = A ®KQ8 F((Cfl)erl)?
where d = ged(m,per¥) and i =1,2,...,d — 1.
Lemma 4. Let K be a field and A = KQ/ R a truncated quiver algebra. For an element

’7 € ng+e/Gcm+e(1 S € S m — 1) with Y= al"'achre(ala”-a Aeme S Q1)7 the
following element corresponds to a non-zero homology class:

Aem+1 " Oeme X Q- Qe € A ®KQ8 F(cm).

We note that there is the following chain map in [6], which we denote by 6. This chain
map 6 induces a quasi-isomorphism idy ® 0 : A ®4. C* — A® 4 Q, which we denote by
0 for the sake of simplicity.



A chain map 7 from Cibils’ projective resolution Q to P given in [1] induces a quasi-
isomorphism T = idy @ 7 : AR® e Q —> A® 4 P. We use the following composition map
of chain maps from the Hochschild complex to Skoldberg’s complex by &;

A & Ae Qn L A & pe (Cbar)n = A R e A®(n+2) <i A®(n+1)
lﬁ'
A@u Py = Ak KT S P Ko
i 5€Q5/G;

where 9 is given by ¥(ag @ -+ Q@ an) = ag @4 (1 Qa1 Q@ -+ R a, ® 1).

4. THE m-TRUNCATED CYCLES VERSION OF THE “NO LOOPS CONJECTURE”

Let K be a field, @) a finite quiver, R the arrow ideal of K'() and m > 2 a positive
integer. In this section, we show that if an algebra KQ/I with I C R has an m-
truncated cycle (see Definition 5), then the algebra has infinite Hochschild homology
dimension. Moreover, we show that the algebra satisfies an m-truncated cycles version of
the “no loops conjecture”.

IfI c R% is an ideal in the path algebra K@), then a finite sequence ay,...,a, of
arrows which satisfies the equations ¢(«;) = s(aip1) (1 =1,...,u— 1) and t(ay) = s(a1)
is called a cycle in KQ/I in [4].

Definition 5 ([4]). A cycle aq,...,a, in KQ/I is m-truncated for an integer m > 2 if
Qo Qigme1 =0 and o Qirm_o #0 in KQ/I
for all ¢, where the indices are modulo u.

By means of composition map ®, we have the following our main theorem by the Lemma
3 and 4.

Theorem 6. Let K be a field, Q a finite quiver and I C KQ an ideal contained in Rfy.
Suppose that KQ/I contains an m-truncated cycle ay, ..., o,. Then the following holds:
(i) Assume that ged (m,per (aq -+ ay)) # 1. For every n > 1 with un = 0 (mod m),
the element
Qe—1)m+2 " * " Cem @ Q] @ Qg * + + Oy, @ Q41
@ Qo Qo @ Qo1 @ -+ @ Ae—2)m+2 " " X(e—1)m X Ac—1)m+1,
where ¢ = un/m, represents a nonzero element in HHy._1(KQ/I).

(ii) Let e be an integer with 1 < e < m — 1. For every n > 1 with un = e (mod m), the
element

E Q2ct1+j1++jec " Xun
0<j1,- e Sm—2

Qay Qi @ Qo @ A3y 34y gy @ Qg @00
@ Qoc—14j 4 tjem1 " 2e—1tjr+otje O M2etjittier

where ¢ = (un — e)/m, represents a nonzero element in HHy.(KQ/T).



In particular, the Hochschild homology dimension HHdim (KQ/I) = oo.

Corollary 7. Let K be a field, Q a finite quiver and I an admissible ideal in KQ with
I C RE. If the algebra KQ/I has finite global dimension, then it contains no m-truncated
cycles.

Example 8. Let B be an algebra given by the quiver with relations:

(] 0]
() ar By
O/ :\O/ 5 Qi1 Qo = P13 = Byyag = 0,
Bafz0n = B33,
aﬁoﬂ!@\o

where the indices of «; are modulo 4 (1 < 4 < 4). Then B has the 3-truncated cycle
a1, g, (g, ay. By the Theorem 6, we have HHdim B = oco. Therefore, the global dimension
of B is infinite.
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ON A GENERALIZATION OF COMPLEXES AND THEIR DERIVED
CATEGORIES.

OSAMU IYAMA AND HIROYUKI MINAMOTO

ABSTRACT. When we want to understand the reason why the equation d*> = 0 has the
beautiful consequences, one way is to consider generalizations of it and research how its
properties vary. One natural candidate of a generalization is the notion of N-complex,
that is, gradeds object equipped with a morphism d of degree 1 such that d¥ = 0. This
was introduced by Kapranov [5] and Sarkaria [7] independently. Nowadays there is a
vast collection of literatures on the subject.
For an N-complex X, there are several cohomology functors. More precisely, for
1 <r < N —1, we define a cohomorogy functor to be
Hb) (X) = KcrEd" : X.’:% X N
Im[dN =" : Xi=N+r — X7
As a new feature, it is observed that there are several relations between these cohomology
functors [5, 1].
On the other hands, Iyama-Kato-Miyachi [4] construct and study the homotopy cate-
gory Kn (R), the derived category Dy (R) of N-complexes. They showed that the derived
category Dy (R) is equivalent as triangulated categories to the derived category (in the

ordinary sense) D(R ®x kA y_1). Inspired by their results, we introduce the notion of
A-complexes for a graded self-injective algebra A. We construct and study the homotopy
category, the derived category of and the cohomology functors. As a consequence, we
see that the relations between various cohomology functors of N-complexes comes from
representation theory of the graded algebra k[6]/(6V) with degk = 0,degd = 1.

1. N-coMPLEXES (KAPRANOV, SARKARIA, G. KATO, DUBOIS-VIOLETTE,
HIRAMATSU-G. KATO, IyAMA-K. KATO-MIYACHI ... )

1.1. N-complexes. Our setup is the followings:

e N > 2 is an integer greater than 1.
e R is an algebra over a field k.

For simplicity, in this note N-(A-)complexes are that of R-modules.

Definition 1. An N-compler X (of R-modules ) is a graded R-module ,, X% equipped
with an endomorphism dy of degree 1 (the differential of X) such that d% = 0.

d¥ =dyodxo---dy (N times ).

vy XL 2X i OX il

The detailed version of this paper will be submitted for publication elsewhere.



A morphism f: X — Y of N-complexes is a morphism of graded R-modules which is
compatible with the differentials dyx and dy.

LS S L SN Y AL SN Y 70 L

fi—l J/ f7 J/ fi+1 J{
dy yi dy

The category Cn(R) of N-complexes is abelian.
The notion of N-complexes is so natural that it have been studied by many researchers
from various point of views.

dy

dy yi-1 yi+l

1.2. Cohomology group Hén)(X ) of N-complexe X.

Definition 2. For i € Z and 0 < n < N, we define the cohomology group Hén) (X) of
N-complexe X which has ¢-th degree and n-th position to be

; Ker[d% : X* — X
H(")(X) = N*i{. i—N+n i’
Im[dy ™" : Xi=N+n — X7

For N-complexes we have cohomology long exact sequences.

Theorem 3 (Dubois-Violette). Let 0 - X — Y — Z — 0 be an exact sequence of
N-complexes. Then we have the following exact sequence:

- = Hi,y (X) = Hi,) (V) = H{,y(2) =

= HV(X) = HEY(Y) = HY(2) —

S B 00 = Y00 g (@) - -

Note that this sequence is 6-periodic up to degree shift.
There is another long exact sequence for cohomology groups of N-complexes.

Theorem 4 ( Second long exact sequence (Dubois-Violett) ). Let n,m > 0 be natural
numbers such that n +m < N. Then, for an N-compler X, we have

- = H{,y(X) = Hj (X) — HW(X) —

(n+m) m)

= HZL (X) = B, (X) = HRZ (0

(N—=n—m) (N—m)
i+N i+N i+n+N
— HiS (X) — H(n+m)(X) — H) (X) —
i+n+N i+n+m+N i+n+m+N
— Hy (X)) — Hy o (XOtoH 0 (X)) — -

We remark that for the ordinary complexes (i.e., the case where N = 2) the condition
for n and m is empty. We note that this sequence is also 6-periodic up to degree shift.



1.3. Results of Iyama-Kato-Miyachi. Iyama-Kato-Miyachi showed that Cy(R) has a

Frobenious structure. Then they defined the homotopy categoryKy(R) to be the stable

category Ky (R) := Cy(R) and of Cy(R) with respect to this Frobenious structure, and

the derived category Dy (R) to be the Verdier quotient of Ky (R) by the thick subcategories
Kn(R)

(Acyclic N-complexes)’

I heard that one of their mtivation to define a derived category of N-complexes is to
get a triangulated category of new kind. But they showed that derived category of N-
complexes is no new. It turns out to be equivalent to an ordinary derived category. More
precisely we have the following equivalence of triangulated categories:

consisting of acyclic N-complexes Dy (R) :=

Theorem 5 (Iyama-Kato-Miyachi).
—
DN(R) ~ D(kAN_1 ® R)

_>
_’)The right hand side is the ordinary derived category of the algebra kA y_; ® R where
k A y_1 is the path algebra of Ax_;-quiver.

Since there are interesting results on N-complexes, now we would like to ask why
d™ = 0?7 For this purpose, we try to find a further generalization of N-complexes.

2. A-COMPLEXES

2.1. An observation on N-complexes. We observe that the notion of N-complexes

and related things can be reformulated in terms of a graded algebra and its modules.
We define a graded algebra By to be By := k[4]/6" with degd = 1. A point is that

an N-complex X is nothing but a graded module over the graded algebra By ® R and

Cn(R) = (By ® R) GRMod
where we consider deg R = 0.

2.2. A-complexes and their cohomologies. We define a notion of A-complex by re-
placing the graded algebra By with a graded algebra A satisfying some conditions, which
allow us to develop general theory.

Let A:=@P,., A’ be a finite dimensional graded Frobenius algebra having Gorenstein
parameter ¢ € Z, i.e., Homy (A, k) = A(¢) for some ¢ € Z.

Definition 6. An A-complex is a graded A ® R-module. We set the category C4(R) of
A-complexes to be the category of graded A ® R-modules.

Ca(R) := (A® R) GRMod.
Remark 7. The above definition and the following results can be generalized to the case
where A is a self-injective k-linear category with a Serre functor satisfying some conditions.

For A-complex X we have a notion of cohomology groups H(X). The indexes t are
not integers any more.

Definition 8. Let ¢t be a graded A-module. We define ¢-th cohomology group of an
A-complexes X to be
H'(X) := Ext} graoa(t: X)



The cohomology group H*(X) is functorial in X and hence gives a functor
H'(—) : C4(R) = RMod, X ~ H'(X).
Theorem 9 (Cohomology long exact sequences for A-complexes).

Let 0 - X =Y — Z — 0 be an exact sequence of A-complexes. Then we have the
following exact sequence

- HYO(X) 5 HY ' O(y) 5 HY ' O(2) — ...
— H(X) - H(Y) - H(Z) —
— H¥(X) - H¥ (V) - H¥O(Z) — ...
where Q0 and Q71 denote the syzygy functor and co-syzygy functor.

Theorem 10 (Cohomology long exact sequence for indexes).
Let 0 — s =t = u — 0 be an exact sequence of graded A-modules. Then, for an
A-complex X, we have the following long exact sequence
— HY'®(X) - HY ' O(X) - HY 'O(X) =
— H*(X) - H(X) —» H*(X) —
— H*W(X) - HYO(X) - HY)(X) —
Now we discuss a Frobenius Structure in C4(R).

Lemma 11. Let € be the class of exact sequences 0 — X — Y — Z — 0 in C4(R)
which become a split exact sequence when they are considered as graded R-modules. Then
& gives a Frobenius structure in C4(R).

Definition 12. We define the homotopy category K4(R) of A-complexes to be the stable
category of C4(R) with respect to the above Frobenious structure.

Ka(R) := Ca(R)

Remark 13. There exists a notion of homotopy equivalence for a morphism f: X — Y of
A-complexes. It can be proved that the homotopy category K4(R) is isomorphic to the
residue category of C4(R) modulo homotopy equivalences.

The cohomology functor H'(X) descend to
H'(-) : Ka(R) = RMod, X — H'(X).
An A-complex X is said to be acyclic if H(X) = 0 for all A-module t.

Definition 14. We define the derived category D4(R) of A-complexes to be the Verdier
quotient of K4(R) by the acyclic A-complexes.

Ka(R)
(Acyclic A-complexes)

DA(R> =
An A-complex X is said to be K-projective if we have Homg ,(g)(X,Y) = 0 for any

acyclic A-complex Y. We denote by K4—Proj the full subcategory of K4(R) consisting of
K-projective A-complexes.



Proposition 15. (1) There is a semi-orthogonal decomposition
Ka(R) = (K4—Proj, (Acyclic A-complexes))
(2) The canonical functor induces an equivalence

KA—PFO_j — KA(R) — DA(R)

3. BACK TO N-COMPLEXES
Let By = k[6]/0" with degd = 1. Recall that Cy(R) = Cp, (R).

Definition 16. For i € Z,0 < n < N, we define a graded By-module ¢(i,n) to be
t(i,n) := (k[8] /6" ") (N —n — 1)
Then we have . ‘
H'(X) = H,,(X)
where in the left hand side X is considered as a By-complex and in the right hand side
as an N-complex Moreover,

Qt(i,n)) =t(i +n, N —n).

Now it can be easily seen that the cohomology long exact sequence of N-complexes
(Theorem 3) is nothing but that of By-complexes (Theorem 9). More precisely, the
sequence
is equal to the sequence

Now we see that the periodicity of the cohomology long exact sequence of N-complexes
is a consequence of the well-known fact that the syzygy functor Qp, is 2-periodic up to
degree —N-shift: QF = (—N).

In the same way, we can see that the second cohomology long exact sequence for N-
complexes (Theorem 4) is nothing bu the cohomology long exact sequence for indexes
(Theorem 10), by using the following exact sequence of graded By-modules:

K[g K5 K[

0= <o (=n) = s = 5

— 0.

4. TyAMA-KATO-MIYACHI EQUIVALENCE FOR A-COMPLEXES (OGAWA)

The Iyama-Kato-Miyachi equivalence (Theorem 5) is generalized for A-complexes by
Y. Ogawa.

Theorem 17 (Ogawa). We assume that k is an algebraically closed field. Let A be a
finite dimensional algebra and A := A ® A* the trivial extension algebra equipped with
the grading that deg A = 0,deg A* = 1. Then there is an equivalence of triangulated
categories:

Du(R) ~ D(A® R).



In a nutshell, this is a relative version of Happel’s equivalence ([2]):
grmod A ~ D(A).
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CLASSIFICATION OF CATEGORICAL SUBSPACES OF LOCALLY
NOETHERIAN SCHEMES

RYO KANDA

ABSTRACT. This paper is an announcement of our results in [2]. We classify the prelo-
calizing subcategories of the category of quasi-coherent sheaves on a locally noetherian
scheme. In order to give the classification, we introduce the notion of a local filter of
subobjects of the structure sheaf. We also classify the localizing subcategories and the
closed subcategories in terms of filters.

Key Words:  Locally noetherian scheme, Prelocalizing subcategory, Localizing sub-
category, Closed subcategory, Local filter.

2010 Mathematics Subject Classification:  Primary 18F20; Secondary 18E15, 16D90,
13C05.

1. GABRIEL’S RESULTS

Let A be a Grothendieck category. For example, the category Mod A of right modules
over a ring A and the category QCoh X of quasi-coherent sheaves on a scheme X are
Grothendieck categories. In this paper, we deal with the following classes of subcategories.

Definition 1. Let ) be a full subcategory of A.

(1) Y is called a prelocalizing subcategory (or a weakly closed subcategory) if Y is closed
under subobjects, quotient objects, and arbitrary direct sums.

(2) Y is called a closed subcategory if Y is a prelocalizing subcategory closed under
arbitrary direct products.

(3) Y is called a localizing subcategory if ) is a prelocalizing subcategory closed under
extensions.

For a ring A, Gabriel [1] classified the prelocalizing subcategories and the localizing
subcategories of Mod A by using the notion of filters. We define filters for objects in
Grothendieck categories.

Definition 2. Let M be an object in A. A filter (of subobjects) of M in A is a set F of
subobjects of M satisfying the following conditions.
(1) M e F.
(2) If L C L’ are subobjects of M with L € F, then L' € F.
(3) Ile,LQ 6.7:, then LlﬂLz e F.
For each subobject L of M, denote by F(L) the filter consisting of all subobjects L’ of
M with L C L'. A filter of the form F(L) is called a principal filter.

The detailed version of this paper will be submitted for publication elsewhere.
The author is a Research Fellow of Japan Society for the Promotion of Science. This work is supported
by Grant-in-Aid for JSPS Fellows 25-249.



Remark 3. The principal filter F(L) is closed under arbitrary intersection. Conversely,
if a filter F of M is closed under arbitrary intersection, then F = F(L), where L is the
smallest element of F.

Definition 4. For a ring A, we say that a filter F (of right ideals) of A in Mod A is
prelocalizing if for each L € F and a € A, the right ideal

a'L={beAlabe L}
of A belongs to F.

Note that every filter F of a commutative ring R is prelocalizing.
The following theorem is the motivating result of our study:.

Theorem 5 ([1, Lemma V.2.1]). Let A be a ring. Then the map
{ prelocalizing subcategories of Mod A} — { prelocalizing filters of A in Mod A}
given by
‘ A
Y=< LCAin ModA Zey
is bijective. The inverse map is given by

F—{MeModA| Anny(x) € F for every x € M }

=<%eMod/1‘Le}“> ,

preloc

where (S)preioc s the smallest prelocalizing subcategory containing the set S of objects.

By considering the principal filters, we can recover the classification of the closed sub-
categories of Mod A due to Rosenberg [3].

Theorem 6 (Gabriel [1, Lemma V.2.1] and Rosenberg [3, Proposition I111.6.4.1]). Let A
be a ring. Then there exist bijections between the following sets.

(1) The set of closed subcategories of Mod A.
(2) The set of principal prelocalizing filters of right ideals of A.
(3) The set of two-sided ideals of A.

The bijection between (1) and (2) is induced by the bijection in Theorem 5.
The bijection between (1) and (3) is given by

(1)—=@3): Y+ m Ann, (M),
Mey

(3)—>(1):Il—>{M€MOdA|MI:0}:<A> .

Gabriel [1] also classified the localizing subcategories of Mod A. For more details, see
[2, section 10].



2. CLASSIFICATION FOR QCoh X

In this section, let X be a locally noetherian scheme. Its structure sheaf is denoted by
Ox. We give classifications of the three classes of subcategories of QCoh X. In order to
do that, we need to refine the notion of filters.

Definition 7. Let X be a locally noetherian scheme. We say that a filter F of subobjects
of Ox in QCoh X is a local filter of Ox if it satisfies the following condition: let I be a
subobject of Oy, and assume that for each x € X, there exist an open neighborhood U
of z in X and I' € F such that I'|y C I|y as a subobject of Op. Then we have I € F.

We can show that every principal filter of Oy is a local filter. In the case where X is
noetherian, every filter of Oy is a local filter.
The following theorem is our main result.

Theorem 8. Let X be a locally noetherian scheme.
(1) The map

{ prelocalizing subcategories of QCoh X } — {local filters of Ox in QCoh X }
given by
‘ Ox
Y=< ICOx in QCoh X Téy
1s bijective. The inverse map is given by

o
}'»—><TX6QCth‘IE}">
preloc
(2) The bijection in (1) induces bijections
{ closed subcategories of QCoh X } — { principal filters of Ox }

and
{ localizing subcategories of QCoh X } — {local filters of Ox closed under products }.

Corollary 9. There exist bijections between the following sets.

(1) The set of closed subcategories of QCoh X .
(2) The set of subobjects of Ox in QCoh X.
(3) The set of closed subschemes of X.

The key of the proof is the fact that every prelocalizing subcategory ) of QCoh X has
the description

Y={MeQCohX |M,e), foreach z € X }.

Example 10. Let k£ be an algebraically closed field, and consider the projective line
X =Pj}. Denote by @ the set of closed points in X. For each r € [], 4(Z>o U {c0}), we
define the prelocalizing subcategory ). of QCoh X by

YV, ={M € QCoh X | M,m’(® =0 for each x € & with r(x) # oo }.



The set of prelocalizing subcategories of QCoh X is

V|1 € [[(Zz0U{o0}) { U{QCoh X},
€D
the set of localizing subcategories of QCoh X is

Yy | re JJ{0.00} $ U{QCoh X},

rzed
and the set of closed subcategories of QCoh X is

Vo |re@Zs0 p U{QCoh X}.

zed
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TAKING TILTING MODULES FROM THE POSET OF SUPPORT
TILTING MODULES

RYOICHI KASE

ABSTRACT. C. Ingalls and H. Thomas defined support tilting modules for path algebras.
From 7-tilting theory introduced by T. Adachi, O. Iyama and I. Reiten, a partial order on
the set of basic tilting modules defined by D. Happel and L. Unger is extended as a partial
order on the set of support tilting modules. In this report, we study a combinatorial
relationship between the poset of basic tilting modules and basic support tilting modules.
We will show that the subposet of tilting modules is uniquely determined by the poset
structure of the set of support tilting modules.

1. INTRODUCTION

Tilting theory first appeared in an article by S. Brenner and M.C.R. Butler [2]. In
that article the notion of a tilting module for finite dimensional algebras was introduced.
Let T be a tilting module for a finite dimensional algebra A and let B = End4(T).
Then D. Happel showed that the two bounded derived categories DP(A) and D"(B)
are equivalent as triangulated category [3]. Therefore, classifying tilting modules is an
important problem.

Tilting mutation introduced by C. Riedtmann and A. Schofield [7] is an approach to this
problem. It is an operation which gives a new tilting module from given one by replacing
an indecomposable direct summand. They also introduced a tilting quiver whose vertices
are (isomorphism classes of) basic tilting modules and arrows correspond to mutations.
D. Happel and L. Unger showed that there is a partial order on the set of (isomorphism
classes of ) basic tilting modules suct that its Hasse quiver coincides to tilting quiver [4, 5].
However, tilting mutation is often impossible. Support 7-tilting modules introduced by
T. Adachi,O. Iyama and I. Reiten [1] are generalization of tilting modules. They showed
that a mutation (resp. a partial order) on the set of (isomorphism classes of) basic tilting
modules is extended as an operation (resp. a partial order) on the set of (isomorphism
classes of) support 7-tilting modules and improved behavior of tilting mutation.

In path algebras case, it is known that a support 7-tilting module is a support tilting
module introduced by C. Ingalls and H. Thomas [6]. Then the main result of this report
is the following.

Theorem 1. Let A be a finite dimensional path algebra. Then the set of basic tilting
modules of A is determined by poset structure of the set of basic support tilting modules.

The detailed version of this paper has been submitted for publication elsewhere.



2. PATH ALGEBRAS

Let k& be an algebraically closed field and let @ be a finite quiver (=oriented graph).
We denote by Qg (resp. (1) the set of vertices (resp. edges) of (). For an edge a: a — b,
we set s(a) :=a, t(a) :=b.

Definition 2. A sequence w = (aq|as|---|ay) of Q1 is a path on Q if t(«;) = s(ayy1)
holds for any ¢. Then we call [ the length of w and put s(w) := s(a;) t(w) := ay. We
regard a vertex a € (g as a path of length 0 with s(e,) = a = t(e,) and denote it by e,.

Then a path algebra A = k@ is defined as follows:
(1) A= @w:path k- w.
(2) For two paths w = (aq|ag| -+ |ay), w' = (B1|Ba| - - - |6r), we define
o § (aalas]---Jag | Bl Bof - [Br) i H(w) = s(w')
0 if t(w) # s(w').

