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ABSTRACT. In this paper, we show that if an algebra KQ/I with an ideal I of KQ
contained in R{ for an integer m > 2 has an m-truncated cycle, then this algebra has
infinitely many nonzero Hochschild homology groups, where Ry denotes the arrow ideal.
Consequently, such an algebra of finite global dimension has no m-truncated cycles and
satisfies an m-truncated cycles version of the no loops conjecture.

1. INTRODUCTION

In [8], Happel remarks that if all the higher Hochschild cohomology groups vanish for
a finite dimensional algebra, then does the algebra have finite global dimension? This is
called “Happel’s question”. It is shown in [3] that this does not hold in general.

On the other hand, in [7], Han conjectures the homology version of Happel’s question,
that is, if all the higher Hochschild homology groups of a finite dimensional algebra vanish,
then is the algebra of finite global dimension? Moreover, he shows that the counter
example of Happel’s question in [3] satisfies Han’s conjecture in [7].

In [4], Han’s conjecture is approached with focusing on the combinatorics of quiv-
ers of algebras. Specifically, it is shown that all algebras having a 2-truncated cycle in
which the product of two consecutive arrows is always zero, have infinitely many nonzero
Hochschild homology groups. Consequently, 2-truncated cycles version of the well-known
“no loops conjecture”holds: algebras of finite global dimension have no 2-truncated cy-
cles. In addition, for arbitrary integer m > 2, an m-truncated cycles version of the “no
loops conjecture”is conjectured. In particular, it is shown that monomial algebras satisfy
an m-truncated cycles version of the “no loops conjecture”. For finite dimensional ele-
mentary algebras, in [9], it is shown that the no loops conjecture can be derived from an
earlier result of Lenzing in [12] (cf. [10]).

In this paper, we show the following assertion: Let K be a field, @) a finite quiver,
Rg the arrow ideal of KQ and m > 2 a positive integer. If an algebra K@ /I with an
ideal I C K@ contained in Rf has an m-truncated cycle, then KQ /I has infinitely many
nonzero Hochschild homology groups (Theorem 6). Consequently, in the case I is an
admissible ideal of K@) which is contained in Rg, then KQ/I satisfies an m-truncated
cycles version of the “no loops conjecture”. That is, if K@ /I has finite global dimension,
then it contains no m-truncated cycles (Corollary 7). This result generalizes the result
[4, Corollary 3.3].

The detailed version of this paper has been published in Archiv der Mathematik.



2. PRELIMINARIES

Let K be a commutative ring and A a unital K-algebra. Thus, there exists a nonzero
ring homomorphism K — A, whose image is contained in the center of A. We assume
that A is finitely generated as a K-module. Throughout the paper, ® denotes ®x for the
sake of simplicity.

For each n > 1, we denote the n-fold tensor product A ® -+ ® A of A over K by A®"
and the enveloping algebra of A by A°.

Definition 1 ([13]). The Hochschild complex is the following complex:
o M@AT B MeATTT S S @A S e AD M,
where M is a left A°-module, the module M ® A®" is in degree n, and the map b :
M @ A®" — M @ A®"! is given by the formula
@@ - ®ay) =201 Qay® -+ @ ay

n—1
+ Z(—l)i(x Ra Q@ Qa1 @ ®ay) + (—1)"apx @ a1 @+ @ ap_1.
=1

The n-th Hochschild homology group HH, (A, M) of A with coefficients in the left A°-
module M is defined by the n-th homology group of the Hochschild complex above. In
particular, HH,(A, A) is simply called the n-th Hochschild homology group of A, which
is denoted by HH,,(A).

It is well known that if the unital K-algebra A is a projective K-module, then the
n-th Hochschild homology group HH,(A) is given by Tor? (A, A). Now we recall the
definition of the bar resolution of A.

Definition 2 ([13]). Let A be a unital K-algebra. The following resolution of the left
A°-module A denoted by CP* is called the bar resolution:

O e . L 0/ R )
where p is multiplication and b is defined by ¥'(ap ® -+ ® a,) = Z?;()l(—l)i(ao ® - ®
i1 @ - @ ay).