From now on, we assume that A = k@ and @ has no oriented cycles (< dim A < 00).

w - w

3. TILTING MODULES AND SUPPORT TILTING MODULES

In this section, we recall definitions of poset of tilting modules and poset of support
tilting modules. For a module M € mod A with indecomposable decomposition

M = @M (i # J = M £ M),
we put | M| :=m. M is said to be basic if r; = 1 (Vi).
Definition 3. T € mod A is a tilting module if T" satisfies following properties.
(1) Exty(T,T) = 0.
(2) |T| = #Qo.
We denote by tilt A the set of (isomorphism classes of) basic tilting modules.

Proposition 4. [4, 5] The following relation induces a partial order on tilt A.
T>T & Exti(T,T) = 0.

For a module M € mod A, we put supp(M) := {a € Qg | dim Me, > 0} and denote by
Q(M) the full subquiver of @ with Q(M )y = supp(M).

Remark 5. We can regard M as kQ(M)-module.

Definition 6. 7" € mod A is a support tilting module if T" satisfies following properties.
(1) Exty(T,T) = 0.
(2) |T| = #supp(T).
We denote by stiltA the set of (isomorphism classes of) support tilting module.
We note that 7" is support tilting if and only if A(T") is tilting as kQ(T")-module.

Proposition 7. [1, 6] The following relation induces a partial order on stilt A.

T >T < Exty(T,T') = 0 & supp(T’) C supp(T).



Example 8. Let Q =1 — 2. Then stiltA is given by the following.
P(1)® P(2)
)& I(1) P(2)

\

I(1) —— 0

P(1

4. OUTLINE OF A PROOF
By definition of support tilting modules, we have
T € stiltA is a tilting module & T > Iy = @qeq,!(a).
For a non negative integer i, we define a subset V; of @Qy as follows.
o V= 0.
e V=V, 1U{a€Q|aisasource of Q\ V;_1}.
We set I; := @qev,I(a) (Ip = 0). Then we note that I; € stiltA.
Lemma 9. Let i > 0. Then I;11 is a minimum element of
(] (T estiltA | T > X},
Xeidp(I;)
where idp () I; is the set of injective direct predecessors of I;.

Lemma 1 shows that it is sufficient to determine idp(l;) by poset structure of stiltA.

4.1. Deleting non injective direct predecessors of I;. Non injective direct predeces-
sor T' satisfies one of the following.

(1) #supp(T) = #supp(li) + 1.

(2) #supp(T) = #supp(ly).
We denote by N;(p) (p = 1,2) the set of non injective direct predecessors of I; which
satisfies (p).

Lemma 10. Let a, b € Qy. Then There is an edge a — b in Q if and only if there are
X €dp(S(a)), Y € dp(S(b)) such that X <Y.

Since S(a) is injective if and only if a € Qg is a source, we can determine idp(Iy) by
poset structure of stilt A.

Lemma 11. Let T € N;(1). Then there are T" € dp(L;), X € dp(T), Y € dp(T') such
that X > Y.

Lemma 12. Let T € idp(L;). Then for any T" € dp(I;), X € dp(T), Y € dp(T’), we have
X #Y.



Lemma 3 and Lemma 4 implies that we can delete N;(1). For T' € dp(I;) and r € Z>q,
we set

F(i,T,r) = {((Xn)refo, r}> (T refo r—13> Ye)reqr, . r—13) | ()}

Xo = L;, To=T

X, € db(Il)7 Xk+1 € db(Xk)
Ty, € dp(Xi) \ { X1}

Y, € dp(Tk)

Yi>T, Y 21

where the condition (x) is as follows: () :=

Lemma 13. Let T € N;(2). Then there are r € Zsy and ((Xy), (Tx), (Yi)) € F(i,T,7)
such that for any T, € dp(X;) \ {X;-1} and Y, € dp(T,), we have Y, 2 T,_;.

Lemma 14. Let T' € idp(L;). Then for any r € Z>, and ((Xy), (Tx), (Yz)) € F(i,T,1),
there are T, € dp(X;) \ {X;_1} and Y, € dp(T,) such that Y, > T, ;.

r—

Thus we can also delete N;(2).

Corollary 15. Let A and ' be two path algebras, p be a poset isomorphism
p o stiltA ~ stiltT'.
Then the restriction of p to tiltA induces a poset isomorphism

Pleea @ tiltA ~ tiltT.

5. EXAMPLE

We consider the following quiver Q.

Then stilt A is given by the following.



step 1 By applying Lemma 3 and Lemma 4 to {0, X, X5, Y1, Z1}, we can see that X;
is not injective. Similarly we have X3 is not injective. Therefore X5 is injective.

step 2 By applying Lemma 5 and Lemma 6 to {Xs, Y1, Y2, Zy, W}, we have Y3 is not
injective. Hence Y] is injective.

step 3 We consider F(1, Z1,Y1) 3 (Y1, X2), (Z1),0). Then Y3 is a unique direct predeces-
sor of Xy and {Wy, Ws} is the set of direct predecessors of Y5. Since W, 2 Z; (p =
1,2), Lemma 5 implies that Z; is not injective. Therefore we have Iy = Z,.

In particular, tiltA is given by the following.



.<—O

|
|
— Cl)
7, cl>/o
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ON ISOMORPHISMS OF GENERALIZED MULTIFOLD EXTENSIONS
OF ALGEBRAS WITHOUT NONZERO ORIENTED CYCLES

MAYUMI KIMURA

ABSTRACT. We show that an algebra of the form A/((j)) where A is an algebra and ¢ is
an automorphism of A such that d)(A[O]) = A" for some integer n is isomorphic to an
algebra of the form A/ (qguvg) where ¢y is an automorphism of A induced by ¢ and v i
is the Nakayama automorphism of A if A has no nonzero oriented cycles. Throughout
this paper we do not assume that the action of groups (or automorphisms of A) are free.
Therefore this result give us applying a derived equivalence classification in [1] and [3]
ton =0.

1. INTRODUCTION

Throughout this paper k is an algebraically closed field, algebras are basic finite-
dimensional k-algebras and categories are k-categories.

We say that an algebra is a generalize multifold extension of algebra A if it has the
form A/(¢) where A is the repetitive category of A and ¢ is an automorphism of A
with jump n for some integer n (see Definition 1 and Proposition 2). In [3], we gave a
derived equivalence classification of generalized multifold extensions of algebras which are
piecewise hereditary of tree type (i.e., algebras are derived equivalent to some hereditary
algebra whose ordinary quiver is oriented tree) if automorphisms act on algebras have
positive jump. To give a classification, we showed that for a positive integer n € Z, a
generalized n-fold extension A/(¢) is derived equivalent to T (A) = A/ <gz§0Vf}1> where ¢
is the automorphism of A naturally induced from automorphism ¢q := (]1[0])’11/2%5]1[0] of

A and v is the Nakayama automorphism of A. Also, we posed a following question

Problem. If A is piccewise hereditary of tree type, when are the algebras A/(¢) and 17 (A)
isomorphic?

In this paper we will give the answer to this question.

Acknowledgments. I would like to express my gratitude to Junichi Miyachi for suggest-
ing me the problem above. I would also like to express my gratitude to Hideto Asasiba
for his generous supports. The idea, which was essential to solve this problem, to combine
an idea in Saorin’s paper [7] and Lemma 12 taken from [2] was suggested by Asashiba.
I would also like to express my thanks to Manuel Saorin for sending me the paper [7]
(which is the original version of [6]) through Asashiba and his results are cited in section
3. Finally I would also like to thank Steffen Koenig for informing me the proof of Lemma
18 through Asashiba.

The detailed version of this paper will be submitted for publication elsewhere.



2. PRELIMINARIES

For a category R we denote by Ry and R; the class of objects and morphisms of R,
respectively. A category R is said to be locally bounded if it satisfies the following:
e Distinct objects of R are not isomorphic;
e R(z,z) is a local algebra for all x € Ry;
e R(z,y) is finite-dimensional for all z,y € Ry; and
e The set {y € Ry | R(z,y) # 0 or R(y,x) # 0} is finite for all z € Ry.
A category is called finite if it has only a finite number of objects.

A pair (4, F) of an algebra A and a complete set E := {ej,...,e,} of orthogonal
primitive idempotents of A can be identified with a locally bounded and finite category
R by the following correspondences. Such a pair (A, E) defines a category R4 gy := R
as follows: Ry := E, R(z,y) := yAxzx for all z,y € E, and the composition of R is
defined by the multiplication of A. Then the category R is locally bounded and finite.
Conversely, a locally bounded and finite category R defines such a pair (Ag, Er) as follows:
Ar = @D, yer, R(z,y) with the usual matrix multiplication (regard each element of A as
a matrix indexed by Ry), and Er := {(1,04),(z.2))ijer, | © € Ro}. We always regard
an algebra A as a locally bounded and finite category by fixing a complete set Ag of
orthogonal primitive idempotents of A.

Definition 1. Let A be a locally bounded category.
(1) The repetitive category A of A is a k-category defined as follows (/1 turns out to be
locally bounded again):
o Ay:=Ag x Z = {zll .= (x,i) | z € Ay, i € Z}.
{f7]feAly} ifj=i
o Azl yll)y .= { {ol] | g € DAy, x)} ifj=i+1, forallzll yll e A
0 otherwise,
e For cach zl!l Uil zIM € Ay the composition A(yl], zI) x A(zl? ybil) — A(zl], 21H)
is given as follows.
(i) If 4 = 4, j = k, then this is the composition of A A(y, z) x A(z,y) — A(z, 2).
(ii) If i = j,j + 1 = k, then this is given by the right A-module structure of DA:
DA(z,y) x A(x,y) — DA(z, ).
(iii) If i + 1 = j,j = k, then this is given by the left A-module structure of DA:
Ay, z) x DA(y,x) — DA(z,x).
(iv) Otherwise, the composition is zero.

(2) We define an automorphism v4 of 121, called the Nakayama automorphism of A, by
va(all) = g, (FO = fHU 0y (ol]) = gl for all i € Z,x € Ay, f € A1, €
Ux,yer DA(y’ Z‘)

(3) For each n € Z, we denote by A the full subcategory of A formed by 2" with
x € A, and by 145 AR« 121, x — z[" the embedding functor.

We cite the following [3, Proposition 1.6.].

Proposition 2. Let A be an algebra, n an integer, and ¢ an automorphism of A. Then
the following are equivalent:



) @ is an automorphism with jump n;

) d(Al) = Al+n] for some integer i;

) ¢(AUl) = AUHn for all integers j; and

) & = ¢l for some automorphism ¢r, of A with Jump 0.
) ¢ = Vior for some automorphism ¢r ofA with jump 0.

We cite the following from [1, Lemma 2.3].

Lemma 3. Let ¢: A — B be an isomorphism of locally bounded categories. Denote
by ¥y A(y7 ) — By, vx) the isomorphism defined by ¢ for all z,y € A. Define
U: A= B as follows
o For each zl! € A, (all) .= (¢m)
o [or each f[z] € A( [l] y[l) D) = ()P and
o For each ¢ € A(al?, y"1), (o) == (D((2) ™) (@) = (d o (v2) 711
Then
(1) ¢ is an isomorphism.
(2) Given an Aisomorphism p: A B, the following are equivalent.

(a) p=1;
(b) p satisfies the following.
(i) pra = vap;

(i) p(AV) = AV,
(iii) The diagram

N

A B
100] l lﬂo}

A0, gl
P

1s commutative; and

(iv) p(¢) = (¢ o (1/)?;)_1)[0] forallx,y € A and all p € DA(y, x).

3. AUTOMORPHISMS OF REPETITIVE CATEGORY WITH JUMP 0

Throughout this section A is an algebra. We set Aut’(A4) to be the group of all auto-
morphisms of A with jump 0.

Lemma 4. Let ¢ € Aut’(A). Then ¢ gives a family of k-linear maps (¢;, f:)icz, where
¢; s an automorphism of A and f; : A — A is a bijective ¢;-¢;y1-semilinear map for all
1€ 7.

Proof. Let i € Z. Then by definition, we have ¢(All) = All. We set ¢; := (Ili])’lgbllz] :
A — A, then ¢; is an automorphism of A. On the other hand, also by definition, we have
p(DAFY = DAl . Hence we get a bijective k-linear map D(f; ) := D(14)p(D (1)) 7" :
A — A. For morphisms a,b € A; and p* € DAy, b lgll = (aub)ll € DA and

o all) = g )6 () (al).



Since
LHS = (D(f7 ) (ap b)) = ((ap*b) ;1)
and
RHS = ¢ .1 (0) (D7) ()i (@) = i (0)FH (e 71 i (@),

we have fi(aab) = ¢;(a)fi(a)pir1(b) for each o € A;, which shows that f; is @i-@iy1-
semilinear. O

We identify ¢ with (¢, fi)icz and write ¢ = (¢, fi)icz-

For ¢ € Aut(fl) with jump n € Z, we also get a family of k-linear maps by following

way. By Proposition 2, there exists an automorphism ©¥r = (Vg fi)icz of A with jump 0
such that ¢ = v%1pgp. We can define (1, gi)icz by ;i := Yri, g; := f; for all i € Z.

Remark 5. We can define a group homomorphism ¥ : Aut®(A) — Aut(A4) by ¥(¢) := ¢
for all ¢ € Aut’(A). Then we have 6 € Aut’(A) and ¥(5) = o for all ¢ € Aut(A) by
lemma 3. Thus ¥ is an epimorphism, in particular split epimorhism.

Clearly an automorphism ¢ in the kernel of W is whose ¢q is the identity of A. Therefore
to see the kernel of ¥ more particularly, we are interested to construct an automorphism
of A from the identity of A.

Definition 6. We define a map & : (k)4 — Aut(A) by
EN)(e) :==e
and
E(N)(a) == A(t(a) "' A(s(a))a
for all A = (A(7))zea, € (k)% all objects e and morphisms a in A.
Then ¢ is a group homomorphism.
Lemma 7. Let A = (\;)iez € (kX)AO (We regard (k)% = ((k*)*)Z by the canonical
isomorphism (k*)40 = (k*)A0xZ = ((k*)40)2). Then a family (¢s, fi)icz of maps where
ENiNig1--- A1) ifi <0
¢i = ]lA Zfl =0
EMoAr - Nim1)  ifi>0
and f; : A — A is defined by fi(a) == M\(s(a))di(a)(= Ni(t(a))pir1(a)) for a € Ay, gives
an automorphism of A with jump 0.

We assume the following property which is necessary for our purpose.

Definition 8. If eAe = k for all primitive idempotents of A, then A is said to have no
nonzero oriented cycles.

Let A :=k@Q/I where Q is a quiver and I is an admissible ideal of k@. The definition
8 means that I contains all cycles in @.

Proposition 9. Assume that A has no nonzero oriented cycles. Then there is an exact
sequence of groups

1 &% 2 Aut®(A) L Aut(A) — 1.



Proof. For A € (k*)%, we define ®()\) the automorphism constructed by Lemma 7. Since
¢ is group homomorphism, clearly ® is a group homomorphism. First, we show that &
is injective. If ®(\) = 14, then ¢; = 14 and D(f; ') = Ipa for all i € Z. By induction,
the former implies that (\;) = 1,4 for all i € Z. Hence for each i € Z, we get an element
k; € k* such that f; = k;14 for all x € Ag. Therefore D(fi_l) = /\i_lllDA = 1pa, so that
ki =1 for all © € Z. This shows that ® is injective.

Next we show that Im® = Ker V. We easily have W& = 1 by definition, hence it
is enough to show Im® DO KerW. Let ¢ = (¢;,9:)icz € Ker . Since g; is a -1 1-
semilinear bijection, the equality 1)y = 1,4 imply that g;(x) = g;(23) = ¥;(x)gi(2)i41(z) =
zgi(x)z for all x € Ay. Hence g;(x) € xAx = kz, because A have no nonzero oriented
cycles. Therefore we get A\;(z) € k* such that g;(x) = \;(z)x for each i € Z and x € Ay.
We claim that ¢ = ®(X\). Set ®(\) = (¢, fi)iecz. To see that, we take an arbitrary
morphism a € A(z,y). If ¢; = ¢, for all i € Z, then

fila) = Ai(x)¢i(a)

Hence we check that 1[12 = g(AoAl ce )\2‘_1) for all 0 S 1 € Z and 1/11 = 5()\1)\1_‘_1 s /\_1)—1
for all 0 > ¢ € Z. We prove by induction on 0 < i € Z the first equality, the other one
following in a similar way. Since ¢y = 14 = ¢y, it is enough to show it in the case that
1 <¢. For any morphism a € A(x,y),

gi(a) = &E(AoA1---Aim1)(a)

1)
= X Aia(@) (N Mica(y) e
= Xi(@) N1 (y) i1 (a)
= i@ (N1 (y) i (a)x
= (A1) ica(a)gioa(z)
= (Ni1(®) 'gia(a)
= (A1) 'gia(ya)
= (Ni1®) g (W)i(a)
= y¥i(a)
= ¢i(a)
as desired. O

Remark 10.

(1) By Remark 5, the exact sequence in Proposition 9 splits. Therefore an auto-
morphism of A with jump is characterized by an automorphism of A and a map



from Ay to k*. Let ¢ = (¢, fi)iez be an automorphism of A with jump. For all
morphism a € A(z,y),

fila) = ¢ia) fi(x) = fi(y)¢is1(a)
and

fiz) = fi(2®) = ¢i() fi(2) Piga ().
By Proposition 2, ¢;(x) = ¢i41(x) therefore f;(z) € ¢;(z)Ap;i(x) = k¢;(z). Hence
we get A\;(z) € k such that fi(x) = A\;(2)¢:(z) and

¢ir1(a) = Ni(@)(Ni(y)) ' dila).

(2) In [5, section 3] automorphisms of repetitive category with jump 0 is characterized
in general case i.e., it does not assume that algebras have no nonzero oriented
cycles, and automorphisms are ”algebra automorphisms”. In their results, the left
term of exact sequence is given by U(A)Z where U(A) is the set of all units in A.

4. ORBIT CATEGORIES

Throughout this section G is a group. A pair (C, A) of a category and a group homo-
morphism A : G — Aut(C) (we write A, := A(«)) is called a category with G-action.
We cite the following definition and lemma from [2, Section 4].

Definition 11. Let (C, A), (C', A") be categories with G-actions and F : C — C’ a functor.
Then an equivariance adjuster of F is a family n = (94)acg of natural isomorphisms
N : ALF = FA, (a € G) such that the following diagram commutes for each o, 8 € G

A F— A F " A
Ba B B8 o
NBa \LTI,BAQ
FAg, = FAsA,

and a pair (F,n) is called a G-equivariant functor.

Lemma 12. Let (C,A), (C',A") be categories with G-actions, and (F,n) : C — C" a
G-equivariant equivalence. Then C/G and C'/G are equivalent.

Proposition 13. Let R be a locally bounded category, and g,h automorphisms of R.
If there exists a map p: Ry — k™ such that p(y)g(f) = h(f)p(x) for all morphisms
f € R(z,y), then R/(g) = R/(h).

Remark 14. Proposition 13 does not assume free actions. Therefore we extend a derived
equivalence classification in [3] to ”0-fold” case.

5. MAIN RESULTS

Throughout this section we assume that A is an algebra without nonzero oriented cycles
unless we note.

Lemma 15. Let ¢ and ¢ be automorphisms of A with jump n € Z. If there exists a
map po: Ag — k* such that po(y)do(a) = Yo(a)po(z) for all morphisms a € A(z,y), then
A/(p) and A/ () are isomorphic.



Theorem 16. Let ¢ and ¢ be automorphisms of A with jump n € Z. If there exist
i,j € Z and p : Ay — k™ such that p(y)¢i(a) = j(a)p(x) for all morphisms a € A(z,y),
then A/{(p) and A/{¢) are isomorphic.

Proof. By Remark 10(1), we get each of the elements ((Ar(2))zeao ) rez, ((14(7))zea, vez €
((k*)49)Z from ¢ and . Define py : Ag — k* by

< Aa(@) e (@)p(e) 4G <0
po(z) = (I)Mz ( )p(x) ifi<0,j>0

( ()" ( cpi(x)tp(x) ifi> 0,5 <0

Ao /\]( ) (ko - - Mz( )" p(x) ifi,j>0

for all x € Ag. Then for a morphism a € A(z,y),

p()oila) = py)((Nica(x)) " Nica(y)di-1(a))
= p(y)Aic1(@) X1 () (Niza(2) X (y) di—a(a)

= p(y)(Ao- - A2 X1 () Ao+ - Ao disa () do(a)

and similarly
Vi(a)p(x) = (o~ pj—apj—1 () o - - - pj—2pj—1(y)tho(a)p(x).

Hence we get po(y)do(a) = vo(a)po(x). By Lemma 15, A/(¢) and A/(1)) are isomorphic.
(]

Corollary 17. Let ¢ be an automorphism of A with jump n € Z. Then A/{$) and 17 (A)
are isomorphic.

What we want to know is when A/(¢) and 17 (A) are isomorphic if A is piecewise
hereditary algebra of tree type. The following lemma gives us the answer.

Lemma 18. A piecewise hereditary algebra has no monzero oriented cycles.

Proof. If A is a piecewise hereditary algebra, then there is a tilting complex T on a
hereditary algebra H such that A = End(T). For all idempotents e in A, e Ae is isomorphic
to End(T,) where T is a direct summand of T. By [4, Corollary 5.5], eAe is a piecewise
hereditary algebra because T, is a partial tilting complex. Since piecewise hereditary
algebras have finite global dimension and eAe is local, eAe is isomorphic to k. Hence A
have no nonzero oriented cycles if A is a piecewise hereditary algebra. (]

Corollary 19. Let A be a piecewise hereditary algebra and ¢ be an automorphism offl
with jump n € Z. Then A/(¢) and T} (A) are isomorphic.

REFERENCES

[1] H. Asashiba, Derived and stable equivalence classification of twisted multifold extensions of piecewise
hereditary algebras of tree type, J. Algebra 249, (2002) 345-376.

(2] , A generalization of Gabriel’s Galois covering functors and derived equivalences, J. Algebra

334 (2011), 109-149.




[3] H. Asashiba, M. Kimura, Derived equivalence classification of generalized multifold extensions of
piecewise hereditary algebras of tree type, to appear in Algebra and Discrete Mathematics Journal.

[4] L. A. Hiigel, S. Koenig, Q. Liu, Jordan-Holder theorems for derived module categories of piecewise
hereditary algebras, J. Algebra 352 (2012), 361-381.

[5] Y. Ohnuki, K. Takeda, K. Yamagata, Automorphisms of repetitive algebras, J. Algebra 232 (2000),
708-724.

[6] M. Saorin, Automorphism groups of trivial extensions, J. Pure Appl. Algebra 166 (2002), no. 3,
285-305.

, Automorphism groups of trivial extension and repetitive algebras (unpublished paper).

(7]

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY

SHIZUOKA UNIVERSITY
836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529 JAPAN

E-mail address: shirakawasanchi@gmail.com



TILTING OBJECTS IN STABLE CATEGORIES
OF PREPROJECTIVE ALGEBRAS

YUTA KIMURA

ABSTRACT. In this paper, we construct a tilting object in stable categories of factor
algebras of preprojective algebras. In [4], for a finite acyclic quiver @ and its preprojec-
tive algebra II, Buan-Iyama-Reiten-Scott introduced and studied the factor algebra II,,
associated with an element w in the Coxeter group of @). The algebra II,, has a natural
Z-grading, and we prove that Sub®II,, has a tilting object if w is a c-sortable element.

1. INTRODUCTION

The preprojective algebra II of a finite acyclic quiver @ has an important role in rep-
resentation theory of algebras. Omne of them is categorifications of cluster algebras in-
troduced by Fomin-Zelevinsky [6]. In the study of categorifications of cluster algebras,
2-Calabi-Yau triangulated categories (2-CY for short) and their cluster tilting objects are
important.

If @ is a Dynkin quiver, then the preprojective algebra II of @ is a finite dimensional
selfinjective algebra and Geiss-Leclerc-Schroer showed that the stable category mod IT is a
2-CY category and modIT has cluster tilting objects [7]. If @ is finite acyclic non-Dynkin
quiver, Buan-Iyama-Reiten-Scott introduced and studied the factor algebra II,, associated
with an element w in the Coxeter group of @ [4]. They showed that the stable category
of SubIl, is a 2-CY category and has cluster tilting objects, where SubIl,, is the full
subcategory of modII,, of submodules of finitely generated free IL,-modules.

There are other classes of 2-CY triangulated categories. For a finite dimensional algebra
A of finite global dimension, the cluster category C4 were introduced [1, 5]. The category
Ca is a 2-CY category and has cluster tilting objects. Amiot-Reiten-Todorov [3] showed
that there are close connections between 2-CY categories SublIl,, and C4. That is, for
any finite acyclic quiver @) and any element w of the Coxeter group, there is a triangle
equivalence

@Hw =~ CAw
for some finite dimensional algebra A, of global dimension at most two.
The aim of this paper is to construct a derived category version of this equivalence. More
precisely, we regard II,, as a Z-graded algebra and consider the stable category Sub”Il,

of graded II,,-submodules of graded free II,,-modules. Then we construct a tilting object
in Sub”II,,.

The detailed version of this paper will be submitted for publication elsewhere.



2. PRELIMINARIES

Through out this paper, let k£ be an algebraically closed field. By a module, we mean a
left module unless stated otherwise. In this section, we give definitions used in the next
section.

Definition 1. Let ) be a finite acyclic quiver.
(1) The double quiver Q = (Qq, Qy, s,t) of Q is defined by Q, = Qp, @, = Q1 U {& |
a € Q1 }, where s(@) = t(a), t(a) = s(a) for all @ € Q1.
(2) Then we have the preprojective algebra 11 of Q) by

I:=kQ/(>_ BB —BB).
BEQ1
In this paper, we assume () is non-Dynkin quiver, that is, the underlying graph of )

is not a simply laced Dynkin diagram. Note that, if @ is non-Dynkin quiver, then the
preprojective algebra of ) is not a finite dimensional algebra. Next we define the Coxeter

group of Q.
Definition 2. The Coxeter group W of a quiver @) is the group generated by the set
{si | i € Qo} with relations

o s?=1,

® s5;5; = s;5; if there are no arrows between ¢ and j,

® s5;5;5, = 5;5;5; if there is exactly one arrow between ¢ and j.

An expression w = $;, S, ... S;
we have [ < m.
Let 7 be a vertex of Q. We define the two-sided ideal I; of I by
Ii = H(]. — 67;)]._[7
where e; is the idempotent associated to ¢. Let w = s;;s;, ... s;, be a reduced expression
of w. We define a two-sided ideal I,, of II by
Iw = Ii1]i2 cee [il'
Note that, an ideal I, is independent of the choice of a reduced expression of w by [4,
Theorem II. 1.9]. In [4], the authors studied the algebra I1/1,,.

Let modIl, be the category of finitely generated II,-modules. We denote by SubIl,
the full subcategory of modIl,, of submodules of finitely generated free II,,-modules.

, is reduced if for any other expression w = s;, 5, -+ - ..,

Proposition 3. [4] Let Q be a finite acyclic non-Dynkin quiver. For an element w of the
Coxeter group of QQ, we have the following results.
(a) The algebra 1L, is finite dimensional and inj.dim(y,I1,) < 1.
(b) The category SubIl,, is a Frobenius category.
(¢) The stable category SubIl, is 2-Calabi-Yau triangulated category, that is, for
any objects X,Y € Subll,, there is a functorial isomorphism Homy (X,Y) ~
D Homy; (Y, X[2]), where D = Homy(, k).
(d) For any reduced expression w = s;,s;, - - - S;,, the object T = @221 I
cluster tilting object of SubIl,,,.

siysigrsi, 05 @



_Next we consider the grading of a preprojective algebra. We regard the path algebra
kQ as a Z-graded k-algebra by the following grading:

)1 f=a,ac
degﬂ—{o b=aac Q.

Since the element Y (88 — 38) in kQ is homogeneous of degree 1, the grading of kQ
BERQL
naturally gives a grading on the preprojective algebra I1 = @ II;.
i>0
Remark 4. (a) We have IIy = k@, since IIj is spanned by all paths of degree 0.
(b) For any w € W the ideal I, of II is a graded ideal of II since so is each I;.
(¢) In particular, the quotient algebra IT,, is a graded algebra.
For a graded module M = @ M; and an integer j, we define a new graded module
i€z
M(j) by (M(j)); = M;y;. For any integer j, we define a graded submodule Ms; of M by
M; 1>
Ms;); =
(M) {0 else

and a graded factor module of M by M<; = M/Ms;44.

Let modZII,, be the category of finitely generated Z-graded II,-modules with degree
zero morphisms. We denote by Sub”IL, the full subcategory of mod”II,, of submodules of
graded free IL,-modules, that is,

Sub”IL,, = {X € mod”Tl, | X ¢ @1, (i)), i; € Z}.
j=1
By Proposition 3 (a), Sub”Il, is a Frobenius category. Then we have a triangulated
category Sub”II,,. In this paper, we get a tilting object in this category.

3. c-SORTABLE WORDS AND GRADING

In this section, we define a c-sortable words of the Coxeter group of ) and calculate
the graded structure of IL,,.

Definition 5. Let @ be a finite acyclic quiver with vertices Qo = {1,2,...,n} and W be
the Coxeter group of Q.
(1) Anelement cin W is called a Cozeter element if ¢ has an expression ¢ = $;, 84, - . - Si,,
where iy, ...,1, is a permutation of 1,...,n.
(2) A Coxeter element ¢ = s;,8;,...5;, in W is said to be admissible with respect to
the orientation of Q if ¢ satisfies e;, (kQ)e;, = 0 for k < j.

Since @ is acyclic, W has a Coxeter element ¢ admissible with respect to the orientation
of Q. There are some expression of ¢ = s, 84, ... s;, satisfying {i1,...,i,} = {1,...,n}
and e;, (kQ)e;, = 0 for k& < j. However, it is shown that c is uniquely determined as an
element of W. From now on, we call a Coxeter element admissible with respect to the
orientation of @) simply a Coxeter element.

Then we define a c-sortable words.



Definition 6. Let ¢ be a Coxeter element of W. An element w € W is said to be c-
sortable if there is a reduced expression w = c¢@¢c® ... 0 where each ¢ is subsequence
of ¢ and

Supp(c”) € Supp(c!') C -+ C Supp(c”) € Qo

where Supp(c?) is the set of i; such that s;; appears in c®.

1
Example 7. Let Q = / \ A Coxeter element is ¢ = s3895;. Then an element
2—=3
W = 8535951535253 is a c-sortable element. Actually, ¢(? = s35951, ) = 5355, and ¢ = s3.

If w=cOcW...c0 is a c-sortable element, then the grading of II,, is calculated as
follows.

Proposition 8. Let w = ¢OcM) ...c0) € W be a c-sortable element. If i < 1, then we
have (I1,)<i = (o) e).ctd ) <i = o) o)ptiy . If © > 1, then we have (I1,)s; = 0.

4. MAIN THEOREM

In this section, we state the main theorem of this paper. Let 7 be a triangulated
category. Recall that, an object M in T is called a tilting object if following holds.
e Hom+(M, M[j]) = 0 for any j # 0,
e thickM = 7T, where thickM is the smallest triangulated full subcategory of 7T
containing M and closed under direct summands.

Let 7 be the stable category of a Frobenius category, and assume that 7 is Krull-
Schmidt. If there is a tilting object M in T, then it follows from [8, (4.3)] that we have
a triangle equivalence

T ~ K®(proj Endy (M),
where KP(projEnd7(M)) is the homotopy category of bounded complexes of projective
End7(M)-modules.

Theorem 9. Let w = s;,5;,---5; be a c-sortable element. For an integer 1 < j <
I, let m; be the number of integers 1 < k < j — 1 satisfying i; = ip. Then M =
EBé.zl H/Is”...sij ei;(my) is a tilting object in Sub?11,,.

Actually, the module M = @221 H/[Sil...si]_ ei;(m;) belongs to Sub”Il,,, since M cor-
responds to the cluster tilting object of SubIl, of Proposition 3 (d) by forgetting the
grading.

The first condition of tilting objects follows from Proposition 8 and calculating a pro-
jective resolution of M. The second condition of tilting objects follows from the following
Theorem which is shown in [2]. For a c-sortable element w = s;,s;, - - - s;, and ¢ € Supp(w),
let ¢; be the number of integers 1 < k <[ satisfying iy = 1.

Theorem 10. [2, Theorem 3.11] Let w = s;,8;, -+ i, be a c-sortable element. Then
@ie%(ﬂwei)ti_l is a tilting kQ'-module, where Q' is the full subquiver of () such that

Qo = Supp(w).



Example 11. Let @ be a quiver /1\ Then we have a graded algebra II = Ile; @
22— 3
[Teg @ Iles, and these are represented by their radical filtrations

1 2 3
/\ /.
3 3 31 1 2
' SRVAN /\/
31 2 1 2 3 2 3 1
YAV /N /N
123 1 3 3 1 2 312 3
AYATRYVAN ATRYAVA YVAVAY N
231 2 3 312 3 1 123 1 2
3123 1 2 123123 23 123 1
SN SN N N VAV YA

where numbers connected by solid lines are in the same degree, and the tops of the Ile;
are concentrated in degree 0.
Let w = s3s951535983, then we have a graded algebra I, = Il ,e; @ [1,e5 & 1L, e3,

1 2 3
/\ /" /
2 3 31 1 2
/ VA /\/
3 1 2 3 2 1
/\/ / \
2 3 3 3
/
3
and a tilting module

3
2 12
M=3® /el /\/ 1)
3 2 3

/

3
in Sub”Il,,, where graded projective IT,-modules are removed. The endomorphism algebra
M%W(M ) of M is given by the following quiver with relations

A — @ %b [ ] %ﬂt [ ] ba, = 0
Since the algebra kA/(ba) has global dimension two, we have a triangle equivalence

Sub”Tl,, ~ K®(proj kA/(ba)) ~ D" (kA/(ba)).
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A CHARACTERIZATION OF THE CLASS OF HARADA RINGS

KAZUTOSHI KOIKE (/M%)

ABSTRACT. One-sided Harada rings are certain artinian QF-3 rings, which can be re-
garded as a generalization of QF rings and serial rings (Nakayama rings). It is well-known
that every left Harada ring can be represented by a upper staircase factor ring of a block
extension of a QF ring. In this paper, we shall give a slightly different construction and
characterization of left Harada rings by characterizing the class of left Harada rings.

1. FF5E D HE%

FrRHER LD 20 QF-3 Ml 7 )V F Y ETH D, QF B serial B (HLER) O —f
fbe g ehnTE s, FHEROMEEPHER, Kzdos LTHUCHARSNTE
D, JHILE < OREN I ABSNTWS. - CRREERET 5. &5, JHEHE
THHEVIHEEIHFHAZTHL ZEDRHMSNTWSDT, AW (basic) G E DRE
#E5A5.

Definition 1. AR ZTH 7V F VB RPERBRTH 5 213, IROKM%2 2T ER
FIaREFE DR eES {6 |i=1,....m, j=1,....n(0)} 2BDI & E V.
(1) ETEDi=1,--- , mIZHLT, e RIGAFHE RMEETH 5.
(2) {f%}:‘.OJZ = ]-a T, .7 = 17 7”(1) -1 L:j‘j‘bf, J(einR) = 6i,j+lRR 75‘)312@
AR

Remark 2. L@ﬁ%i%ﬁfi‘x BARBRABRLIFIEINZIEDOZTNTH 5. REMERE, K
HER & A B 27 TR TH 5D, KX > CTEFEHE AREHEOHL&IZ—
BT B EeWREIN., FDEH, BOETRARFKAROWEIZE DWW -iid%2 T 254
TH, FEARCITERZ DL\, KX THERMAREERD, HWEDIIEE A ED
ARFEHEREOMETH 5.

EFEHBRIZDWTIROMBEEHEIM SN T WS,

Theorem 3 (K¥% [1, Chapter 4]). TR TOEAKLEFHEX, H5 QFEOTT Y 7K
RO EBEBRFRERETRINS.

ZZT7av ZHRIZDOVWTHHLTE I 5. —OEGE L AL O TREZLH TR R
5L, ROPBEAWPLEZERET, 22685 BERFHBREETLOTR2ES {e,e) D
B, RIIATHIRIL (€T AR1#)

A X
n= (v 3)

The detailed version of this paper will be submitted for publication elsewhere.



i’%)o flf:l/, A:€1R€1,B:€2R62,X:€1R€27Y:€2R€1 VC?)% 7\\|:|‘y 7?’1-\*(\:
&, MOE 5% REHFHAMRERT OWTERS DI L THL.

A A A X X AAAX X
JA) A A X X AAAX X

S=|JA) JA) A X X|cl|lA4 A A X X|=T
Y Y Y B B Y YY B B
Y Y Y JB) B Y YY B B

72712U, J(A),J(B) dradical £F. KIIZZDS%E ROT Oy ZHLKEIED, R(3,2) T
KUz, —OToy 7R FEBRIZERI NS, B, 71y ZHiKiEblow-up & &’
i35 ([4, Chapter 6]).

o578y ZHRFHELWE D TRV, —BICERPDUARETHD. £
7= Theorem 3 @ EMEERFIFIRIRIZOWVWTIE, BREWSE 1 T 7 NVOEBBEEKRD RS T
m<, KERHEREZEZOICED LS4 TTNTE D Z ERARENZRDPE DD IZL
o7z,

RIXDOEE, HEARNQFREER, 1EOREFLEZRIML-T 0y ZHiKkE,
SO THfl] T 7V X 2FRE MBS ORIV 1 7ZITNEL<82) 250D
BAED, HANEFRHERSED 2 5 A2 RN TS 282K U, TOX5 0B F2#E D&
Tk, TRTCOEFRMABEVPERIND L 2RREZTHD. £/, ZOWK
JHEIZDWT quiver 12 & 2 BRI THLU S EIET 5.

PAF, AEwIZBEWT, RIZHAZE DY REREEL, A RIBEMIZNLT, J(M)
& S(M)TENZEN M D radical & socle K. S;(M) (i =1,2,...) TM D i-th socle
2RLU, TIM)TM Dtop RS, ThOLT(M)=M/J(M) 23 %. Pi(R) T, EE
L7z RD1DDERFIENEEFETLDTRESEERT.

2. ERER & HI
FTEMBEIRARD. ZD7DITIE, FHEROMFICEWCTEELEZ#HZRLT, H5

BEAEE (RATT IR LAV 2 EH L THARITNIER 54\, R 2 RAR 28
THLE, ecPi(R) IKNHLT, BR, ZROFHBIZE > TED S,

f. = <J(§R) 611%%66> '

HOS2IZ R, B EARRPEERIRTH S, Pi(R) ={e1,...,€,...,6n}, e=¢,DEZE, R T
KI5 [1, Chapter 4] DFEKRDO RO 70y ZHLK R(1, -+ ,2,-++ 1) IZMIZR 57200, R, 1FIX
D2 DODFIHERNEFTLE S D,

(e 0y . (00
c=\lo o) T \o e)
INHIZDOWT, H R MEEE UT J(ER,) X eR. WD Lo TWb. HTIRARS quiver
DED»S5EH, RIFRIZeDAE— e ZRMULIERIRTHD L RRTILENTE .
IRDBEHXDERERTH 5.
Theorem 4. EAMEFHBREEKRD I S A% H L T5EE, HIFROMEE %27,
(1) H T RTOEAN QF BA Z ATV,
() ReH,e€Pi(R)%S5IXR. eHTHS.



(II) Re H'T, e fcPi(R)H
i) fRr IZABHTAHRW
7237518, R/S(eRg) € HTH5.
€H T, egePi(R)W
(i) eRp ZI AR TH 5;
(ii) eR/S(eRr) = J(gRr)
7237 51%, R/S(eRg) e HTH5.
Wz, HAFMEE (D-(IV) 2572 S RINDERD 2 S A TH 5.
Remark 5. (1) H O/MEX D, T RTOIARK AR HER X
o JLRM QF BRZ IS
o (ID), (III), (IV) DEEIEZ D RS
ZiizkoTHoNng. MEI)-(IV) 3AFEHEO D TR L RRd PN TE 5.
(2) SR ZEHIZT 2720 IV) ORBLE U72DS, ROVRMEDGESICHETT 5L, H X
FEREGATLED. REHITRMETRVWE WS KMEE2DFTEINE, HIXERE2EZF
AN

Theorem 4 DRI % HITEIAT 2 H11Z, RPMEEEL TEROFERERDIGED R, D quiver

DEEBRRTEL. 08, —HO 78y ZHKRD quiver ZHUZ DWW TIEILH [5] THRD 5
NTWBED, DK ST R, DI YRR HI A 5.
Proposition 6. K #1{K, Q = (Qo,Q1,s,t) AR quiver, [ 2B L ILE KQ DIFEA T
TIhEL, R=KQ/I£BL. i€ Qo z2FEEL, WindT s RDFMNEFELE e; £ T
5. ZOrE, R=R. ® quiver Q = (Qo, Q1) EHBATTNIIFRDELSIZLTEHX
505,

(

(i
%
(IV) R

(%)
o target Vi THWVWE IR Q DRIFZDEEQDEET S,
o target Wi THE LI QDFKa:j—ild, target B 1 IZEZT2a: ] 12 QD
Re95.
e QUi Mo i "D B R w1 = i EBD. (1 ~NDE, 1 PEDRIZINDAT
»H5.)
Qr={a|ae@tla)#i}U{da]|acQ,t(a) =1 U{w}.

(BB (FAEA T 7 NVDERIT)) target 21 2 $5 QDK a:j — i lZHLT, QD
Ka:j—oilw i—iZ2BARLEQDHEwWwh:j —i%alffIT5. QDEFRR (I
DERTT) IFTOEE Q OBUER ([ DAEWIL) THDH L RAT. 7720, target Hi TH
5&5@Q@E§1%ﬁ2lalpl (Ozl T — LiQo)%, ok — Ji ciQ@iﬁ_) IZ2oWTig,

Z 1 Cld Theorem 4 DRPLEFER L &£ 5.
Example 7. (1) K Z{k& L, A% quiver & BfRA

a B
QA : 132337 {(50(7 757 ay — Bé}
bl §



EHRIND QF ZEeT5. EFHED (Theorem 4 (1) £ ) AFLEFHERTH 5. ¢
(i=1,2,3) ZTHM TG T DFIEREE L LT D, BMIEE T (e;R) % “” THREIX, &
E%%'J%T SHA A TEED Loewy FINFIRD £ 512725,

Aa=10 2 2]

1 L2 3.
2 .3 2
1 3

2

(2) AIZIFIEREE T ez ZIRIMUZER B = A, % Z 5. Theorem 4 (II) 1%, B3/
JRHERTH B Z % FRLTWAB. Proposition 6 & D B D quiver & BfRAITIRD@ED &
A

a B

S I R Rt

NG
\g

72U 6B = wd THB. EERISEIA B IEE% Loewy FITET EIRD & 5 (12

5. (O]e0B&DCPDTATTIVELTHSHD. )

Bp = D 2 &b

N

3]

— DD
WL — W

/
1
\

Mwww>

2/

[C]|eo o wor wo

6 = ey RIHM SIS T B FIREF LT DL, ;B (i =1,2,3) LAHM, J(esB) =
e3B T, HEMIZ BI3AFRHBEOEHRZN L TW5.

(3) 2R HER B IZDWTC, e3BIEASIM, S(es3B) = T(e3B) T, Bes X ASHATIXZR N
DT, Theorem 4 (III) & b, FRE C = B/S(e3B) iﬁo“fn)ﬁmfﬁ (FEBZIX QF) 1272
3. C @ quiver 1& B®D quiver YA UTH Y, BRRIFwifw 2EMLZHDTHS. H
BRI C RIS, Bp DT Q] OHA TH -6 DTH 5.

(4) ZFERHEE CIZDWT, e3CIRRARNT, e30/5(e;0) = J(e3C) TH S5, Theo-
rem 4 (IV) & 0, FIREE D = C/S(e5C) = B/(S(e3B) & S(e3B)) bEFHER 725, D
® quiver b B D quiver L[H U TH H, BIFERIFwifw & 0w Z2EMLAEZBDOTHS. H
WERIESRIA D Rk, Bp X hz[Q]e [JOBATH 726D TH 5.

Remark 8. A & IXEHEEFRR VD, Example 7 DAEFEHER C O KEIRICIZ61ZFF L.
EHILBIZBWT, KERILH 3L NO AR HER X serial £725 Z £ %R U (Theorem 2.1),
6 LA E DAL DM 2n 125 U T gl.dim R = 2n & 72 5 serial T2 \W 2R HERD ] % #ERE L
7z (Example 2.2). KJEGIRICH 6 TH 5 serial TRWERHERNC THO, SALDOED
i, Example 7D X512, C ZIGIIREELE VEMITIIATRIRERZIMA2 ZI2L5T
JRANAIZHERL U 72 (Remark 2.1 21R).

BE, KERITTWAERT serial THRWEH DX, EHIXIOHIL LETWRV. KERIG
AR5 THD &K% serial TRWERHBRPFIET 20E I N, 2505 TVR.



3. ME (IID), (IV)

ZNTIE, Theorem 4 OFEERS DFEHIZ DOWTIER K S, HE (1) IFEHTH 5. ‘Iﬁ
() X AEFRBEEDO 70y ZIEKOEFREEOR IS GE&ETH Y, —MNZIET, FlAIX
K [1, Theorem 4.2.2) THRRSNT WS, 7z, HIKNHERIZHENPDD I ENTES.
L7=hio T, HEEE (1), (IV) AR 75 5.

RENMTLF VE, e € Pi(R) TeRp BAHNTHL LTS, ZOLE, S(eR) =
T(fR), S(Rf) X T(Re) £725 & 57 f € Pi(R) DMFAEL, rRfIGIANKTHS. Dk
5 7% (eR, Rf) % i-pair LIS, F72 S(eR) = S(Rf) Th 206 Z W« 77
VT, EAVTNONEEE LTHHEMTHS.

P, i-pair @fﬁ%/‘\ i)?ﬁﬂf}ﬂ@ﬁ;m BWTHIFICHELREE ZR7-T. UTTH,
RMEFHBRDOGEICEARE RICH T 2 EBMS A RINEE gR O AFMHZ B2,
FERRIZ 1L i-pair ’iﬂﬁb\fcﬁﬁﬂ@"é

Theorem 4 ® (II1), (IV) 1%, R2PAEFRHEROLEEDOERE R = R/S(eR) O/ FHEM %
HoTWS. RD Lemma l& eR WA TH 2 &\ D FMEDATHDY L.

Lemma 9. R Z & AWEFHEL U, eRp ZAHH (e € Pi(R) THB LT 5. FIRE
R=R/S(eR)IZ2\WT, IR H LD.
(1) gR = J(hR) (9,h € Pi(R)) D& &,
(a) h#eThHNIE, gR=J(hR) TH 5.
(b) h=e THNIE, gRRIFAFHTH 3.
(2) gRr AW (g € PI(R)) D& &, g#eThNE, gRr b AFINTH 5.