Let A and B be two K-algebras and suppose that f : A — B is a K-algebra homo-
morphism. Then f is a homomorphism of rings, the composition map of f and the map
K — A giving the K-algebra structure of A is equal to the map K — B giving the
K-algebra structure of B. This implies that bf®"+) = f&n therefore {f®"},cn is a
chain map between the Hochschild complex of A and the one of B. For each n > 0, this
map of Hochschild complexes induces a map f©™+Y) . HH, (A) — HH,(B) of Hochschild
homology groups. The following fact is the key of the main theorem in [4]: if we can
show that the image of HH,(A) — HH,(B) is nonzero, then this forces HH,(A) to be
nonzero. This fact is also important for our main theorem.

Finally, in [4], the Hochschild homology dimension of the algebra A is defined by

HHdim A = sup{n € Z| HH,,(A) # 0},

which is treated in the main theorem.



3. THE HOCHSCHILD HOMOLOGY OF TRUNCATED QUIVER ALGEBRAS

In this section, for a truncated quiver algebra we give elements in the complex, induced
by Skdéldberg’s projective resolution P, which correspond to nonzero homology classes.

Let @ = (Qo, @1, s,t) be a finite quiver. For an arrow « € @y, its source and target are
denoted by s(a) and t(a), respectively. A path in @ is a sequence of arrows ajag - - - ay,
such that #(a;) = s(ayy1) for i =1,...,n — 1. The set of all paths of length n is denoted
by Q.

For a path v of @, |y| denotes the length of v. A path + is said to be a cycle if |y| > 1
and its source and target coincide. The period of a cycle 7 is defined by the smallest
integer i such that v = §’ (j > 1) for a cycle § of length 4, which is denoted by per~y. A
cycle is said to be a basic cycle if the length of the cycle coincides with its period. It is also
called a proper cycle [7]. Denote by Q¢ (respectively QP) the set of cycles (respectively
basic cycles) of length n. Let G, = (g) be the cyclic group of order n and the path
Qg - 10y, a cycle where o is an arrow in (). Then we define the action of G,, on Q)
by g (aq+ p_100) = @y - ay_1, and Q% /G, denotes the set of all G,-orbits on
Q¢. Similarly, G, acts on Qb, and Qb /G, denotes the set of all G,-orbits on Q°. For
7y € Q5 /Gy, we denote by per ¥ the period of v, that is per ¥ := per+. For convenience
we use the notation Q5/Gy for the set of vertices Q.

Skoldberg gives an projective resolution P of a truncated quiver algebra A. Moreover,
by means of the complex €, EBﬁle sG; K5 given by the following isomorphism:

A@u P, 55 Ay KT S5 @ Ksn,
i YEQS/Gi
he gives the module structure of HH,(A), where the set T*) is given by

F(z) o Qcm if i =2¢c (C Z 0),
"] Qemg1 fi=2c+1(c>0).

In order to prove our main theorem, we investigate elements in A @ e I'*) which corre-
spond to nonzero homology classes.

Lemma 3. Let K be a field and A = KQ/RS a truncated quiver algebra. For an element
5 € Q%) Gem with v = a1+ (1, ..., 0em € Q1), the following elements correspond
to non-zero homology classes:

a(c—l)m+i+1 e acmal P ai71 ® ai - a(c—l)m+i = A ®KQ8 F((Cfl)erl)?
where d = ged(m,per¥) and i =1,2,...,d — 1.
Lemma 4. Let K be a field and A = KQ/ R a truncated quiver algebra. For an element

’7 € ng+e/Gcm+e(1 S € S m — 1) with Y= al"'achre(ala”-a Aeme S Q1)7 the
following element corresponds to a non-zero homology class:

Aem+1 " Oeme X Q- Qe € A ®KQ8 F(cm).

We note that there is the following chain map in [6], which we denote by 6. This chain
map 6 induces a quasi-isomorphism idy ® 0 : A ®4. C* — A® 4 Q, which we denote by
0 for the sake of simplicity.



A chain map 7 from Cibils’ projective resolution Q to P given in [1] induces a quasi-
isomorphism T = idy @ 7 : AR® e Q —> A® 4 P. We use the following composition map
of chain maps from the Hochschild complex to Skoldberg’s complex by &;

A & Ae Qn L A & pe (Cbar)n = A R e A®(n+2) <i A®(n+1)
lﬁ'
A@u Py = Ak KT S P Ko
i 5€Q5/G;

where 9 is given by ¥(ag @ -+ Q@ an) = ag @4 (1 Qa1 Q@ -+ R a, ® 1).