—fiz, AT IVF Y RPEFHETH 57-20121%, LED g € Pi(R) I LT, gR
BAFTHZh, % hcPi(R)IZHLTgR = J(hR) THHZENRBEFHTH S
M5, ZOLemma &V, eRVAHKUD L E, FIRE R = R/S(eR) 1570 2R HER
EWZ WG, LA oT, BIRERIZBWVWT eR P AN EZ X eR = J(gR)
(g € Pi(R)) &7 205 L 72 5. Theorem 4 (IV) (3&H L R 5 5H7%DT,
BH(IV) &0 0o 7z,

Lemma 10. R 2 HARWAFHEL U, eRp I ABT S(eR) X T(fR), fRpIEAHH
T2 < fR= J(gR) (e, f,g € Pi(R)) TH B LT 5. BRER = R/S(eR) IZ2VT, X
LN ARVACR

(1) RRg WA TIHRNE &, eRp IIARHNTH 5.

(2) RRg WABIID & &, S(hR) = T(gR) (h € Pi(R)) £ 5. hy = h,hy,... . hy €
Pi(R) %, J(h,R) 2 hiytR(i=1,...,n—1), J(h,1R) IZ5& E@fm\ ThH?
It ThIE, eRx J(h,R) DY NLD.

U72%35 T, Theorem 4 (II1) DRED FTlE, eR E/2RHER DS % 72 3 54

RMEEZRBDT, (NI) HEA 5. 2B, Lemma 9IZHARS L Lemma 10 DFEHIZES

TR, W O»D#EfiiZ BnEL T 5.

Theorem 4 (IIT), (IV) Z4£ DK LT 2 LIXDID 5. HBTHWS L5122 0FEHRIX
FHTH Y, EANAEFHEORREN OV OHOLFRHEIZRS0E2RLTW5.

Theorem 11. R # EANEHHERE U, e1,...,e,, f € Pi(R) &R Zji7-3 LT 5.

(1) e RIFABIT, S(e1R) 2 T(fR),
(2) J(e;R) Z2e; R (i=1,...,n—1).



L fFRBEASETHRINE, R/K, (i=1,-- ,n) bERMETHS. 72701,
Ki=S(eiR) & & S(eR)
rY¥5.

Remark 12. R D3 EREAMEFRHERD & &, Theorem 11 DFHET, BT LE fFRBAHH
T TH,

S(e1Rg) @ --- @ S(enRr) = Si(rRf)
ThdHZEePHoENTWVS

4. H DE/NE
H DENEIZDWTIE, IRD 2 DD Lemma D> HHED.

Lemma 13 ([2, Proposition 2.15]). R ZHEANAFHHE, fR (f € Pi(R)) IZAHK T
WeTb, ZoeE, (1-fR(1— f)IFEFREEE 5.

Lemma 14 ([2, Lemma 2.6 and Lemma 2.7]). R ZBEARKFHEL, fR = J(eR) (e, f €
Pi(R) £95. R=(1-f)R(1—-f), R=R, &BK.
(1) Re AHHTHRNWE E, RYRTH5.
(2) Re BABIIO L &, $2i> I WFELTRY R/K, Ths. 727U, K, = S,(Ré)
I& Theorem 11 DD & T 5.

EFHEROMEIZBWT, 215D Lemma (ZHEFICEETH S, Lemma 131, 526
N-EFREED QF BT, AAFN TR WERENS MBS SIS T B FHIAR &
HFLEADBRWNT ] L-b0H, BOEFEHRTHLZ 2 ERLTWA. Lemma 14
i, %m&:ﬁ)éﬁﬁﬁ’\%#ﬁ%ﬁﬂﬂﬁﬂ X, SCOLEFHED fExX] TEHZL%RLT
W3, ZhoEAWNIE Theorem 4 128132 H DBR/IMENRESZ D, TOEIZZINSD
Lemma % # TR & 5.

Example 15. R % A5 (4,4,3) ZH D serial BRE U, ey, e9,e3 XI5 T DERFIHER E
BB, CDLE R Y R IEAMIIT, J(oR) = esRThHD. RISKEETH
25 Lemma 1325EHATE DD T, R = (1—e3)R(1 —e3) (&R HER (FBRIT 13 serial BR)
TH5. R=R., LB, Theorem 4 (II) & b B (serial B}) TH 5. Lemma 14 1%,

R= R/( (BQR) D S(E’AQR))

LT, RIZFR =(1—-¢e)R(1— )#b@mf%é LERRLULTWS. EEERSRRAM
HEXRTZE, ROEY T
® 20

Ry = 3, Rp=1@®2, Rz=1a20a
1 2
2 1

[Nl )

9
2
3
1
2

— W DN =
— DN DN

D> (DD — D>

2
2
1

b

EE, RIZBWT[|OHATEH>T2 2 32E—-HMIhiE, RIZ—HT 5.

Z N TlE Theorem 4 12815 H DBR/NMEDFEAZ 52 X 5.




Proof (Theorem 4 |27 % H O&/ME) . H' % Theorem 4 OWHE (1)-(1V) &7z 3
BOIIALd5. HCH 2REREEWV. ReH L5, Re M ZERFIHNESEL
DERERITEENDLOME #Pi(R) (T 2RNETRT. RAQF THNIK, ME
DXV ReH THB1S, RIFQF THRWVWEIRET 5.

RIEQF THWHS, e, f € Pi(R) T fR J(eR) 7526 DOWEET 5. R = (1 -
HR(—f)&H< L, Lemma 13 &0 RIIAEFHEERTH S, L7ht> TRENEDRE &
DR eM TH5. £>oTR=R &BIJIE, ME M) LY ReH TH5.

Re BABIITHR\NE &, Lemma 14(1) &Y R= Re W %2135, Re DAHMHD & X,
Lemma 14(2) &Y R R/K; (i > 1) TH 5. L7=A>T, Theorem 11 (Z A IFMEE (I11),
(IV) 28V ELHWTESNTWVWS) &V, R R/K, € H B Hh 5.

412 Theorem 4 D —2DJEHIZDOWTHRS, [21I2BWVWT, EHIFZTRTOLEFH
EIZBE S It (almost self-duality) & FEEN 2 B SR (self-duality) D —f#fbz
DZ &MUz, ZZTOEMHIE, ZFRHEEIZET S Lemma 13, 14 239 2 & &, #H
CACFHED N DPOWEB 2 RT Z 2 IZL > TEH X725, Theorem 4 DELH S I1FIRD &
HIIZRRBZEMNTE S,

Example 16 ([2, Theorem 3.2]). #{H B MEZE & DHEARKT IV F VED 2 5 2 AL,
Theorem 4 DME (1)-(IV) 2729, L7225 T Theorem 4 D H DI/ MEL D, HC A
Thd. Tbb, TRTO (FAR) AR HERIIEE A MEZ £ D.
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BASICALIZATION OF KLR ALGEBRAS

MASAHIDE KONISHI

ABSTRACT. We describe an algorithm to basicalize KLR algebras arising from quivers.

1. PRELIMINARIES

Let k be field and A be a finite dimensional or ”good” infinite dimensional connected
algebra over k. Throughout this paper, an algebra is associative and with an unit element
14. Then A is decomposed into indecomposable projective left A-modules P; as left A-
module, where P; is Ae; for a complete set of primitive orthogonal idempotents :

n

(i) Zei = 1g4,

i=1
ii) if e; = f + g where fg=gf =0, f>=f, g> =g then f =0 or g =0,
i

(
(11)(1) = €,
(iv) e;e; =0 for i # j.

We call A basic if P, 2 P; for i # j. Even if A is not basic, we can basicalize A like
that. Choose some primitive idempotents e;, to satisfy the following property: for every
e; there exists exactly one r such that P, = P; . Set e the sum of those idempotents then
A := eAe is basic algebra. Note that A and A are Morita equivalent therefore module
categories of those two are equivalent.

Let A be a basic algebra, then we can obtain a connected quiver () and an admissible
ideal T of a path algebra kQ such that A = kQ/I. Our final destination is to describe an
algorithm to obtain such @) and I for KLR algebras.

Let T' be a finite connected quiver without loops and multiple arrows. Let Iy =
{1,2,...,n}. Let v be n-tuple (v1,vs,...,v,) of non-negative integers. In general, KLR
algebras Rr(v) is defined depend on v however in this paper we fix v; = 1 for every i. Let
I, ={0(1,2,--- ,n)loc € S}, s, = (k,k+1) € S,,. Fori € I, describe i as (i1, 42, .. .,1,).
Definition 1. A K LR algebra Rr is defined from these generators and relations.

e generators:

{e@lie Lt U{y, - un} U{tn, - dna}.

e relations:
e(i)e(j) = dije(i), Y _e(i) =1,
icl,
yee(i) = e(D)y, Yre(i) = e(sii)iy,
YrYr = YiYk,

The detailed version of this paper will be submitted for publication elsewhere.
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Uiy = yibe (L # Kk + 1),
VkUk+1 = Yelks Yer1¥e = Vi,
Yt =y (k=1 > 1),
Ve¥ri1¥e = Vi1 VeVt
e(i)

2a(3) — (Yr+1 — yr)e(i)

viell) = (9 — posr)eli)
(Y1 — Yr) Wk — Yrs1)e(i)

ik 9 k1)
ik — lky1)
Qg Gpy1)
ik > lky1)

R e e L

Note that the first (resp. second) equation shows e(i)s are orthogonal (resp. complete).
Moreover, Ry is Z-graded algebra by deg(e(i)) = 0, deg(yx) = 2, deg(wy) = 01if i, > g4,
1if 1 — ik—}—l or 1y < ik+1, 2 if 1 > ik+1.

2. THE STARTING POINT
As the first step, we define a class of quiver called gemstone quiver.

Definition 2. A gemstone quiver G,, is defined as follows.
e vertices: 1€ ™.
® AITOWS:
—ylii—siforeachie I, and 1 <k <n,
—wli:i—>sliforeachi61"and1§l<n.

Then we obtain following lemma.

Lemma 3. There exists an epimorphism kG, — Rr by i — e(i), yi — e(i)yre(i),
i e(i)ye(si). Moreover, kG, /Ir = Rr where Iy is an ideal obtained by rewriting
relations of Rr by the above correspondence.

Note that It is not admissible ideal since there are those relations : ¢?e(i) = e(i) if

ik 4 ka1, (e — yr)e() if iy — ika1, (yp — yre1)e(d) if ix < ixr1. Therefore we need
some processes except for some cases. The following corollary is straightforward from the
next section.

Corollary 4. LetT" be a quiver with 2-cycle for each two vertices. Then G,, and It present
Rr.
3. PROCESSES

We should start from removing this type of relations: ¢?e(i) = e(i) if if, ¢ ix11. In fact,
that relations are useful to determine an isomorphic class of indecomposable projective
modules.

Lemma 5. All e(i) are primitive. Therefore Rre(i) is indecomposable.
Lemma 6. Rre(i) & Rre(sii) if and only if i 4 ir1

Using this lemma repeatedly, we can obtain the following property.
Let GG, be a graph obtained by removing loops and replacing each 2-cycles by edge on
G,. Cut edges between i and s;i if there exists some arrows between 4, and .7 on I,
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denote this cut graph Gr. Then the followings are equivalent:

(a) i and j are on the same connected component on Gr,

(b) Rre(i) = Rre(j).

We get a new quiver by identifying the vertices of G,, for each connected components of
Gr.

To rewrite relations, we should pick up one i from each connected components. Then
vertices i means e(i) and loops y! means e(i)yye(i). However the meaning of two cycles
for two vertices i and j are bit complicated. Since there are two cycles between them,
there exists some paths from i to j in G,, constructed from three parts:

(i) a path in connected component with i, from i to some i/,
(ii) an arrow i’ to j’ where j' picked from a connected component with j,
(iii) a path in connected component with j from j’ to j.

We pick two minimal paths for each two cycles between i and j to be inverse each other.
Then the arrow i to j means e(i)ye(j), where ¢, is a multiplication of ¢s in G,, taken
as above. Note that only part (i) has positive degree in that path.

Then relations for this quiver are obtained from G,, by rewriting with the correspon-
dence above. However there still remains a problem from these type of relations:

Yie(i) = £(ykr1 — yr)e(i) if there exists one arrow between iy, and gy ;.

The problem is on right hand side, it must not be in admissible ideal since it’s just a sum
of two arrows. Therefore we delete arrows by rewriting relations as follows:

yr1e(i) = yre(i) = vje().

After that process all relations are obtained from a linear combination of paths of length
greater than 2. Therefore it’s completed.

From the construction above, we can obtain some combinatorial observations such as :

Corollary 7. The quiver for Rr has at least one loop for each vertex.

4. CYCLOTOMIC CASE
We can use previous method for cyclotomic case.
Definition 8. For A = (A, Ay, -+, \,) € Z%;, a cyclotomic ideal I" is generated by
{yf”e(i)|i € In}.
We call a quotient algebra R = Rp/I* a cyclotomic KLR algebra.

Only what we do is adding relations from that generators. However there is A\ < 1,
we need rewrite something. If there is Ay = 0, we need to trim some vertices by using
following lemma.

Lemma 9. In R}, e(i) = 0 if and only if \;, = 0 or there exists k such that for every
s < k there is no arrow between iy and i, on I'.

We trim i with e(i) = 0 and rewrite relations including i.

The remaining problem is about this type of relations: y;e(i) = 0. This happens if
Ai; = 1. To avoid this relation, delete arrows 3! and rewrite relations including i. Then
it‘s completed.
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THE ARTINIAN CONJECTURE
(FOLLOWING DJAMENT, PUTMAN, SAM, AND SNOWDEN)

HENNING KRAUSE

ABSTRACT. This note provides a self-contained exposition of the proof of the artinian
conjecture, following closely Djament’s Bourbaki lecture. The original proof is due to
Putman, Sam, and Snowden.

1. INTRODUCTION

This note provides a complete proof of the celebrated artinian conjecture. The proof is
due to Putman, Sam, and Snowden [6, 7]. Here, we follow closely the elegant exposition
of Djament in [3]. For the origin of the conjecture and its consequences, we refer to those
papers and Djament’s Bourbaki lecture [4]. In addition, the expository articles by Kuhn,
Powell and Schwartz in [5] are recommended.

There are two main result. Fix a locally noetherian Grothendieck abelian category A,
for instance, the category of modules over a noetherian ring.

Theorem 1.1. Let A be a ring whose underlying set is finite. For the category P(A) of
free A-modules of finite rank, the functor category Fun(P(A)°P, A) is locally noetherian.

This result amounts to the assertion of the artinian conjecture when A is a finite field
and A is the category of A-modules.
The first theorem is a direct consequence of the following.

Theorem 1.2. For the category T of finite sets, the functor category Fun(I'°P, A) is locally
noetherian.

The basic idea for the proof is to formulate finiteness conditions on an essentially
small category C such that Fun(C°, A) is locally noetherian. This leads to the notion
of a Grobner category. Such finiteness conditions have a ‘direction’. For that reason
we consider contravariant functors C — A, because then the direction is preserved (via
Yoneda’s lemma) when one passes from C to Fun(C°P, A).

2. NOETHERIAN POSETS

Let C be a poset. A subset D C C is a sieve if the conditions + < y in C and y € D
imply z € D. The sieves in C are partially ordered by inclusion.

Definition 2.1. A poset C is called

(1) noetherian if every ascending chain of elements in C stabilises, and
(2) strongly noetherian if every ascending chain of sieves in C stabilises.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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For a poset C and z € C, set C(x) = {t € C | t < z}. The assignment z — C(x) yields
an embedding of C into the poset of sieves in C.

Lemma 2.2. For a poset C the following are equivalent:
(1) The poset C is strongly noetherian.
(2) For every infinite sequence (z;)ien of elements in C there exists i € N such that
xj < x; for infinitely many j € N.
(3) For every infinite sequence (x;);en of elements in C there is a map «: N — N such
that i < j implies (i) < a(j) and Toj) < Tag)-
(4) For every infinite sequence (x;);en of elements in C there are i < j in N such that
x; < x;.
Proof. (1) = (2): Suppose that C is strongly noetherian and let (z;);en be elements in C.
For n € N set C, = |,.,, C(x;). The chain (C,)nen stabilises, say C, = Cy for all n > N.
Thus there exists ¢ < N such that ; < ; for infinitely many i € N.
(2) = (3): Define a: N — N recursively by taking for a(0) the smallest ¢ € N such that
x; < z; for infinitely many j € N. For n > 0 set
a(n) =min{i > a(n —1) | z; < x; < T4(n—1) for infinitely many j € N}.

(3) = (4): Clear.

(4) = (1): Suppose there is a properly ascending chain (C,)nen of sieves in C. Choose
%, € Cyupq \ Cp for each n € N. There are ¢ < j in N such that z; < z;. This implies
x; € Cix1 C C; which is a contradiction. O

3. FUNCTOR CATEGORIES

Let C be an essentially small category and A a Grothendieck abelian category. We
denote by Fun(C°, A) the category of functors C°® — A. The morphisms between two
functors are the natural transformations. Note that Fun(C, A) is a Grothendieck abelian
category.

Given an object z € C, the evaluation functor

Fun(C®, A) — A, F — F(x)

admits a left adjoint

A — Fun(C?, A), M — MI[C(—,x)]
where for any set X we denote by M[X] a coproduct of copies of M indexed by the
elements of X. Thus we have a natural isomorphism
(3.1) Fun(C°?, A)(M[C(—,2)], F) = A(M, F(x)).
Lemma 3.1. If (M;)es is a set of generators of A, then the functors M;[C(—,x)] with
i €1 and x € C generate Fun(C?, A).
Proof. Use the adjointness isomorphism (3.1). O

A Grothendieck abelian category A is locally noetherian if A has a generating set of
noetherian objects. In that case an object M € A is noetherian iff M is finitely presented
(that is, the representable functor A(M, —) preserves filtered colimits); see [8, Chap. V]
for details.
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Lemma 3.2. Let A be locally noetherian. Then Fun(C,.A) is locally noetherian iff
MIC(—,x)] is noetherian for every noetherian M € A and x € C.

Proof. First observe that M[C(—, z)] is finitely presented if M is finitely presented. This
follows from the isomorphism (3.1) since evaluation at x € C preserves colimits. Now the
assertion of the lemma is an immediate consequence of Lemma 3.1. O

4. NOETHERIAN FUNCTORS

Let C be an essentially small category and fix an object x € C. Set

=| Jet ).

teC
Given f,g € C(z), let (f) denote the set of morphisms in C(z) that factor through f, and
set f <, gif (f) C (g). We identify f and g when (f) = (¢g). This yields a poset which
we denote by C(z).
A functor is noetherian if every ascending chain of subfunctors stabilises.

Lemma 4.1. The functor C(—,z): C°P — Set is noetherian iff the poset C(z) is strongly
noetherian.

Proof. Sending F' C C(—,z) to | J;cc F(t) induces an inclusion preserving bijection be-
tween the subfunctors of C(—,z) and the sieves in C(x). O

For a poset T let Set ! T denote the category consisting of pairs (X, ) such that X is
aset and £&: X — T is a map. A morphism (X,¢§) — (X',¢’) isamap f: X — X’ such
that £(a) < &' f(a) for all a € X.

A functor CP — Set ! T is given by a pair (F, ¢) consisting of a functor F': C°® — Set
and a map ¢: | |, F'(t) — T such that ¢(a) < ¢(F(f)(a)) for every a € F(t) and
f:t'—=tinC.

Lemma 4.2. Let T be a noetherian poset. If C(—,x) is noetherian, then any functor
(C(—,2),¢): C® — Set 1 T is noetherian.

Proof. Let (Fy,, ¢n)nen be a strictly ascending chain of subfunctors of (F,¢). The chain
(F)nen stabilises since C(—,z) is noetherian. Thus we may assume that F, = F for
all n € N, and we find f, € | |,cc F(t) such that ¢,(f,) < ¢py1(fn). The poset C(z)
is strongly noetherian by Lemma 4.1. It follows from Lemma 2.2 that there is a map
a: N — N such that ¢ < j implies (i) < a(j) and fo(;) <z fa@)- Thus

¢a(n)(foz(n)) < ¢a(n)+1(fa(n)) < ¢a(n+1)(fa(n)) < (ba(nJrl)(foz(nJrl))'

This yields a strictly ascending chain in 7, contradicting the assumption on 7. O

Definition 4.3. A partial order < on C(z) is admissible if the following holds:
(1) The order < restricted to C(¢, x) is total and noetherian for every t € C.
(2) For f, f' € C(t,z) and e € C(s,t), the condition f < f’ implies fe < f’e.
Fix an admissible partial order < on C(z) and an object M in a Grothendieck abelian
category A. Let Sub(M) denote the poset of subobjects of M and consider the functor

C(—,2) I M:C® — Set1Sub(M), t— (C(t,x), (M)fec(t,x)).
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For a subfunctor F C M[C(—,z)] define a subfunctor F' C C(—,z) ! M as follows:
Frem — Setsub(M), s (C(ta). (e (MIC(E2),] 0 F(0) )

where C(t,2)f = {g € C(t,x) | f < g} and 7p: M[C(t,x)s] — M is the projection onto
the factor corresponding to f. For a morphism e: ¢ — ¢ in C, the morphism F'(e) is
induced by precomposition with e. Note that

T (MIC(t, x) ] V() C mpe(MIC(H, 7)) N F(T))
since < is compatible with the composition in C.

Lemma 4.4. Suppose there is an admissible partial order on C(x). Then the assignment

which sends a subfunctor F C M[C(—,z)] to F preserves proper inclusions. Therefore
M[C(—,z)] is noetherian provided that C(—,z) ! M is noetherian.

Proof. Let F C G C M[C(—,z)]. Then F C G. Now suppose that F' # G. Thus there
exists ¢ € C such that F'(t) # G(t). We have C(t,2) = U ¢y C(t @)y, and this union is
directed since < is total. Thus

Fty= > (M[C(t,n)]] N F(1))
feC(t,x)
since filtered colimits in A are exact. This yields f such that
MIC(t, 2),] N F(t) £ MIC(t, )] N G(@).

Choose f € C(t,x) maximal with respect to this property, using that < is noetherian.
Now observe that the projection 7; induces an exact sequence

0— Z (M[C(t,2) ) N F(t)) — F(t) — 7 (M[C(t,z);] N F(t)) — 0
f<g
since the kernel of ; equals the directed union . MI[C(t,z),]. For the directedness
one uses again that < is total. Thus

7 (MIC(t,2)7] 0 F(1) # mp(MIC(t, )] N G (1))
and therefore F # G. O

Proposition 4.5. Let v € C. Suppose that C(—,z) is noetherian and that C(x) has an
admissible partial order. If M € A is noetherian, then M[C(—,x)] is noetherian.

Proof. Combine Lemmas 4.2 and 4.4. O

5. GROBNER CATEGORIES

Definition 5.1. An essentially small category C is a Grobner category if the following
holds:

(1) The functor C(—, z) is noetherian for every = € C.

(2) There is an admissible partial order on C(x) for every x € C.

Theorem 5.2. Let C be a Grébner category and A a Grothendieck abelian category. If
A is locally noetherian, then Fun(C°P, A) is locally noetherian.
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Proof. Combine Lemma 3.1 and Proposition 4.5. ]

Example 5.3. (1) A strongly noetherian poset (viewed as a category) is a Grobner
category.

(2) The additive monoid N of natural numbers (viewed as a category with a single
object) is a Grobner category. Let A be the module category of a noetherian ring A.
Then Fun(N°P, A) equals the module category of the polynomial ring in one variable over
A. Thus Theorem 5.2 generalises Hilbert’s Basis Theorem.

6. BASE CHANGE
Given functors F, G: C°? — Set, we write F' ~» G if there is a finite chain
FP=Fy—>F —<F,—»- -+ F,_,—F, =G
of epimorphisms and monomorphisms of functors C° — Set.

Definition 6.1. A functor ¢: C — D is contravariantly finite® if the following holds:
(1) Every object y € D is isomorphic to ¢(z) for some z € C.
(2) For every object y € D there are objects x1,...,x, in C such that

The functor ¢ is covariantly finite if ¢p°P: C°P — D°P is contravariantly finite.
Note that a composite of contravariantly finite functors is contravariantly finite.

Lemma 6.2. Let f: C — D be a contravariantly finite functor and A a Grothendieck
abelian category. Fiz M € A and suppose that M[C(—, )| is noetherian for all z € C.
Then M[D(—,y)] is noetherian for all y € D.

Proof. A finite chain
|_|C(—7$i) =l —» P —F - = F_ «—F,=D(¢—,y)
=1

of epimorphisms and monomorphisms induces a chain

HM[C(-,.Z’Z)] :F‘O%F_’l <—<F_‘2Hé "'_»anl HFn:M[D((ﬁ_ay)}
i=1

of epimorphisms and monomorphisms in Fun(C, A). Thus M[D(¢—,y)] is noetherian.
It follows that M[D(—,y)] is noetherian, since precomposition with ¢ yields a faithful and
exact functor Fun(DP, A) — Fun(C, A). O

Proposition 6.3. Let f: C — D be a contravariantly finite functor and A a locally noe-
therian Grothendieck abelian category. If the category Fun(C°P, A) is locally noetherian,
then Fun(D°P, A) is locally noetherian.

Proof. Combine Lemmas 3.2 and 6.2. O

IThe terminology follows that introduced by Auslander and Smalg [1] for an inclusion functor.
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7. CATEGORIES OF FINITE SETS

Let I" denote the category of finite sets (a skeleton is given by the setsn = {1,2,...,n}).
The subcategory of finite sets with surjective morphisms is denoted by I'yy.. A surjection
f:m — nis ordered if i < j implies min f~'(i) < min f7'(j). We write T'ss for the
subcategory of finite sets whose morphisms are ordered surjections. Given a surjection
f:m — n, let f': n — m denote the map given by f'(i) = min f~'(i). Note that
fft=id, and gf = f'¢' provided that f and ¢ are ordered surjections.

Lemma 7.1. (1) The inclusion Tgyy — T is contravariantly finite.
(2) The inclusion T'os — Ty 45 contravariantly finite.

Proof. (1) For each integer n > 0 there is an isomorphism

|_| Fsur(fv m) 1> F(7> Il)
m<—n
which is induced by the injective maps m — n.
(2) For each integer n > 0 there is an isomorphism

Fos(_7n) X 6n ; Fsur(_7n)

which sends a pair (f,0) to of. The inverse sends a surjective map g: m — n to (771g, 7)
where 7 € &,, is the unique permutation such that ¢'r is increasing. ]

Fix an integer n > 0. Given f,g € I'(n) we set f < g if there exists an ordered
surjection h such that f = gh.

Lemma 7.2. The poset (I'(n), <) is strongly noetherian.

Proof. We fix some notation for each f € I'(m,n). Set A\(f) = m. If f is not injective,
set
p(f) =m —max{i € m | there exists j < i such that f(i) = f(j)}

and 7(f) = f(m — u(f)). Define f € T'(m — 1,n) by setting f(i) = f(i) for i < m — u(f)
and f(i) = f(i + 1) otherwise.

Note that f < f. Moreover, u(f) = u(g), 7(f) = 7(g), and f < g imply f < g.

Suppose that (I'(n), <) is not strongly noetherian. Then there exists an infinite se-
quence (f,)ren in I'(n) such that ¢ < j implies f; £ f;; see Lemma 2.2. Call such a se-
quence bad. Choose the sequence minimal in the sense that A(f;) is minimal for all bad se-
quences (g,)ren With g; = f; for all j < i. There is an infinite subsequence ( fu())ren (given
by some increasing map a: N — N) such that ¢ and 7 agree on all f, (), since the values
of p and 7 are bounded by n. Now consider the sequence fo, fi,. .., fa©)-1 fa(0)7 fau), e
and denote this by (g, ).en. This sequence is not bad, since (f,),ey is minimal. Thus there
are i < j in N with g; < g;. Clearly, j < «(0) is impossible. If i < a(0), then

fa(i-a@) < fag—at0) = 95 < 9i = i
which is a contradiction, since i < a(0) < a(j — a(0)). If i > a(0), then fu;—a@) <
fa(i—a(0)); this is a contradiction again. Thus (I'(n), <) is strongly noetherian.

Proposition 7.3. The category Iy is a Grobner category.
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Proof. Fix an integer n > 0. The poset ['ws(n) is strongly noetherian by Lemma 7.2, and
it follows from Lemma 4.1 that the functor T',s(—, n) is noetherian.

The admissible partial order on I's(n) is given by the lexicographic order. Thus for
f,9 € Tos(m, n), we have f < g if there exists j € m with f(5) < g(j) and f(i) = g(7) for
all i < j. O
Theorem 7.4. Let A be a locally noetherian Grothendieck abelian category. Then the

category Fun(T'°P, A) is locally noetherian.

Proof. The category I's is a Grobner category by Proposition 7.3. It follows from The-
orem 5.2 that Fun((T'ss)°P, .A) is locally noetherian. The inclusion I'ps — I' is contravari-
antly finite by Lemma 7.1. Thus Fun(T'°?, A) is locally noetherian by Proposition 6.3. O

8. THE ARTINIAN CONJECTURE

Let A be a ring. We denote by P(A) the category of free A-modules of finite rank. If
A is finite, then the functor I' — P(A) sending X to A[X] is a left adjoint of the forgetful
functor P(A) — I

Lemma 8.1. Let A be finite. Then the functor T — P(A) is contravariantly finite.
Proof. The assertion follows from the adjointness isomorphism
P(A)(A[X],P) =T (X, P). O

Theorem 8.2. Let A be a finite ring and A a locally noetherian Grothendieck abelian
category. Then the category Fun(P(A)°P, A) is locally noetherian.

Proof. Combine Theorem 7.4 with Lemma 8.1 and Proposition 6.3. O

9. FI-MODULES

The proof of the artinian conjecture yields an alternative proof of the following result
due to Church, Ellenberg, Farb, and Nagpal.

Let I'in; denote the category whose objects are finite sets and whose morphisms are
injective maps.

Theorem 9.1 ([2, Theorem A]). Let A be a locally noetherian Grothendieck abelian
category. Then the category Fun(I'y;, A) is locally noetherian.

Proof. The following argument has been suggested by Kai-Uwe Bux. Consider the functor
¢: Tos = (I'inj)°® which is the identity on objects and takes amap f: m — n to fn—m
given by f'(i) = min f~1(i). This functor is contravariantly finite, since for each integer
n > 0 the morphism

FOS(—,I'I) X 6n — Finj(n,d)—)

which sends a pair (f, o) to f'o is an epimorphism.
It follows from Proposition 6.3 that the category Fun(I'y,;, A) is locally noetherian, since
Fun((Tys)°?, A) is locally noetherian by Proposition 7.3 and Theorem 5.2. O
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NOTE ADDED IN PROOF

After completing this paper I found that Theorem 5.2 is precisely the statement of
Theorem 3.1 in [G. Richter, Noetherian semigroup rings with several objects, in Group
and semigroup rings (Johannesburg, 1985), 231-246, North-Holland Math. Stud., 126,
North-Holland, Amsterdam, 1986].
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HALF EXACT FUNCTORS ASSOCIATED WITH GENERAL HEARTS
ON EXACT CATEGORIES

YU LIU

ABSTRACT. We construct a half exact functor from the exact category to the heart of a
cotorsion pair. This is analog of the construction of Abe and Nakaoka for triangulated
categories. When the cotorsion pair comes from a cluster tilting subcategory, our half
exact functor coincides with the canonical quotient functor from the exact category to
the quotient category of it by this cluster tilting subcategory. We will also use this half
exact functor to find out the relationship between different hearts.

Key Words:  exact category, abelian category, cotorsion pair, heart, half exact func-
tor.

1. INTRODUCTION

Cotorsion pairs play an important role in representation theory (see [2] and see [3] for
more examples). In [4], we define hearts # of cotorsion pairs (U4, V) on exact categories
B and proved that they are abelian. This is similar as Nakaoka’s result on triangulated
categories [5]. It is natural to ask whether we can find any relationship between the
hearts and the original exact categories. Abe and Nakaoka have already given an answer
by constructing a cohomological functor in the case of triangulated categories [1]. In this
paper we will construct an associated half exact functor H from the exact category B to
the heart A, which is similar as the construction of Abe and Nakaoka.

Let B be a Krull-Schmidt exact category with enough projectives and injectives. Let
P (resp. Z) be the full subcategory of projectives (resp. injectives) of B.

We recall the definition of a cotorsion pair on B [4, Definition 2.3]:

Definition 1. Let ¢/ and V be full additive subcategories of B which are closed under
direct summands. We call (U, V) a cotorsion pair if it satisfies the following conditions:

(a) Extg(U,V) =0.
(b) For any object B € B, there exits two short exact sequences
Vg— Uz —+B, B—VE_UP
satisfying Up, UP € U and Vi, VB € V.

For any cotorsion pairs (U, V), let W :=U N'V. We denote the quotient of B by W as
B := B/W. For any morphism f € Homg(X,Y'), we denote its image in Homp(X,Y') by
. For any subcategory C 2 W of B, we denote by C the full subcategory of B consisting
of the same objects as C. Let

Bt ={BeB|UseW}, B :={BeB|VPecwW)

The detailed version of this paper will be submitted for publication elsewhere.
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Let
H:=B"NnB".
Since H O W, we have an additive subcategory H which we call the heart of cotorsion

pair (U, V).

Definition 2. A covariant functor F' from B to an abelian category A is called half ezact
if for any short exact sequence

A—L.p ¢

in B, the sequence

FA) 2 gy 29 pooy

is exact in A.

We will prove the following theorem.
Theorem 3. For any cotorsion pair (U, V) on B, there exists an associated half exact
functor

H:B—H.

The half exact functor we construct gives us a way to find out the relationship between
different hearts. Let k& € {1,2}, (Uy, Vi) be a cotorsion pair on B and Wy = Uy, N V.
Let Hi/Wy be the heart of (U, Vi) and Hj be the associated half exact functor. For

i,j € {1,2} and i # j, if H;(W;) = 0, then H; induces a functor 8;; : H;/W; — H;/Wi.
Moreover, we have the following theorem.

Theorem 4. If H;(U;) = H;(V;) = 0 and H;(U;) = H;(V;) = 0, then we have an equiva-
lence H;/W; =~ H; /W, between two hearts. More precisely, we have natural isomorphisms
BijBji = idy, jw,; and BjiBi; == idy, w, of functors.

2. NOTATIONS

For briefly review of the important properties of exact categories, we refer to [4, §2].
Throughout this paper, let B be a Krull-Schmidt exact category with enough projectives
and injectives. Let P (resp. Z) be the full subcategory of projectives (resp. injectives) of

B.

Definition 5. For any B € B, we define B as follows:
Take two short exact sequences:

Vg Up 2o B, Up—"o WO — [0
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where Up,U® € U, WO Vg € V. In fact, W° € W since U is closed under extension. We
get the following commutative diagram

VB>—>UB£>>B

BN
Vp—— W? — B*
UO UO
where the upper-right square is both a push-out and a pull-back.
By [4, Lemma 3.2], Bt € Bt and if B € B~, then Bt € H.

Proposition 6. [4, Proposition 3.3] For any B € B and Y € B, Homg(ap,Y) :
Hompg(B*,Y) — Homp(B,Y) is surjective and Homg(ap,Y) : Homg(B*,Y) — Homp(B,Y)
is bijective.

We define a functor ot from B to BT as follows:
For any object B € B, since all the B*'s are isomorphic to each other in B by Proposition
6, we fix a Bt for B. Let

ot :B— BTt
B~ BT

and for any morphism f : B — C, we define ot ( f) as the unique morphism given by
Proposition 6

B——C
C+
0+(f)

Dually, we can define o~
Let 7 : B — B be the canonical functor. We denote 0~ o 0% o 7 by

H:B—H.
3. MAIN RESULTS

Proposition 7. The functor H has the following properties:
(a) For any objects A and B in B, H(A® B) ~ H(A) ® H(B) in H.
(b) Hlp = 7l
(¢) HU) =0 and H(V) = 0. In particular, H(P) =0 and H(Z) = 0.

Theorem 8. For any cotorsion pair (U, V) in B, the functor
H:B—-H
is half exact. We call H the associated half exact functor to (U, V).

We have the following general property of half exact functors which H satisfies.
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Proposition 9. Let A be an abelian category and F : B — A be a half exact functor
satisfying F(P) =0 and F(Z) = 0. Then for any short exact sequence

Ao p %

in B, there exist morphisms h : C — Q" A and b/ : QC — A such that the following
sequence

F(g) F(o) 20, F(h) F(Q-A) 22D, F(Q f) F(Q™B) F(@Q~g) F(Q-0) 220, F(Q h)

s exact in A.

Let 7 € {1,2}. Let (U;, V;) be a cotorsion pair on B and W; =U; N V.
(a) B is defined to be the full subcategory of B, consisting of objects B which admits
a short exact sequence
VB — UB —-» B

where Ug € W, and Vg € V.
(b) B; is defined to be the full subcategory of B, consisting of objects B which admits

7
a short exact sequence

B— VP UP
where VB € W, and UP € U,.
Denote
H, =B NB;.

Then H;/W; is the heart of (U;,V;). Let m; : B — B/W; be the canonical functor and
L : Hi/W; — B/W; be the inclusion functor.
If Ho(W,) = 0, then there exists a functor his : B/W; — Ha /W, such that Hy = hyam.

B i B/W,

k 2 hi2

Ho/Wo

Hence we get a functor B9 := higty : Hi /Wy — Ha/Wh.

Proposition 10. Let (U1, V1), Uz, Vs) be cotorsion pairs on B. If Hy(Wy) = 0 and
Hy(Us) = 0 = Hi(V2), then we have a natural isomorphism Bay fra = idy, yw, of functors.

Moreover, we have the following theorem.

Theorem 11. If Hi(Uz) = Hi(V2) = 0 and Hy(Uy) = Hy(Vy) = 0, then we have an
equivalence Hi /Wi ~ Ho /Wy between two hearts. More precisely, we have natural iso-
morphisms 12821 =~ idy, pwy, and Ba1Bia ~ idy, yw, of functors.
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SINGULARITY CATEGORIES OF STABLE RESOLVING
SUBCATEGORIES

HIROKI MATSUI AND RYO TAKAHASHI

ABSTRACT. In this article! we study resolving subcategories X of an abelian category
from the structure of their associated triangulated categories. More precisely, we inves-
tigate the singularity categories

Deg () = D®(mod ) /K" (proj (mod 1))

of the stable categories X of X. We consider when the stable categories of two resolving
subcategories have triangle equivalent singularity categories. Applying this to resolving
subcategories of modules over Gorenstein rings, we characterize simple hypersurface
singularities of type (A1) as complete intersections over which the stable categories of
resolving subcategories have trivial singularity categories.

1. INTRODUCTION

Let R be a noetherian ring. The singularity category of R is by definition the Verdier
quotient

D(R) = DP(mod R) /K" (proj(mod R)),

where mod R denotes the category of finitely generated R-modules, D®(mod R) the bounded
derived category and KP(proj(mod R)) the bounded homotopy category. The singularity
category Dsg(R) is a triangulated category, which has been introduced by Buchweitz [4] by
the name of stable derived category and connected to the Homological Mirror Symmetry
Conjecture by Orlov [10]. A lot of studies on singularity categories have been done in
recent years; see [5, 8, 11, 15] for instance.

In this article, we consider the singularity category of a stable resolving category. Let A
be an abelian category with enough projective objects. Let X be a resolving subcategory
of A, and X its stable category. Then the category mod X’ of finitely presented right
X-modules is an abelian category with enough projective objects [1]. We take the Verdier
quotient of

Dsg(X) := D°(mod X)/K®(proj(mod X)),

and call this the singularity category of X. For two resolving subcategories X, Y we say

~

that X, ) are singulary equivalent if there is a triangle equivalence Dgg(X') = Dgg (D).
The main purpose of this article is to study the following question.

Question 1. Let A be an abelian category with enough projective objects. Let X, Y be
resolving subcategories of [A. When are the stable categories X, ) singularly equivalent?

!The detailed version of this article will be submitted for publication elsewhere.
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We give a sufficient condition for two stable resolving subcategories to be singularly
equivalent. We also apply it to resolving subcategories of module categories of commuta-
tive Gorenstein rings, and characterize the simple hypersurface singularities of type (A;)
in terms of singular equivalence classes.

2. PRELIMINARIES

In this section, we introduce the several notions. Throughout this article, let A be an
abelian category with enough projective objects, and denote by proj A the full subcategory
of projective objects of A.

Definition 2. An object M of A is said to be Cohen-Macaulay if there is an exact
sequence

LBy p dp o p A
of projectives whose dual by any projective is also exact, such that M is isomorphic to
the image of dy. Denote by CM(A) the subcategory of A consisting of Cohen-Macaulay

objects and by CM,,(A) the subcategory of A consisting objects whose n-th syzygies are
Cohen-Macaulay.

In [7], a Cohen-Macaulay object is called a Gorenstein projective object. The category
consisting of Cohen-Macaulay objects is a Frobenius category, hence its stable category
is a triangulated category.

Next, we recall the definition of the category of finitely presented modules over an
additive category.

Definition 3. Let C be an additive category. Denote by ModC the functor category of
C, that is, the objects are additive contravariant functors from C to the category Ab
of abelian groups, and the morphisms are natural transformations. An object and a
morphism of ModC are called a (right) C-module and a C-homomorphism, respectively. A
C-module F is said to be finitely presented if there is an exact sequence

Home(—, X) — Home(—,Y) - F — 0

in the abelian category ModC with XY € C. The full subcategory of ModC consisting
of finitely presented C-modules is denoted by modC.

Definition 4. An additive category C is called Gorenstein of dimension at most n if
Q"(mod C) = CM(mod ().

Example 5. Let A be a Gorenstein ring of selfinjective dimension at most n, and denote
by projA the category of finitely generated A-modules. Then projA is Gorenstein of
dimension at most n.

We introduce the main target in this article.

Definition 6. Let C be an additive category. The singularity category C is defined as
follows:

Dse(C) = D°(mod C)/K®(proj(mod C)).

Definition 7. Additive categories C,C’ are singularly equivalent if there is a triangule
equivalence Deg(C) 2 Dgg(C'), and then denote this by C < (.
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Let us give the definition of a resolving subcategory, which is mainly studied in this
article.
Definition 8. A full subcategory X of an abelian category A is resolving if:
(1) X contains all projective objects of A.
(2) X is closed under direct summands, extensions and syzygies.
Here we recall the definition of a stable category.

Definition 9. Let X be a full subcategory of A containing proj.A. Then the quotient
category

X =X/ proj A
is called the stable category of X'; the objects of X are the same as those of X', and the
hom-set Homy (M, N) of M, N € X is defined as follows:

Homy (M, N) := Hom4(M, N)/P (M, N),
where P 4(M, N) consists of all morphisms from M to N that factor through objects in
proj A.

Finally, we recall a structure result due to Auslander and Reiten on finitely presented
modules over the stable category of a resolving subcategory.

Theorem 10. [1] If X is a resolving subcategory of A, then the category mod X of finitely
presented right X-modules is an abelian category with enough projectives.

3. SINGULARITY CATEGORIES AND SINGULARLY EQUIVALENT

In this section, we give a sufficient condition for two resolving subcategories to be
singularly equivalent. In particular, there is a natural asking when a resolving subcategory
is singularly equivalent to 0. We give an answer to this question.

The following result is the key to study singular equivalence.

Theorem 11. Let X be a resolving subcategory of A such that Q71Q"X C Q"X C CM(A).
Then:

(1) X is Gorenstein of dimension at most 3n.
(2) There is a triangle equivalence Dgg(X) = CM(mod X).

This theorem gives some characterizations of a singularity category.
Corollary 12. For each n > 0 there is a triangle equivalence
DSE(mn(A)) = m(mOd mn(A))

Corollary 13. Let R be a local complete intersection. Let X be a resolving subcategory
of mod R. Then there is a triangle equivalence

Dog(&) = CM(mod ).

Let n = 0 in Theorem 11. Then the following result holds, whose assertion is nothing
but [14].

Corollary 14. Let X be a resolving subcateory of A contained in CM(A) and closed under
cosyzygies. Then mod X = CM(mod X), and hence mod X is a Frobenius category.

—119—



Taking advantage of Theorem 11, we obtain a sufficient condition for singular equiva-
lence.

Theorem 15. Let X, be resolving subcategories of A such that Q"X U Q1Y C Y C
X NCM(A) for somen > 0. Then there are triangle equivalences

Dsg (&) = CM(mod X) = CM(mod V) = Dgg()).
Hence X and Y are singularly equivalent.

Sketch of proof. The restriction F' +— F|y makes a covariant exact functor
® : Mod X — Mod Y
of abelian categories. This induces an equivalent functor
¢ : CM(mod X) — CM(mod ).
of triangulated categories. l

Corollary 16. Let X be a resolving subcategory of A with Q"X C CM(A) C X for some
n > 0. Then X and CM(A) are singularly equivalent. In particular, CM,(A) and CM,(A)
are singularly equivalent for all p,q > 0.

Remark 17. A singular equivalence between X and ) does not necessarily imply that &,
Y have an inclusion relation. Indeed, let (R, m) be a Gorenstein local domain of dimension
at least 2. Set

X ={MemodR|m¢ AssM},
Y={MemodR |AssM C {0,m}}.

These are resolving subcategories of mod R containing CM(R). Hence X X CM(R) £ Y.
However, X and ) have no inclusion relation.

In the proof of our last theorem, the following two lemmas are necessary.

Lemma 18. Let R be a Gorenstein complete local ring. Let X be a resolving subcategory
of mod R contained in CM(R) and closed under cosyzygies. Assume that there exists a
nonsplit exact sequence

s 0sXxLvEsz 0

of R-modules with X,Y,Z € X such that X, Z are indecomposable. If X is singularly
equivalent to 0, then Y is free, and X is isomorphic to QZ.

Lemma 19. Let R and S be Gorenstein complete local rings. Let ® : CM(R) — CM(S)
be a triangle equivalence. If f is an irreducible homomorphism of nonfree indecomposable
MCM R-modules and g is a homomorphism of S-modules such that ©(f) = g, then g is
an irreducible homomorphism of nonfree indecomposable MCM S-modules.

Let R be a local ring. Recall that M is said to have complexity ¢, denoted by cxg M = ¢,
if ¢ is the least nonnegative integer n such that there exists a real number r satisfying the
inequality BF(M) < ri"~! for all i > 0. It is known that if R is a complete intersection,
then the codimension of R is the maximum of the complexities of R-modules. For details
on the complexity of a module, we refer the reader to [2, §4.2].
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Let R be a d-dimensional Gorenstein local ring with algebraically closed residue field
k of characteristic zero. Then R contains a field isomorphic to k, and it is known that R
has finite CM-representation type if and only if R is a simple (hypersurface) singularity
[13, §8], namely, R is isomorphic to a hypersurface

k’on, s 71'dH/(f),

where f is one of the following.

(A) xi+at™ a4 ol
(Dn) a:glerfo*l +x§+~-~+m§,
(Ee) x%+x%+x§+-~+x§,
(Er) g+ woa] +aj + -+ + a7,

(Es) mg+x?+x§+~-~+xfl.

For each T € {A,, Dy, Eg, E7, Es}, a simple hypersurface singularity of type (T) is shortly
called a (T)-singularity.
We give a characterization of the (A;)-singularities in terms of singular equivalence.

Theorem 20. Let R be a d-dimensional nonreqular complete local ring with algebraically
closed residue field k of characteristic 0. Then the following conditions are equivalent;

(1) R is a Gorenstein ring, and CM(R) is singularly equivalent to 0.

(2) R is a complete intersection, and X is singularly equivalent to O for every resolving
subcategory X of mod R.

(3) R is a complete intersection, and X is singularly equivalent to O for some resolving
subcategory X of mod R that containing a module of mazimal complexity.

(4) R is an (Ay)-singularity.

Sketch of proof. (1) = (4): Using Lemma 18, we can show that R has finite CM rep-
resentation type. By [13, Corollary 8.16] R is a simple singularity. The classification of
the Auslander-Reiten quivers of the MCM modules over simple singularities [13, Chapters
8-12] together with Lemma 19 implies that the only simple singularities R where CM(R)
possesses such an Auslander-Reiten quiver are (A;)-singularities. B

Let R be a simple hypersurface singularity. Theorem 20 especially says that CM(R) is
not singularly equivalent to 0 unless R is an (A;)-singularity. One can actually confirm
this for a 1-dimensional (Ay)- singularity by direct calculation.

Example 21. Let k be an algebraically closed field of characteristic 0. Let R be an
(Az)-singularity of dimension 1 over k. Then there is a triangle equivalence

Deg(CM(R)) = Dyg([t]/(£)).
In particular, CM(R) is not singularly equivalent to O.
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JACOBIAN ALGEBRAS AND DEFORMATION QUANTIZATIONS

IZURU MORI

ABSTRACT. Let V' be a 3-dimensional vector space over an algebraically closed field &
of characteristic 0. In this paper, we study the following two classes of algebras: (1) the
Jacobian algebra J(w) of a potential 0 # w € V®3 and (2) the algebra SJ’,\ induced by
the deformation quantization of the polynomial algebra S := S(V) = k[z,y, 2] in three
variables whose semi-classical limit has a quadratic unimodular Poisson bracket on S
determined by f € Ss. It is known that every noetherian quadratic Calabi-Yau algebra
of dimension 3 is of the form J(w), however, it is not easy to see for which potential
0 # w € V®, J(w) is a Calabi-Yau algebra of dimension 3. In this paper, we try to
answer this question by relating J(w) to S7.

1. JACOBIAN ALGEBRAS

This is a report on a joint work in progress with S. Paul Smith. Throughout this paper,
let k be an algebraically closed field of characteristic 0, and V' a finite dimensional vector
space over k. We denote by T(V') the tensor algebra and S(V') the symmetric algebra.

We define the action of § € &,,, on V®™ by

O(v1 ® - @ V) 1= Vp1) @+ * @ Vg(m)-
Specializing to the m-cycle ¢ € &,,, we define
PV BV B+ ® VU1 @ V) 1= Uy DV @+ @ Uy @ U1
We define linear maps c, s, a : VO™ — V™ by

o) = = Y o)

s(w) == % Z O(w)

" 0€6,
a(w) == % D (sgn6)f(w).
" 0€6,,
We define the following subspaces of V™
Sym™V :={w e V" | (w) =w for all § € &,,}
AV = {w e V" | f(w) = (sgnb)w for all § € &,,}.

It is easy to see that Sym™ V = Ims and Alt™ V = Ima.
The following is a key lemma in this paper.

The detailed version of this paper will be submitted for publication elsewhere.
This work was supported by Grant-in-Aid for Scientific Research (C) 22540044.
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Lemma 1. Suppose that dimV = 3. For every choice of a basis x,y, z for V, Alt*V =
kwg where

1
wo = 2a(zyz) = c(ryz — zyx) = g(xyz + zxy + yzx — 2yx — x2Y — YITZ2).

By Lemma 1, we can define a linear map p : V® — k by the formula a(w) = p(w)wy
when dim V' = 3.

We define three kinds of derivatives: Choose a basis x1,...,z, for V so that S(V) =
klzy,...,x,) and T (V) = k(z1,...,z,). For f € klxq,...,x,], the usual partial derivative
of f with respect to x; is denoted by f,,. For a monomial w = x,z;, -2, %, €
kE(x1,...,2p)m of degree m, we define

Ii_lw = Lig " Loy Lin ?f le - Z_’ and
0 if iy #£ 1,

Op, (w) := ma; 'e(w).

We extend the map 0y, : k(z1,...,2,) — k{x1,...,2,) by linearity. We call 0,, the cyclic
derivative with respect to ;.

Definition 2. The Jacobian algebra of w € k(z1,...,z,) is the algebra of the form
J(w) =k, ..., 20) /(O w, . .., O, w).
We call w the potential of J(w).

It is easy to see that the Jacobian algebra is independent of the choice of a basis
x1,...,x, for V. Note that if w is homogeneous, then J(w) is a graded algebra. In
this paper, we focus on the case that dimV = 3 and 0 # w € V®3. In this case,
J(w) =T(V)/(R) is a quadratic algebra where RC V @ V.

A Calabi-Yau algebra defined below plays an important role in many branches of math-
ematics. For an algebra A, we denote by A°:= A ® A the enveloping algebra of A.

Definition 3. An algebra A is called Calabi-Yau of dimension d (d-CY for short) if

(1) A has a resolution of finite length consisting of finitely generated projective A®-
modules, and
, A ifi=d
(2) ExtYe(A, A°) = 1 Z as A®modules.
0 ifi#d
Bocklandt [3] showed that every graded Calabi-Yau algebra is a Jacobian algebra.
Specializing to the noetherian quadratic case, we have the following result, which is the
main motivation of this paper.

Theorem 4. [3] Every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the
form J(w) where dimV =3 and 0 # w € V3.

By the above theorem, it is interesting to know for which potential 0 # w € V&3, J(w)
is a Calabi-Yau algebra of dimension 3. Some criteria were given by [4], [2], however,
these criteria are difficult to check in practice. The purpose of this paper is to give a more
effective criterion by using geometry.
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2. DEFORMATION QUANTIZATIONS
Let A be a commutative algebra.

Definition 5. A Poisson algebra is an algebra A together with a bilinear map {—, —} :
A x A — A, called the Poisson bracket, satisfying the following axioms:

(1) {a,b} = —{b,a} for all a,b € A.

(2) {a,{b,c}} +{b,{c,a}} + {c,{a,b}} =0 for all a,b,c € A.

(3) {a,bc} = {a,b}c+ b{a,c} for all a,b,c € A.

Definition 6. A formal deformation of A is a k[[t]]-algebra A[[t]] with the multiplication
@ A[[t]] x A[[t]] — A[[t]] of the form ¢ = >, pit" where o : A x A — A'is the
original multiplication of A and each ¢; : A x A — A is a k-bilinear map extended to be
E[[¢]]-bilinear.

Since A is commutative, for all a,b € A, @o(a,b) = wo(b, a), so

o(a,b) — p(b,a) = Z vi(a,b)t' — Z 0i(b, a)t!

Sh €N
= Z(‘pi(av b) - 901(67 a))ti
€N

= (¢1(a,b) — @1(b,a))t + O(t?).
It is easy to see that (A, {—,—},) where {a,b}, := ¢1(a,b) — p1(b,a) for a,b € A is
a Poisson algebra. We call (A4, {—,—},) the semi-classical limit of (A[[t]],»). It is not
easy to see which Poisson algebra can be realized as a semi-classical limit of a formal
deformation. If this is the case, we call it a deformation quantization.

Definition 7. Let (A,{—, —}) be a Poisson algebra. A formal deformation (A[[t]],¢) of
A is called a deformation quantization of (A,{—,—}) if {—, -} ={—, —},.

We now focus on the case A = S(V). Form > 2, S(V),, =V®"/57 . V'@ RV
is the quotient space where R = {fu ® v —v®u € VRV | u,v € V}. We denote the
quotient map by (=) : V™ — S(V),,. Since s(w) = 0 for every w € Vi R® VY,
the linear map s : VO™ — V" induces a linear map (—) : S(V),, — V™, called the
symmetrization map.

Lemma 8. The linear maps (—) : V™ — S(V),, and (h—/) : S(V)m — VO™ induce

isomorphisms (—) : Sym™V — S(V)pm and (=) : S(V)m — Sym™V inverses to each
other.

For the rest of the paper, we assume that dim V' = 3 and we write S = S(V') = k[z, y, 2].
In this case, every Poisson bracket on S is uniquely determined by {y, z}, {z, 2}, {z,y} €
S. A Poisson algebra (S5, {—, —}) is called quadratic if {y, 2}, {z, z}, {z,y} € Ss.

Theorem 9. [5] If (S,{—, —}) is a quadratic Poisson algebra, then
Kl ., )/ (1, = Hy, 2 [2,0] = t{z,23, [y = o))

is a deformation quantization of (S,{—,—}).
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For every f € 9,
{yvz}f = fa, {Zax}f = fyv {xvy}f =[x
defines a Poisson bracket on S. In fact, it is known that {—, —} is a unimodular Poisson
bracket on S if and only if {—, —} = {—, —}; for some f € S. If f € S;, then (S, {—, —}/)
is a quadratic Poisson algebra, so

Kl 2/ ([, 2] = the [00) =ty [, 0] = £ )
is a deformation quantization of (S,{—,—};) by Theorem 9. For f € S5 and A € k, we
define the algebra induced by the above deformation quantization as

S} = k(a,y. 2) /([ 2] = Mas [2,2] = My [2,y] = AL).
The next two results show that Jacobian algebras and deformation quantizations are
strongly ralated.
Theorem 10. For every f € S3 and every A € k, S}‘ =J (wg — )\f)

Theorem 11. For J(w) = T(V)/(R) where 0 # w € V¥ and R CV @V, the following
are equivalent:

1) J(w) = S} for some f € S3, X € k.
2) RN Sym?V = {0}.

3) R¢ Sym* V.,

4) c(w) & Sym* V.

5) a(w) # 0.

(6) plw) #0.

If any of the above equivalent condition holds, then J(w) = Sgl/“(w).

The above theorem shows that majority of Jacobian algebras are induced by deforma-
tion quantizations.

3. A CRITERION FOR THE CALABI-YAU PROPERTY

In this section, we will give a criterion for which potential 0 # w € V®3 J(w) is 3-
CY. By the previous section, we divide into two cases (1) a(w) # 0 (majority), and (2)
a(w) = 0 (minority).

fmc fxy fmz
Let H(f) :== |fyz [fyy [y=| be the Hessian of f € S. Since H(f) € S, we can define
fzm fzy fzz
H™Y(f) := H(H(f)) for every i € N. The classification of cubic divisors in P? is well-
known. There are eight singular ones and one family of smooth ones (elliptic curves) up
to isomorphisms. The Hessian gives a rough classification of cubic divisors in P2.

Lemma 12. For 0 # f € Ss, the exactly one of the following occurs:

(1) H(f) = 0. In this case, ProjS/(f) is either triple lines, the union of double line
and a line, or the union of three lines meeting at one point.

(2) H(f) # 0, but H*(f) = 0. In this case, Proj S/(f) is either the union of a conic
and a line meeting at one point, or a cuspidal curve.
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(3) H(f) # 0 for every i € N, In this case, Proj S/(f) is either a triangle, the union
of a conic and a line meeting at two points, a nodal curve or an elliptic curve.

Recall that a(w) # 0 if and only if J(w) = S} for some f € S5 and A € k by Theorem
11, so it is essential to ask which S}\ is 3-CY.
Theorem 13. Let f € Ss.
(1) If H*(f) =0, then S} is 3-CY for every X € k.
(2) If H3(f) # 0 and Proj S/(f) is singular, then SJ’,\ is 8-CY except for exactly two

values of A € k for each f € S3.
(3) If H2(f) # 0 and Proj S/(f) is smooth, then SJ’,\ is 3-CY for every A € k.

The above theorem shows that majority of S}\ is 3-CY. In fact, there are only three
exceptions up to isomorphisms.

Theorem 14. Let f € S35 and A € k. If S]’} is not 3-CY, then it is isomorphic to one of
the following algebras:

o k(z,y,2)/(yz, 2z, 2y).

o k(z,y,2)/(yz + 2% 2z, xy).

o k(z,y,2)/(yz + 2%, zx + y*, zy).

On the other hand, if a(w) = 0, then there are not much choice for w (minority), so we
can show the following theorem by case-by-case analysis.

Theorem 15. Let 0 # w € V®? such that a(w) = 0.
(1) If H*(w) = 0, then J(w) is not 3-CY.
(2) If H*(w) # 0 and Proj S/(w) is singular, then J(w) is 3-CY.
(3) If H*(w) # 0 and ProjS/(w) is smooth, then J(w) is 3-CY if and only if the
j-invariant of Proj S/(w) is not 0.
There are six exceptions up to isomorphisms.

Theorem 16. Let 0 # w € V® such that a(w) = 0. If J(w) is not 3-CY, then it is
isomorphic to one of the following algebras:

o k(r,y,z)/(2?).

o k{z,y,2)/(xy + yo, a?).

o k(r,y,2)/(y*,2%).

o k{x,y, z )/(xz—i—z:z—i—y ry + yx, z?).
o k{x,y, z )/(xz—i—zx Y2, 1;2)

o k(z,y,2)/ (2% 9% 2%).

These nine exceptional algebras in Theorem 14 and Theorem 16 are in one-to-one
correspondence with eight singular cubics together with the elliptic curve of j-invariant
0. By [1], every noetherian quadratic Calabi-Yau algebra of dimension 3 is a domain. On
the other hand, none of the nine exceptional algebras above is a domain, so we have a
rather surprising result:

Theorem 17. Let 0 # w € V3. Then J(w) is 3-CY if and only if it is a domain.
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The point scheme is an essential ingredient to study noetherian quadratic Calabi-Yau
algebras of dimension 3 in noncommutative algebraic geometry.

Theorem 18. Let f € S5 and A € k. If SJ); is 3-CY, then the point scheme of S}‘ is given
by Proj S/(24\f + N H(f)).

It follows that, for a generic choice of f € S35 and A € k, the point scheme of S?
parameterizes 0-dimensional symplectic leaves for the unimodular Poisson structure on
P? = Proj S induced by f.

A few more calculations for minority show the following theorem:

Theorem 19. Let 0 # w € V3. If J(w) is 53-CY, then the point scheme of J(w) is given
by Proj A/(24u(w)?@ + H(w)).

4. EXAMPLES

We claim that the criterion given in this paper is effective. In fact, given w € V®3, it is
routine to calculate a(w). Moreover, given f € S, it is routine to calculate H?(f), and it
is easy to check if Proj S/(f) is singular or smooth because Proj S/(f) is singular if and
only if the system of polynomial equations f, = f, = f. = 0 has a non-trivial solution.
Alternately, by sketching the curve, we can fit Proj.S/(f) into one of the cubic divisors
in the classification. Then we can see if it is singular or smooth and we can determine if
H?*(f) =0 or not by Lemma 12.

Example 20. If f = 2%z + zy?, then it is easy to see that ProjS/(f) is the union of a
conic and a line meeting at one point, so H?(f) = 0 by Lemma 12, hence S? is 3-CY for
every A € k by Theorem 13.

Example 21. If f = zyz + (1/3)2® € S3, then it is easy to see that ProjS/(f) is the
union of a conic and a line meeting at two points, so H?(f) # 0 by Lemma 12. Since
Proj S/(f) is singular, S}‘ is 3-CY except for exactly two values of A € k by Theorem
13. These exceptional values can also be determined by a geometric condition as follows.
Since

2z z vy
H(f)=|z 0 x|=2(zyz— 2%,
y x 0

if 5} is 3-CY, then the point scheme of S} is ProjS/(g) where
g =24\f + N H(f) =20 (12 + N ayz + (4 — A2’}
by Theorem 18. It is easy to see that

the union of a conic and a line meeting at two points  if A2 # 0, —12, 4,

P2 iftA=0
Proj S = )
roj 5/(9) a triple line if A2 =—12,
a triangle if \2 = 4.
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We can show that S}\ is 3-CY if and only if ProjS/(g) is not a triangle. In fact, the
defining relations of S} are

2y — A\a?

~ z2+z 2—A 24 A
[y,Z]—Afwyz—zy—A<yzy+x2> vz —

~ 2—A 24+ A
[z,m]—)\fyzz:c—:tz—)\(zx_'_IZ): zr — i xz

2 2 2

~ Ty +yx 2—A 24
[I,y]—/\fzzmy—yr—/\< 5 >= 5 YT = Y,

so if A = 42, then S} is not a domain, hence it is not 3-CY.

Example 22. If w = 2% + ¢* + 23 + (3a/2)(zyz + 2yz) € V¥ where a € k, then it is
easy to see that a(w) = 0, so we apply Theorem 15 to this example. Since f := @& =
22+ 2 + 23 + 3axyz € S, it is well-known that

Proj S/(f) :{

so H%(f) # 0 in either case by Lemma 12. If a® = —1, then ProjS/(f) is singular, so
J(w) is 3-CY by Theorem 15. On the other hand, if a® # —1, then Proj S/(f) is smooth
(an elliptic curve) and the j-invariant of Proj S/(f) is given by the formula

a?(8 — a?)

(1+a3)3’
so J(w) is 3-CY if and only if a® # 0,8 by Theorem 15.

a triangle if a® = —1,
an elliptic curve  if o® # —1,
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ON THE HOCHSCHILD COHOMOLOGY RING MODULO
NILPOTENCE OF THE QUIVER ALGEBRA DEFINED BY ¢ CYCLES
AND A QUANTUM-LIKE RELATION

DAIKI OBARA

ABSTRACT. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Osaka City University, Japan, 13-15 September 2014.
In this paper, we consider the quiver algebra A over a field K defined by ¢ cycles
and a quantum-like relation. We describe the minimal projective bimodule resolution
of A, and determine the ring structure of the Hochschild cohomology ring of A modulo
nilpotence. And we give some examples of the support variety of A-modules.

1. INTRODUCTION

Let K be a field and A an indecomposable finite dimensional algebra over K. We denote
by A€ the enveloping algebra A ®x AP of A, so that left A°-modules correspond to A-
bimodules. The n-th Hochschild cohomology group is given by HH"(A) = Ext’.(A4, A)
and the Hochschild cohomology ring is given by HH*(A) = &,>cHH" (4, A) with Yoneda
product. Let A/ denote the ideal of HH*(A) which is generated by all homogeneous
nilpotent elements. In this paper, we consider the Hochschild cohomology ring modulo
nilpotence HH*(A) /N

The Hochschild cohomology ring modulo nilpotence HH*(A) /N was used in [5] to define
a support variety for any finitely generated module over a finite dimensional algebra A.
In [5], Snashall and Solberg defined the support variety V(M) of an A-module M by

V(M) = {m € MaxSpecHH*(A) /N| Ann Ext’, (M, A/rad A) C m'}.

where m/ is the inverse image of m in HH*(A).
Let ¢ be an integer with ¢ > 2 and ¢; ; € K nonzero elements for 1 <i < j <c. We
consider the quiver algebra KQ/I defined by ¢ cycles and a quantum-like relation where

The detailed version of this paper will be submitted for publication elsewhere.
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Q is the following quiver:

cs(
Y /

€(c, 2) W ~— M CQs)

."
i az,1

!
oz €2)
|
|
€25)
where 1 < 7 < cand s; > 2, and where I is the ideal of K() generated by
Xforl1<i<e,
Xin — qi,ijXi forl1 <i< 1<c
where X, := (Zzzl a;r,)* and n; are integers with n; > 2 for 1 <i <e¢.

In the case ¢ = 2, we determined the Hochschild cohomology ring of A modulo nilpo-
tence in [2] and [3]. In the case s; = 1 for 1 < i < ¢, the Hochschild cohomology ring of
A modulo nilpotence was described by Oppermann in [4]. In this paper, we describe the
minimal projective bimodule resolution of A, and determine explicitly the ring structure

of the Hochschild cohomology ring modulo nilpotence HH*(A)/N by giving the K-basis
and the multiplication.

2. PRECEDENT RESULTS

In this section, we introduce the precedent results about the quiver algebra A. In
the case of s; = 1 for 1 < i < ¢, A is called a quantum complete intersection. In this
case, the projective bimodule resolution of A and the Hochschild cohomology ring modulo
nilpotence of A was given by Oppermann in [4] as follows.

Theorem 1. [4] In the case of s; =1 for 1 <i < ¢, the projective bimodule resolution of
A is total complez Tot(P; @ Py ® -+ - @ P.) where P; is the projective bimodule resolution
of Ai = Klou]/(aj"):

n;—1—k

ni—l'r]‘C 2" .
P, : Ac P5OL ge Tho GENT Ty 18gmniml 4
Theorem 2. [4] HH*(A)/N is isomorphic to the following finitely generated K -algebra.

P gpenel? e Ky g TIEL, &% = 1 for all i with p; even,

j=1%,;
IT- 1qz(5]_1)n]/2+1 —1 and n; = 2 for all i with p; odd).

where ¢;; =1 and ¢; j = q;il forl<j<i<e.

In the case of ¢ = 2, we determined the Hochschild cohomology ring modulo nilpotence
HH*(A)/N in [2] and [3] as follows.
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Theorem 3. Let r be an integer with r > 0. In the case of ¢ = 2, if q12 s a primitive
r-th root of unity, then HH*(A)/N is isomorphic to the polynomial ring of two variables:

K[z?",y*] if n1,ny # 0modr,

HE* (A) /A = K[z?,4*"] ifny =0modr,n; # 0modr,
K[z?",y*  ifny Z 0modr,ny = 0modr,
K[z?,y*  ifni,ne =0modr,

where £ =301 e, Y= Yooy €2y in HH"(A).

Theorem 4. In the case of ¢ =2, if q12 is not a root of unity, then HH*(A)/N = K.

3. PROJECTIVE BIMODULE RESOLUTION OF A

In this section, we describe the minimal projective bimodule resolution of the quiver
algebra A = KQ/I defined by ¢ cycles and a quantum-like relation.
Let ¢ and n be integers with ¢ > 2 and n > 1. We set

L, ={(lL,l,...,l.) e (NU{0})°| Zlk = n} for any integer n > 1.
k=1

We define projective left A°-modules, equivalently A-bimodules:

Py=AcdA® H H AE?Z-’]W)A and,
i=1 k=2

HA&”— VA if [ = n for some 1 <1 <,
n _ (1,k:)
Q(ll,...,lc) - k=1

Ag’gh ZC)A ifl;<nforalll <i<cg,

.....

for (ly,...,l.) € L,, where 5? Ly =€e1®e and

l1,0le

n (k) @ C(iky) if n is even,
ety =
(iki) €(iki+1) @ €(ik;) if n is odd.
Then, we have the minimal projective A-bimodule resolution of A as the total complex
of the following complexes.
Lemma 5. Let n be an integer withn > 1 and Ef}, = ZISZBI Jzéea’kl_”xfﬁl*l for1 <i<c
and 0 < k; < s; — 1. For (Iy,...,l.) € Ly,, we set the integers p; by

o {ni(li —1)/24+1 ifl; is odd,

1<i:i<e.
nli/2 if l; is even, forlsise

Then, we have the following complexes.
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(1) For (ly,...,l.) € L, Such that I; = n, we define the left A°-homomorphisms

681 ----- le)i :Q? ..... )_>Q Hl)by
Ez_k )T — 1515?;,;) if n is odd,

op CLEr Ly or1 <k; <s,.
(L1yeasle)yi (,k4) ZX Ezlklaanl—l -1 an is even, f = hj > 94

Then, since 861 1) © ot =0, we have the complex P; :

1) C O i1, ) i
2 o .
(0,...,2,...,0) i (0yesms0)si
Q(o e T Qo)

s L0

d 0,...,1,...
P, gt
(2) Let m = min{i|l; > 0} for (Iy,...,0.) € Ly. Form <j<cand(ly,...,l.) € L,

such thatl; <n—1 for1 <i<candl; #0, we define the left A°-homomorphisms

n—1

861,._‘7%)7]4 : Q?ll’.-.,lc) = QUyy—1,0) O follows:

777777

" . n
Wiy 1a,.1e)g * J-)H

Zk i1 e H Hj+hy e 1 H Hho n—1
(=)= ojhs (11, ) X5 hy X5 .1, 1,...,lc))
h1=1 ha=1
if I; is odd,
nj—1 c—j j—1
Zk 1k H Mty (G —1=F;) Hhokj -k; en—1 nj—1-Fk;
’ E: 45 j+hy Uy X', 1,...,10)Xj
kj=0 hy=1 ho=1
if l; is even(# 0).

For (ly,...,l.) € L, such thatl, =n—1andl; =1 for m < j < c, we define the
left A¢-homomorphisms 881,._‘7%)7]. by

E"le qf;";X E” if n is even,
X — X; 5(m 1 if n is odd,

€(m 1) qm]

For (ly,...,l.) € Ly, such that l,, =1 and [; =n —1 form < j < ¢, we define the

left A°-homomorphisms 9, ) . by
n n El X, — qm]X EJ"O1 if n is even,
€
(te)g = 2 (lte) "Jll)X Xmg(J y W is odd,

Then, since 0, . ;© 33?1 ey = 05 for (l1,...,1l.) € L, such that l; = 0,

we have the compler Qq, .1y

n+1 n+n’

Theorem 6. The following total complex P is the minimal projective resolution of the left
A¢-module A.

P:0+ A< Py<t PP
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where w is the multiplication map and

c

b= H Q?llw-,lc) and d, = Z Z 681 ----- le).j>

(lyle)ELn J=1 (l1,..,lc)€Ln

forn > 1, where 881 ) are the A¢-homomorphisms given in Lemma 5.

Now we consider the complex P ®4 A/rad A. We can prove that P is exact, by the
following Lemma.

Lemma 7. [1] IfP®4 A/rad A is exact sequence then P is also exact sequence.

We can prove that P@ 4 A/rad A is exact, that is dimy, Im d,,® 4id 4 jraq 4 +dimyg Im d,, 11 ® 4
ida/raq a4 = dimy, P, ® 4 A/rad A by the following Lemma.

Lemma 8. Let (Iy,...,1.) € L, such thatl; <n—1 for1 <i<e¢, andm =min{i|l; >0}
for (lLh,... 1) € Ly.

.....

(3) For1<i<m—1, the left A-module AXiJn(e?ll,..,lc)) is generated by
dp ®a1dajaaal€y, g4, 4;-1,.0,)) Jorm+1<j < c such that l; # 0.

4. THE HOCHSCHILD COHOMOLOGY RING MODULO NILPOTENCE

In this section, we give a K-basis of the Hochschild cohomology ring modulo nilpotence.
Applying the functor Hom e (—, A) to the A®-projective resolution P given in Theorem 6,
we have the following complex:

pn .
P 0 P Py PRI P
where
P = H HomAe(Q’&lMlc), A) and d} = Z Z HomAe(HZ1 7777 1o),i A),
(I1,ele)ELR, i=1 (I, 1.)€Ln

for n > 1. Then we have the following isomorphisms:

P; = Hom e (Py, A) ~ e; Aed @ H H eMiAe?i’ki),
i=1 k;=2

si
H €(i.ki) A€l ) if n is even and l; = n,
ki=1

H (Q7 A)~{ L
omy4 (Q(ll ..... le)? ) H €(i,ki+1)A€7(li,k1;) if nis odd and [; = n,

ki=1
elAeELh ) ifl; <nforl<i<cg,
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for (I1,...,1.) € L,. Since we give the Hochschild cohomology ring modulo nilpotence, we
only consider the elements, which are trivial passes in A, in HH"(A) = Kerd;,,,/Imd;,.

Now, we give the image of €yl in P! by 88j1*l,+1 for (L, ..., L+1,.... 1) € Ly
and 1 <j <ec.
HomAe((f?(ll L1, 76)7],A) :
6?1’ k) P x»e(zk oy x'e?ﬁ;) for 1 <k; <s; ifniseven,l; =n and ¢ =j,
ety (L= af) XG0 i if [; =n and i < j,
€1y — (=1)™(q5i — )Xje?frf_” Ll ifl;=nandi>j,
67317”_716) = j
(,1)22:#11;;( H qui’;lll H q;Zz] Xﬂe?li.l.., Lt1de) if [; is even,
hl 1 h2 1
= (n;—1—k;) _1
il Hj+hy (T Hh n; o . .
—1) X le Z H g H g ’X i (lj’l L,y Af L is odd,
k;=0 hy=1 ho=1
ifl;<nforl<i<ecg,

For homogeneous elements n € HH™(A) and # € HH"(A), we have the Yoneda product

nf = no,, € HH™*"(A) where o, is a lifting of § in the following commutative diagram
of A-bimodules.

dm+n dn+2 dn+l

> Im4n PTL-H Pn
| NN
Om o1 (4]
P, dm _ d2 P, d1 Py ™ A 0.

Proposition 9. Let (I1,...,l) € Ln, (I, ..., i) € Ly. Then we have the lifting of ey,
as follows.

n+n’ ki n n;—2—k;
O €(lj+l’1,...,lc+l’c) — Z Q H X; ]5(1’ ..... 1) H X0
0<k;j<n;—2 1<j<c 1<j<c
1<j<e¢ such that such that
such that lj,l;. are odd lj,l;. are odd

l_j,l} are odd
forn' >0 where Q € K depending on (I, +11,...,l. +1.) € Lyotn and integers k;.

By Proposition 9, if n is odd or [; is odd for some 1 < j < c, €,le) is nilpotence.
By the complex P* and Yoneda product given by Proposition 9 we have the K-basis
of the Hochschild cohomology ring of A modulo nilpotence as follows.

Theorem 10. Let ¢;; = q;il for1 < j <i<c. The following elements form a K -basis
of HH*(A)/N.
(1) Dki—i €lonyy € HH"(A)/N for the even integer n and the integer i with 1 <i < ¢
which satisfy the following conditions:

=1 fori<j<ec
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2) ef, € HH"(A)/N for the even integer n and (l1,...,l.) € L, which satisfy the
(l1,...,lc)
following conditions:

l; is even for 1 < i<,

C
Hq;f’;blh/z =1 forl<j<csuchthatl; #0,
h=1

Remark 11. In the case of n; > 2 for 1 <14 < ¢, the K-basis elements of HH*(A) /AN given
in Theorem 10 coincide with those of given in Theorem 2.

5. EXAMPLES OF THE SUPPORT VARIETY

In this section, we give the examples of the support variety of an A-module. In [5],
Snashall and Solberg defined the support variety V(M) of a A-module M by

V(M) = {m € MaxSpecHH"*(A) /N| Ann Ext’, (M, A/rad A) C m'}.

where m/ is the inverse image of m in HH*(A) and Ann Ext’ (M, A/rad A) is annihilator
of Ext’ (M, A/rad A).

Let K be an algebraically closed filed and » € N. We consider the case ¢ = 2, s1 =
sy = 1,q12 is a primitive r-th root of unity and ny,ns # 0modr ([2]). Then we have

HH*(A)/N = K[X,Y].
where X = 370" e ny), Y = D 5o €2k, D HH?*(A).
Example 12. Let M; = Az{"e;. We have Ext*(M;, A/rad A) and the annihilator of
Ext’ (M, A/rad A) as follows:
Ext (M, A/rad A) = ano Ke?m)7
Ann Ext’ (M, A/rad A) = (V).
And we have the support variety of M; as follows:

V(M) ={(a1,ay) € K*|ay = 0} as an affine algebraic set.

Example 13. Let M, = AX'" X5 and My = AX{'"e; + AX5*e;. We have the
annihilator of Ext’ (M;, A/rad A) for i = 2,3 as follows:
Ann Ext} (M;, A/rad A) = 0.
And we have the support variety of M; for 2 < ¢ < 3 as follows:
V(M;) = K? as an affine plane.
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REMARKS ON A CATEGORICAL DEFINITION
OF DEGENERATION IN TRIANGULATED CATEGORIES

ALEXANDER ZIMMERMANN

ABSTRACT. This work reports on joint research with Manuel Saorin. For an algebra A
over an algebraically closed field k the set of A-module structures on k¢ forms an affine
algebraic variety. The general linear group Gls(k) acts on this variety and isomorphism
classes correspond to orbits under this action. A module M degenerates to a module N if
N belongs to the Zariski closure of the orbit of M. Yoshino gave a scheme-theoretic char-
acterisation, and Saorin and Zimmermann generalise this concept to general triangulated
categories. We show that this concept has an interpretation in terms of distinguished
triangles, analogous to the Riedtmann-Zwara characterisation for modules. In this man-
uscript we report on these results and study the behaviour of this degeneration concept
under functors between triangulated categories.

1. INTRODUCTION

Already very early in representation theory of algebras a geometric interpretation of
representations of an algebra was given, cf e.g. work of Gabriel [3]. For an algebraically
closed field k, a finite-dimensional k-algebra A and some integer d > 0 the set of A-module
structures on k? forms an affine algebraic variety mod(A,d). The general linear group
Gla(k) acts on this variety and two A-module structures on k¢ are isomorphic if and only
if they belong to the same orbit. One says that an A-module M degenerates to the module
N if N belongs to the Zariski closure of the orbit of M. Much work was done to explain
the geometric structure of the orbit closures. Riedtmann [10] and Zwara [16] prove that
M degenerates to N if and only if there is an A-module Z and an embedding of Z into
M @ Z such that N is isomorphic to the cokernel of this embedding. We refer to Section 2
for more details on this part of the theory.

Yoshino studies in [12, 13, 14] degeneration for more general algebras, including maximal
Cohen-Macaulay modules over a local Gorenstein k-algebra, and for this purpose he gave
a scheme-theoretic definition of this concept. Using this concept Yoshino studies stable
categories of maximal Cohen-Macaulay modules over a local Gorenstein algebra. We refer
to Section 3 for more details.

Yoshino’s concept is then suitable for general triangulated categories. In joint work
with Saorin [11] we define a degeneration concept for general triangulated k-categories
with splitting idempotents. We then show that this concept implies in a very general
setting that if an object M degenerates to an object N, then there is an object Z and

a distinguished triangle Z g Z®M — N — Z[1] in the triangulated category with

nilpotent endomorphism v of Z. We then write M <a N. For algebraic triangulated

The detailed version of this paper will be submitted for publication elsewhere.
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categories, and an additional technical hypothesis, we prove the converse. We study in
the present paper the question what happens if two objects M and N belonging to a
triangulated category 7 such that 7y is a full triangulated subcategory of a triangulated
category 7T3. Under the hypotheses on 75 which we need for the converse of the main
theorem of [11] as mentioned above, we show that then the degeneration concepts coincide.

We finally mention that our degeneration concept applies to the bounded derived cat-
egory of a finite dimensional algebra, and to the stable category of a selfinjective algebra.
For the bounded derived category over an algebra Jensen, Su and Zimmermann gave an
alternative definition in [5]. Also in [5] we showed that degeneration there is equivalent
to the existence of a distinguished triangle as above. However, this concept is very closely
linked to the specific situation of derived categories of bounded complexes over a finite
dimensional algebra. Moreover, no clear relation to degeneration of the homology can be
seen. In a subsequent approach Jensen, Madsen and Su [4] used A, algebras to define a
degeneration by means of the homology of a complex. Again, this is not done for general
triangulated categories.

In the classical theory degeneration of modules provides a partial order on the isomor-
phism classes of objects. In [6] Jensen, Su and Zimmermann study when the degeneration

given by the existence of a distinguished triangle Z Q Z®M — N — Z][1] gives a partial
order. This happens to be the case when some finiteness conditions are assumed, in par-
ticular morphism spaces in the triangulated category should be k-modules of finite length
for all objects in the triangulated category. Moreover, for two objects X, Y we ask that
we may find a shift nyy such that there is no non-zero morphism from X to Y[nx y]|.

Acknowledgement : I wish to thank the organisers of the Symposion on Ring Theory
and Representation theory 47, and in particular Hideto Asashiba for the kind invitation
to Osaka, for giving me the opportunity to present my work and for the great hospitality
during my visit.

2. CLASSICAL DEGENERATION CONCEPTS

Degeneration between modules over a fixed algebra is a relatively classical subject in
representation theory of finite dimensional algebras, and was used in many different ways.

Let k be an algebraically closed field and let A be a finite dimensional k-algebra. Then
an A-module of k-dimension d is an algebra homomorphism A % End,(k%). Hence, if
ai,- -+ ,a, are algebra generators of A, then for each i € {1,---,m} each of the p(a;) =:
M; is a square matrix of size d. Moreover, A is finitely presented, in the way that there is
a finite set p1 (X1, -, Xm), -+, ps(X1, -+, Xyn) of relations such that if k(Xy,..., X,,)
denotes the free algebra in m variables X, .-, X,,, then as an algebra we get

A~ k<X1, ,Xm>/(p17"' aps)-

The points of the affine algebraic variety mod(A, d) defined by the m - d* variables given
by the coefficients of the matrices M, --- , M,, modulo the relations given by the poly-
nomial equations py,--- , p, parameterise A-module structures on k?. Two modules NN,
and N, corresponding to the points ny, ns of mod(A, d) are isomorphic if and only if the
corresponding matrices Mi(nq),--- , M,,(n1) are simultaneously conjugate with the ma-
trices My(ng), -+, My(ng). Otherwise said, G := GLg(k) acts on mod(A,d) by matrix
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conjugation and the points n; and ns correspond to isomorphic modules if and only if ny
and no belong to the same orbit G - ny = G - ny under this action. In general orbits are
not Zariski closed, and we denote by G - n the Zariski closure of the orbit G - n. Now, we
say that N; degenerates to Ny if and only if ny € G - n;. In this case we note Ny <geq No.

An algebraic classification of degenerations was subject of intensive research. It is
relatively easy to see that Ny ~ N/N; implies N <4y N1 @ Na. Moreover, N; <geq N
implies N3 ® N1 <geg N3 @ Ny for all A-modules N1, No, N3. The converse is not true, as
may be shown by an example due to Jon Carlson (cf [10, § 3.1]); another example was
given with different methods by Yoshino [14, Proposition 3.3]. Further, if Ny <ge, No,
then

dimy (Homa (X, N1)) < dimg(Homa(X, Na))
and

dimg(Hom (N, X)) < dimg(Hom (N2, X))
for all X. This property implies actually that <., is a partial order, as was shown by
Auslander [1]. An independent proof was later given by Bongartz [2], and an adaption
of this proof was used in [6] to show that < is a partial order under some reasonable
hypotheses. Riedtmann showed in [10] that if there is an A-module Z and a short exact

sequence
0>Z—=>Z8N, — Ny—0

then Ny <4, N2, and Zwara showed in [16] the converse in this generality. The above
relations on the dimension of Hom-spaces is an easy consequence, though it was proved
earlier by different methods.

3. ON YOSHINO’S DEGENERATION CONCEPT

The fact that we only deal with finite dimensional algebras in Section 2 is in some
sense unsatisfying. In order to be able to cover a greater generality, Yoshino changed the
classical degeneration <g.4 to a scheme theoretic concept which is well-suited for us. We
explain Yoshino’s results here.

Let k be a field and let A be a k-algebra. Yoshino developed in a series of papers a
degeneration concept which is well-suited for the purpose of commutative algebra. By the
symbol (V,tV, k) we denote a discrete valuation ring V' with radical ¢V and residue field
k. An algebra which is a discrete valuation ring is a discrete valuation k-algebra.

Definition 1. (Yoshino [13]) Let A be a k-algebra and let M and N be two finitely
generated A-modules. We say M degenerates to N along a discrete valuation ring, and
we write in this case M <g, N, if there is a discrete valuation k-algebra (V,tV, k) and
an A ®; V-module @, which is

e flat as V-module,
e such that M ®, V[}] ~ Q @y V[}] as A ®;, V[1]-modules and
e such that N ~ Q/tQ as A-modules.

The interpretation of this notion is that there is an affine line, presented by V', and a
point ) that moves along V. The algebra V is a discrete valuation algebra since we are
only interested in the neighbourhood of the parameter ¢ = 0. Now, at the value t = 0 the
moving point Q) becomes ()/tQ, which is assumed to be isomorphic to N, and generically,
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outside ¢ = 0, the moving point looks like M. This last fact is expressed by the condition
M o VI = Q@y VI,

Of course, Yoshino’s concept M <4, N immediately generalises to the stable category.
The only thing to do is to replace the isomorphisms in the module category by isomor-
phisms in the stable categories. Yoshino formulated this concept for stable categories
of maximal Cohen-Macaulay modules over local Gorenstein rings. A local commutative
ring A with residue field k£ is a Gorenstein ring if A is Noetherian with finite injective
dimension. In this case an A-module M is Cohen-Macaulay if Extl (M, A) = 0 for all
i > 0. It is well-known that the stable category of maximal Cohen-Macaulay modules
over a local Gorenstein k-algebra is triangulated.

Definition 2. (Yoshino) [14] Let k& be a field, and let (A, m, k) be a local Gorenstein
k-algebra and let M and N be two A-modules. We say M stably degenerates to N along
a discrete valuation ring if there is a discrete valuation k-algebra (V,tV, k) and a maximal
Cohen-Macaulay A ®; V-module @), such that

o M ®,V|[1] ~Q®y VI[}] in the stable category of maximal Cohen-Macaulay A @y
V[4] modules and
e N ~ (Q/tQ in the stable category of maximal Cohen-Macaulay A-modules.

In this case we write M <4, N.

Now, the most striking fact is that this concept implies, and is in some cases actually
equivalent to an analogue of Riedtmann-Zwara’s characterisation in terms of short exact
sequences.

Definition 3. e Let A be an abelian category. We say that an object M degenerates
to an object N if there is an object Z and a short exact sequence

(v

0=-Z2%ZdeM—-N-—=0

with a nilpotent endomorphism v of Z. We write M <z N in this case.

e Let 7 be a triangulated category with suspension functor denoted by T. We
say that an object M degenerates to an object N if there is an object Z and a
distinguished triangle

ZQZ@M—HV%Z[H
with a nilpotent endomorphism v of Z. We write M <A N in this case

Riedtmann and Zwara considered this degeneration for modules M and N over a finite
dimensional algebras A over a field k. In this case Fitting’s lemma implies that the
hypothesis on v to be nilpotent is not necessary, and actually these authors do not assume
that v is nilpotent. Up to my knowledge the importance of this nilpotence hypothesis was
first observed by Yoshino [13].

Yoshino gave as a main theorem of [13, 14] the following result. Recall that the sta-
ble category of maximal Cohen-Macaulay modules over a local Gorenstein k-algebra is
triangulated. In particular <4, and <a are both defined for this category.
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Theorem 4. e [13] Let k be a field and let A be a k-algebra. Let M and N be finitely
generated A-modules. Then
(M der N) = (M SRZ N)

o [14] Let k be a field, and let (R, m, k) be a local Gorenstein k-algebra. Let T be the
stable category of maximal Cohen Macaulay R-modules and let M and N be two
objects of T. Then

(FmnenR™ & M <gpp R*® N) = (M <a N) = (M <gq0r N).
Moreover, these three conditions are equivalent if A is artinian.

The implications may be strict in general. Yoshino gave explicit examples for the first
implication.

4. THE CATEGORICAL DEGENERATION

We shall now give a generalisation of Yoshino’s degeneration concept Definition 2 for
the stable category of maximal Cohen-Macaulay modules.

Definition 5. Let k£ be a commutative ring and let C; be a k-linear triangulated category
with split idempotents. A degeneration data for Cy is given by

e a triangulated category C; with split idempotents and a fully faithful embedding
C;; — Ck,

e a triangulated category Cy with split idempotents and a full triangulated subcat-
egory Cy,

e triangulated functors 1} : Cx — Cy and @ : C{, — Cy, such that (C7) 1Y C C{,, when
we view C;, as a full subcategory of Cy,

e a natural transformation ide,, 4 ide,, of triangulated functors.

These triangulated categories and functors should satisfy the following axioms:

Q(tymv)

(1) For each object M of C; the morphism ®(M 1)) i
monomorphism in Cg.

(2) For all objects M of Cj; we get ®(cone(tyyy)) = M.

O(M 1Y) is a split

All throughout the paper, whenever we have a degeneration data for C; as above, we
will see C; as a full subcategory of Cj.

Definition 6. Given two objects M and N of C; we say that M degenerates to N in the

categorical sense if there is a degeneration data for C; and an object ) of Cy, such that
p(Q) ~ p(M 1Y) in C[t'] and ®(cone(tq)) ~ N,

where p : Cy, — Cy[t7!] is the canonical functor. In this case we write M < 4., N.

Remark 7. The functor 1) models V ®; — from Yoshino’s attempt. The functor &
models the forgetful functor which is the identity on objects, i.e. an A ®; V-module M
is considered as an A-module only. Of course, in the classical situation considered by
Yoshino M is not finitely generated anymore. This is the reason why we need to consider
the categories Cy, inside Cy, and Cy, inside Cy.

—142—



The concept <., is appropriate, as we shall see in the following result. It gives
under certain conditions an equivalence between the geometric, or scheme-theoretical,
degeneration <., and the algebraic notion of degeneration <a.

Theorem 8. (Saorin and Zimmermann [11]) Let k be a commutative ring.

(1) Let C; be a triangulated k-category with split idempotents and let M and N be two
objects of C;. Then M < geq N implies that M <a N.

(2) Suppose that k is a field. Let C} be the category of compact objects of an algebraic
compactly generated triangulated k-category. If M <A N, then M <4eq N.

We observe that this is indeed a generalisation of Yoshino’s Theorem 4. Moreover, both
parts of the theorem are valid for the bounded derived category of A-modules for A being
a finite dimensional k-algebra.

The reason why we need the additional hypotheses for the second part of the theorem
is to be able to apply a result due to Keller [7, 8]. This result implies that then Cj is the
subcategory of compact objects of the derived category of a differential graded k-category.
For the first part a main difficulty is first to construct the object Z of C;. This is done
by tricky applications of octahedral axioms. Another main difficulty is to show that the
object Z is actually in Z7, and not only in Cy. This is shown using a result due to May (cf
e.g.[15, Lemma 3.4.5] or [9]).

5. CATEGORIAL DEGENERATION AND TRIANGLE FUNCTORS

We see immediately that if the triangulated category C is equivalent to the triangulated
category D, given by some functor F', then

M <i4eg N & F(M) <cgeg F(N)] and [M <p N < F(M) <a F(N)].
However, if F' is not an equivalence the situation is much less clear.

5.1. The Zwara-like degeneration defined by triangles. Consider the degeneration
<a given by distinguished triangles. Then, it is not difficult to show that this degeneration
concept is well-behaved with respect to the image under a triangle functor.

Lemma 9. Let C and D be triangulated categories and let
F:C—7D

be a functor of triangulated categories. In particular F sends distinguished triangles to
distinguished triangles. Then for all objects M and N we get

M <a N = F(M) <A F(N).
Proof. Indeed, suppose M <a N. Then there exists an object Z such that

Z(“ Z®& M — N— Z[1]

is a distinguished triangle. We apply F' to this triangle, using that the hypothesis on
F implies that F preserves finite direct sums, and using again the hypothesis on F', we
obtain that

F(Z) =" F(Z)® F(M)— F(N)— F(Z)[1]

— 143 —



is a distinguished triangle by hypothesis on F'. Since v is assumed to be nilpotent, F'(v)
is also nilpotent. Therefore F'(M) <a F(N) as claimed. O

However, if C is a full triangulated subcategory of D, then M <n N in D does not
necessarily imply that M <ax N in C. Indeed, the object Z, which is needed for the
construction does not need to lie in C.

5.2. The Yoshino-like degeneration defined by degeneration data. Contrary to
the situation for <A we get for the geometrically inspired degeneration that M < .4q N
does not imply necessarily F(M) < 4eq F'(N).

The degeneration <4, is well-behaved with respect to a fully faithful embedding of
triangulated categories.

Lemma 10. Let k be a commutative ring, let Cy be a triangulated k-category and let M
and N be objects of C.. Suppose that Dy is a triangulated k-category and suppose that
F : Dy — Cp is a full embedding of triangulated categories. Then F(M) <c4eq F(N)
implies that M < geqg N.

% 4
Proof. By definition we have a degeneration data Cj T, Cy restricting to C T, Cy and

Cy 2 Ci, with an element ¢ : id¢, — id¢, in the centre of Cj,. Moreover, we get an object
Q of C¢ such that ®(cone(tg)) ~ N in CP and p(Q) ~ p(M 1Y). Here C5 & Co[t71] is
the canonical functor.

But now, we may replace 1}: C} — C{, by the composition 1}/ oF : D — C{ and
obtain this way a degeneration data for Dy, maintaining all the other data. The object
@ still serves for degeneration in Dj. O

Interesting is the case when Theorem 8 fully applies, combined with the above lemmas.

Proposition 11. Let k be a field and let C; be the category of compact objects in an alge-
braic compactly generated triangulated k-category. If Dy is a full triangulated subcategory
of C;, then for all objects M and N of D} we get that M <.4.q N with respect to Dy if
and only if M <cqeg N in Cy.

Proof. Suppose M <.qeq N with respect to Dy. Let Dy EN C;, be the embedding functor.
Then M <A N in D; by Theorem 8, item 1. By Lemma 9 we obtain FM <a F'N in C;.
But by Theorem 8, item 2 we get that F'M < 4., I'N with respect to Cy.

Suppose F'M < 4eq F'N with respect to C;. Then Lemma 10 directly gives that M < geq
N with respect to Dy, g

6. PARTIAL ORDER

A very important property of <g, is that it is a partial order on the set of isomorphism
classes of finite dimensional A-modules. Yoshino showed that also <4, has a partial
order property. The question if <, is a partial order is not easy, and finiteness conditions
are necessary. This is work due to Jensen, Su and Zimmermann [5]. The antisymmetricity
in particular uses that if 7 is an R-linear triangulated category for a commutative ring
R such that Homy(X,Y) is of finite length as R-modules for all objects X and Y, then
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M <A N implies that length(Homy (X, M)) < lengthz(Homs(X, N)) for all objects X,
and likewise for Homy(—, X). If in addition there is n such that Homy (M, N[n]) = 0,
then lengthr(Homy (X, M)) = lengthp(Hom+(X, N)) for all X implies that M ~ N.
The proof of this result is an adaption of Bongartz proof in [2].

Theorem 12. (Jensen, Su, Zimmermann [5]) Let R be a commutative ring and let T be
an R-linear skeletally small triangulated category with split idempotents satisfying for any
two objects X,Y of T

e we get lengthgr(Homr(X,Y)) < o0
o there is nxy € Z \ {0} such that Homy(X,Y [nxy]) =0

Then <a is a partial order relation on the set of isomorphism classes of objects in T .

As a last remark I want to mention that in [11] we generalised this result slightly. The
price we have to pay there is that we need to consider the transitive hull of <a.
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BATALIN-VILKOVISKY ALGEBRAS, TAMARKIN-TSYGAN
CALCULUS AND ALGEBRAS WITH DUALITY;
THE CASE OF FROBENIUS ALGEBRAS

ALEXANDER ZIMMERMANN

ABSTRACT. This note reports on joint work with Thierry Lambre and Guodong Zhou.
Let A be a Frobenius algebra with diagonalisable Nakayama automorphism. We exhibit a
Tamarkin-Tsygan calculus on the Hochschild cohomology of A and Hochschild homology
of A with values in the Nakayama twisted bimodule. Since this pair is an algebra with
duality, as introduced by Lambre, these structures define a Batalin-Vilkovisky structure
on the cohomology ring of A. We further give an easy and practical criterion when a
Frobenius algebra has diagonalisable Nakayama automorphism.

1. INTRODUCTION

Hochschild cohomology H H*(A) and Hochschild homology H H, (A, M) with values in
a bimodule M of an algebra has a very rich structure. First, the Hochschild cohomology
is a graded commutative N-graded algebra. Then, Gerstenhaber showed in [9] that the
Hochschild cohomology algebra carries a graded Lie algebra structure, where the Lie
bracket is graded in the sense [ , | : H"™(A) x H™Y(A) — H""™*1(A). Moreover,
these two structures are compatible in the sense that [a, —| is a graded derivation of the
multiplicative structure. Structures of this kind are called Gerstenhaber algebras.

The Gerstenhaber bracket is somewhat mysterious and has been determined in only few
cases. A nice description in terms of coderivations was given by Stasheff in [21]. If there is
a differential A of degree —1 of a Gerstenhaber algebra such that the Gerstenhaber bracket
is the obstruction of A to be a graded derivation of the Hochschild cohomology, then the
Gerstenhaber algebra is called a Batalin-Vilkovisky algebra. This structure comes from
theoretical physics, more precisely from quantum field theories as explained in e.g. [10].

In representation theory the Batalin-Vilkovisky structure was popularised by Ginzburg
[11], where he proves that the Hochschild cohomology of a Calabi-Yau algebra A is a
Batalin-Vilkovisky algebra. This result was generalised by Kowalzig and Krahmer to
twisted Calabi-Yau algebras, i.e. there is n, such that the n-th syzygy of A as A @ A%-
module is 1A, for some automorphism a of A, provided the twisting automorphism is
diagonalisable. In a parallel development Tradler [23] showed that for symmetric algebras
(i.e. k-algebras such that the k-linear dual of A is isomorphic to A as A — A-bimodule)
the Hochschild cohomology also caries the structure of a Batalin-Vilkovisky algebra. In
[17] Lambre, Zhou and Zimmermann show that the Hochschild cohomology ring of a

The detailed version of this paper will be submitted for publication elsewhere.
This research was supported by a STIC-Asie grant 'Escap’ from the ministére des affaires étrangeres
de la France.
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Frobenius algebra is Batalin-Vilkovisky provided that the Nakayama automorphism is
diagonalisable.

We shall report in this note about the various steps to the proof of this result. We will
also give a short criterion which implies that the Nakayama automorphism of a Frobenius
algebra is diagonalisable.

Acknowledgement: I thank the organisers of the 47th Symposion on Ring and Repre-
sentation Theory in Osaka City university, and in particular Hideto Asashiba for the kind
invitation and great hospitality during my visit.

2. BATALIN-VILKOVISKY ALGEBRAS
We first give the precise definition of a Batalin-Vilkovisky algebra.

Definition 1. e A Gerstenhaber algebra over a field k is the data (H*,U, [, ]), where
H* = PpezH™ is a graded k-vector space equipped with two bilinear maps

U: H' X H™ = H™™, (o, B) = aUP

[, ] HTE x H 5 HL D (a B) = (o, B

called the cup product U, and the Lie bracket [, ] respectively such that
— (H*, U) is a graded commutative associative algebra with unit 1 € H°,
— (H*[-1], [, ]) is a graded Lie algebra,
— for each homogeneous element o € H*[—1] the map [a, —] is a graded deriva-
tion of the algebra (H*,U).

e A Gerstenhaber algebra (H*,U, [, ]) is a Batalin—Vilkovisky algebra (BV algebra
for short) if there is an operator A: H* — H*! of degree —1 (called a generator
of the Gerstenhaber bracket [, |) such that Ao A =0, A(1) =0, and [, ] is the
obstruction for A to be a graded derivation of (H*,U), i.e.

[a, 8] = (=) (AU ) = A(a) U S - (=D)la U A(B)),
for homogeneous elements «, § € H*.

Remark 2. Batalin-Vilkovisky algebras appeared in mathematical physics. As explained
in [27] and [13] the Batalin-Vilkovisky algebra formalism is fully used in the closed string
theory. As explained in [13] the Batalin-Vilkovisky structure gives an additional rigidity
to the string theory, and a certain number of choices which have to be made in this theory
respect this additional structure. More precisely, in string field theory one first chooses
a conformal field theory [10, Definition 3.1]. This field theory defines a vector space, the
state space, and a field is an element in this vector field. A string field theory action
is written as a formal power series with values in the string field. Then, certain choices
have to be made, linked to Feynman rules, and the physical observables are independent
of these choices. [13] show that the relation between two string field actions arises from
field transformations that are canonical with respect to the Lie bracket.

Some algebras have Hochschild cohomology rings which are Batalin-Vilkovisky algebras.

Theorem 3. (Ginzburg [11, Theorem 3.4.3]) Let A be a Calabi-Yau algebra of dimension
d. Then the Hochschild cohomology of A has the structure of a Batalin-Vilkovisky algebra.
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Ginzburg is actually much more precise. He constructs the map A explicitly, and
obtains A from the dual of Connes’ B-operator on the Hochschild homology complex,
and conjugation by the isomorphism HH"(A) ~ HH,; ,(A) which is deduced from the
Calabi-Yau property. He also exhibits already there a connection to a Tamarkin-Tsygan
calculus, in the same way as we will explain in Section 3.

In a parallel development Tradler considered more the case of finite dimensional algebras
and proved that the Hochschild cohomology of symmetric algebras is a Batalin-Vilkovisky
algebra.

Theorem 4. (Tradler [23]) Let k be a field and let A be a finite dimensional symmetric
k-algebra. Then HH*(A) is a Batalin-Vilkovisky algebra.

The operator A is in this case the k-linear dual of Connes’ B-operator, using that for
symmetric algebras A we have HH"(A) ~ Homy(HH,(A),k) for all n € N. Note that
the isomorphism uses the symmetrising form.

A next step was given by Kowalzig and Kriahmer [15]. They generalise Ginzburg’s
result to a twisted version. For an automorphism « of an algebra A we denote by 1 A, the
A — A-bimodule which is the regular A-module as left-module, but where the action of
a € A from the right is given by multiplication with a(a). An algebra is twisted Calabi-
Yau of dimension d if there is a class w € Hy(A,1A,) such that wa N —: H*(A, M) —
Hy (A 1A, ®4 M) is an isomorphism (cf [12, Definition 3.6]).

Theorem 5. (Kowalzig and Krdhmer [15]) Let A be a twisted Calabi-Yau algebra of
dimension d and twist . If a acts as diagonalisable automorphism on the vector space
A, then HH*(A) is a Batalin-Vilkovisky algebra.

Kowalzig and Krahmer obtain in [15] a twisted version of Connes’ map B, and use this
twisted version to obtain A as its dual.

In joint work with Lambre and Zhou we shall be concerned with Frobenius algebras.
These play the same role for symmetric algebras as twisted Calabi-Yau algebras do for
Calabi-Yau algebras. Indeed, for Frobenius algebras we get an A — A-bimodule isomor-
phism Homy (A, k) ~ 1A, for some automorphism v of A, the Frobenius automorphism.
Therefore, the k-linear dual of HH"(A) is not isomorphic to HH,(A), but rather to
HH,(A,14,), where v is the Nakayama automorphism of A. For more ample details on
Frobenius algebras see [26, Sections 1.10 and 4.5].

3. TWISTING BY AUTOMORPHISMS, THE TAMARKIN-TSYGAN CALCULUS

We shall not give directly the map A. Instead we shall prove that some parts of the
Hochschild cohomology, together with the Hochschild homology, of a Frobenius algebra
carries another important structure: It is a Tamarkin-Tsygan calculus, sometimes also
called differential calculus.

Definition 6. A Tamarkin-Tsygan calculus is the data of Z-graded vector spaces H* and
H. together with graded bilinear inner laws U and [, | of H* an a graded operation map
N of (H*,U) on H, such that

o (H*,U,[, ]) is a Gerstenhaber algebra;
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e 7, is a graded module over (%*,U) via the map N : H,QH? = H,_,, 2Qa — zNa
for z € H, and a € HP. That is, if we denote ¢, (z) = (—1)zNa, then taus = tals;
e There is a map B : H, — H,.1 such that B2 = 0 and we have

La ol — (*1)‘&%{ o La = B
where we denote L, = B o1, — (—1)I*li, 0 B.

It is not surprising to learn that [8] prove that Hochschild homology and cohomology
give a Tamarkin-Tsygan calculus with the natural Gerstenhaber structure and a N opera-
tion given by evaluation of the first terms of the Hochschild complex by some Hochschild
cocycle. This coincides with the classical N-product well known in Hochschild theory. We
note that the N product can be defined as well on the action of HH*(A) on HH,.(A, M)
for any A — A-bimodule M, but it is not this Tamarkin-Tsygan structure that we use.

Remark 7. It would be nice to extend Stasheff’s description [21] of the Gerstenhaber
bracket by coderivations to the Tamarkin-Tsygan calculus on Hochschild (co-)homology.

Let a be an automorphism of the algebra A. We now develop the following very general
construction. Recall the bar resolution BA. Its degree n homogeneous component is A®"*+2
and its differential b is given by b,(ap ® -+ ® ap11) = ZZ;O(—l)iao ® il ® Uiy @
Uiy @+ @ apyp. 1t is well-known that this is a free A ® A°?-module resolution of A (cf
e.g. [26]). The complex Hom agaer(BA, A) has homology HH*(A) and the homology of
BA ®A®Aop 1Aa is HH*(A, 1Aa).

Observe that the degree n homogeneous component of BA ® 4¢ 400 144 is iSomorphic to
A®" and « acts diagonally on this space. Likewise, the degree n homogeneous component
of Homagaer(BA, A) is isomorphic to Homy,(A®™, k).

Since « is an algebra automorphism, «(1) = 1 and so 1 is an eigenvalue of the ac-
tion of @ on A. It is easy to see that the eigenspace for the value 1 of the action
of a on Homugaor(BA, A), and on BA ®@agaor 14, respectively, are actually subcom-
plexes of Hom ag a0 (BA, A), and BA® gga0r 1 Ao Tespectively. Let HH 0 (A), respectively

H H,El)(A 14,), be the corresponding homologies of these subcomplexes.

The structural maps U, N, [, ] do restrict to HH(*U(A) and to HHil)(A, 144), which
can be verified by an easy computations in a few lines.

Theorem 8. (Lambre-Zhou-Zimmermann [17]) With the notation above, there is a degree

1 map B of HH(,,(A) such that (HH)(A),U, [, ] HHEI*) (A4,14,),N, Ba) is a Tamarkin-

Tsygan calculus.

We note that we need to use negative degrees for the homology part in order to get a
formally correct calculus. The map f, is much more tricky to obtain. It is an adaption
of Kowalzig-Krdhmer’s map used in their proof.

4. ALGEBRAS WITH DUALITY; THE MAIN RESULT

The proofs we mentioned so far to prove that Hochschild cohomology is a Batalin-
Vilkovisky algebra always used both, the Hochschild cohomology and the Hochschild
homology, as well as some duality between them. Lambre formalised this in his concept
of an algebra with duality.
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Definition 9. (Lambre) An algebra with duality is given by (H*, U, H., d), where

e (H*,U) is a graded commutative unitary algebra with unit 1 € H°,
e H, is a graded vector space and c¢ is an element of H,g,
e 0 is an isomorphism of vector spaces 9 : H, — HI™* satisfying 9(c) = 1.

Observe that it is not really necessary to explicitly mention c. The third axiom implicitly
defines it as image of 1 under 0. Now, we come to the link between Tamarkin-Tsygan
calculi and Batalin-Vilkovisky structures.

Proposition 10. Let (H*,U, H., ¢, d) be an algebra with duality.

(1) We suppose that
(a) (H*,U,[, ]|, H«, N, B) is a Tamarkin-Tsygan calculus,
(b) the duality O is a homomorphism of H*-right modules, i.e. we have the rela-

tion d(zNa) =9(z) Ua.

Then the Gerstenhaber algebra (H*,U,[ . |) is a BV-algebra with generator A =
doBodt.

(2) We suppose that (H*,U,[, |,A) is a BV-algebra with generator A. Then posing
B:=0"10A00 and zNa:=07Y9(z) Ua), the data (H*,U,[, |,H.,N, B) is a
Tamarkin-Tsygan calculus.

If « acts as diagonalisable automorphism on A, then Homagaer (BA, A) and BA® g a0p
14, both decompose as a direct sum of eigenspace subcomplexes. Note however that we
may get eigenvalues for the complexes which do not occur as eigenvalues for the action on
A. This comes from the fact that if A =&, , Ay is an eigenspace decomposition, then

A8 — @ Ay ®--® Ay,
(AL, A )EAT
The automorphism « acts on Ay, ® --- ® A,, with the eigenvalue Ay - --- - A,. Therefore

if A is the set of eigenvalues of «, then the Hochschild complex decomposes as direct sum
of subcomplexes which are eigenspaces for some A € (A), where (A) is the submonoid of
the multiplicative group k* of the base field generated by A. This decomposition is also
the point where we use that « acts on A as diagonalisable automorphism.

Moreover, we get the most important formula on BA ® 4g 400 1 A4:

bofly+Paob=1-T

where T is the diagonal map of a on A®" for each n, where b denotes the Hochschild
differential and where f3, is defined in Theorem 8. Hence, only for the eigenspace of « for
the eigenvalue 1 the corresponding subcomplex is not homotopic to 0. This shows

Proposition 11. If o is diagonalisable, then HHY (A, 1 Aq) = HH.(A,1Ay).

We are almost done. Now suppose that A is a Frobenius algebra with Nakayama
automorphism v and consider the case « = v. Then Theorem 8 and Proposition 11
provide a Tamarkin-Tsygan calculus on the Hochschild cohomology of a Frobenius algebra
and the homology with values in the Nakayama twisted bimodule. Since

Homy(HH,(A,1A,), k) ~ HH"(A)
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we easily get an algebra with duality satisfying the hypotheses of the first part of Propo-
sition 10. This shows

Theorem 12. (Lambre, Zhou, Zimmermann [17]) Let k be a field and let A be a Frobe-
nius k-algebra with diagonalisable Nakayama automorphism. Then HH*(A) is a Batalin-
Vilkovisky algebra.

Remark 13. Volkov obtained in [24] independently and at the same time a similar result
by exhibiting the operator A by explicit computation on the Hochschild cocycles.

Remark 14. LetE be the algebraic closure of k& and let A:=Fk®, A If Ais a Frobenius
k-algebra, then A is a Frobenius k-algebra. We actually only need that the Nakayama
automorphism of A acts as diagonalisable automorphism on A.

5. DIAGONALISABLE NAKAYAMA AUTOMORPHISM

We are left with the question how we may verify when a Nakayama automorphism is
diagonalisable. There is an easy case: If A is a Frobenius k-algebra and v is of finite order
n. Then the action of ¥ on A is a representation of the cyclic group of order n, and if
n is invertible in k, then this group ring is semisimple. Hence, for large enough fields &
with nk = k we have that the action of v is diagonalisable. This happens for example for
finite dimensional Hopf algebras by a result of Radford [19] in combination with a result
by Larson-Sweedler [18]. Also preprojective algebras of Dynkin type have this property.
For quantum complete intersections it can be shown by a direct computation that there
also we get a diagonalisable Nakayama automorphism.

What about more general basic Frobenius algebras? Consider basic algebras and let
hence A = kQ/I be a finite dimensional Frobenius algebra given by quiver with relations.
We can choose a basis B of A consisting of paths which also contains a basis for the socle
of each indecomposable projective A-module. Then by [14, Proposition 2.8], there is a
natural choice of the defining bilinear form (a,b) = tr(ab) for a,b € A induced by the
trace map
1 if p € soc(A)NB

tr: A—k, PEB'_){ 0 otherwise

Then we show the following useful

Proposition 15. (Lambre, Zhou, Zimmermann [17]) Assume that the basis B satisfies
two further conditions:
(1) for arbitrary two paths p,q € B, there exist another path r € B and a constant
A€k such thatp-q=Xr € A
(2) for each path p € B, there exists a unique element p* € B such that 0 # p-p* €
soc(A)
If k is an algebraically closed field of characteristic O or of characteristic p with p strictly
bigger than the number of arrows of Q. Then the two conditions (1) and (2) imply that

the Nakayama automorphism of A is semisimple and the Hochschild cohomology of A is
a BV algebra.

By a classification result of Asashiba [1] we get
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Lemma 16. Each self-injective algebra of finite representation type is Morita equivalent to
an algebra kQ /I given by a quiver Q modulo admissible relations I verifying the conditions

(1) and (2).

An alternative proof can be given by the fact that each representation-finite algebra
has a multiplicative basis (cf. [2]).

Lemma 17. Basic special biserial algebras satisfy the hypotheses of Proposition 15.

Finally, we were looking at algebras of polynomial growth. These were studied by Holm,
Skowroniski, Bocian, Biatkowsky for a classification up to derived equivalences, and by
Zhou and Zimmermann [25] up to stable equivalences, clearing also a few remaining cases
in the derived equivalence classification. Also there we can show that almost all the cases
satisfy the hypotheses of Proposition 15. The few remaining situations can be done by an
elementary computation on the quiver, using the construction of Holm-Zimmermann [14]
mentioned above.

We finish by mentioning that an easy computation shows that for a field k of charac-
teristic 2 the self-injective Nakayama algebra with two simples and Loewy length 4 does
not have a semisimple Nakayama automorphism action. The quiver of this Nakayama
algebra has two arrows such that Lemma 16 shows that the hypothesis in Proposition 15
on the characteristic of the base field is indeed necessary.

Remark 18. 1T want to mention that the formula for the Frobenius bilinear form given
by [14] was originally used to classify deformed preprojective algebras ([4], see also [5]
for a rectification in case of type F) of type L, up to derived equivalence. This was
done using the so-called Kiilshammer structure, an additional structure on the degree 0
Hochschild homology of an algebra [3], linked to the p-power map. In joint work with
Sorlin [20] we extended the classification to deformed preprojective algebras of type D,.
For the precise and somewhat technical definition of the deformation parameter see [4,
Proposition 6.2] or [5, Example 10.6]. We computed the degree 0 Hochschild homology of
deformed preprojective algebras of type D,, and showed that over an algebraically closed
field the deformed preprojective algebra is never derived equivalent to the non deformed
preprojective algebra. Indeed, the dimension of the degree 0 Hochschild homology of the
deformed preprojective algebra with deformation parameter k is at most n + 2 + k for
k < n — 3 whereas this dimension is 3n in the non-deformed case.

The preprojective algebras of generalised Dynkin type are also interesting with respect
to the Tamarkin-Tsygan structure on the Hochschild (co-)homology. Ching-Hwa Eu com-
puted this explicitly (cf [6, 7]).
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