4. THE m-TRUNCATED CYCLES VERSION OF THE “NO LOOPS CONJECTURE”

Let K be a field, @) a finite quiver, R the arrow ideal of K'() and m > 2 a positive
integer. In this section, we show that if an algebra KQ/I with I C R has an m-
truncated cycle (see Definition 5), then the algebra has infinite Hochschild homology
dimension. Moreover, we show that the algebra satisfies an m-truncated cycles version of
the “no loops conjecture”.

IfI c R% is an ideal in the path algebra K@), then a finite sequence ay,...,a, of
arrows which satisfies the equations ¢(«;) = s(aip1) (1 =1,...,u— 1) and t(ay) = s(a1)
is called a cycle in KQ/I in [4].

Definition 5 ([4]). A cycle aq,...,a, in KQ/I is m-truncated for an integer m > 2 if
Qo Qigme1 =0 and o Qirm_o #0 in KQ/I
for all ¢, where the indices are modulo u.

By means of composition map ®, we have the following our main theorem by the Lemma
3 and 4.

Theorem 6. Let K be a field, Q a finite quiver and I C KQ an ideal contained in Rfy.
Suppose that KQ/I contains an m-truncated cycle ay, ..., o,. Then the following holds:
(i) Assume that ged (m,per (aq -+ ay)) # 1. For every n > 1 with un = 0 (mod m),
the element
Qe—1)m+2 " * " Cem @ Q] @ Qg * + + Oy, @ Q41
@ Qo Qo @ Qo1 @ -+ @ Ae—2)m+2 " " X(e—1)m X Ac—1)m+1,
where ¢ = un/m, represents a nonzero element in HHy._1(KQ/I).

(ii) Let e be an integer with 1 < e < m — 1. For every n > 1 with un = e (mod m), the
element

E Q2ct1+j1++jec " Xun
0<j1,- e Sm—2

Qay Qi @ Qo @ A3y 34y gy @ Qg @00
@ Qoc—14j 4 tjem1 " 2e—1tjr+otje O M2etjittier

where ¢ = (un — e)/m, represents a nonzero element in HHy.(KQ/T).



In particular, the Hochschild homology dimension HHdim (KQ/I) = oo.

Corollary 7. Let K be a field, Q a finite quiver and I an admissible ideal in KQ with
I C RE. If the algebra KQ/I has finite global dimension, then it contains no m-truncated
cycles.

Example 8. Let B be an algebra given by the quiver with relations:

(] 0]
() ar By
O/ :\O/ 5 Qi1 Qo = P13 = Byyag = 0,
Bafz0n = B33,
aﬁoﬂ!@\o

where the indices of «; are modulo 4 (1 < 4 < 4). Then B has the 3-truncated cycle
a1, g, (g, ay. By the Theorem 6, we have HHdim B = oco. Therefore, the global dimension
of B is infinite.
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ON A GENERALIZATION OF COMPLEXES AND THEIR DERIVED
CATEGORIES.

OSAMU IYAMA AND HIROYUKI MINAMOTO

ABSTRACT. When we want to understand the reason why the equation d*> = 0 has the
beautiful consequences, one way is to consider generalizations of it and research how its
properties vary. One natural candidate of a generalization is the notion of N-complex,
that is, gradeds object equipped with a morphism d of degree 1 such that d¥ = 0. This
was introduced by Kapranov [5] and Sarkaria [7] independently. Nowadays there is a
vast collection of literatures on the subject.
For an N-complex X, there are several cohomology functors. More precisely, for
1 <r < N —1, we define a cohomorogy functor to be
Hb) (X) = KcrEd" : X.’:% X N
Im[dN =" : Xi=N+r — X7
As a new feature, it is observed that there are several relations between these cohomology
functors [5, 1].
On the other hands, Iyama-Kato-Miyachi [4] construct and study the homotopy cate-
gory Kn (R), the derived category Dy (R) of N-complexes. They showed that the derived
category Dy (R) is equivalent as triangulated categories to the derived category (in the

ordinary sense) D(R ®x kA y_1). Inspired by their results, we introduce the notion of
A-complexes for a graded self-injective algebra A. We construct and study the homotopy
category, the derived category of and the cohomology functors. As a consequence, we
see that the relations between various cohomology functors of N-complexes comes from
representation theory of the graded algebra k[6]/(6V) with degk = 0,degd = 1.

1. N-coMPLEXES (KAPRANOV, SARKARIA, G. KATO, DUBOIS-VIOLETTE,
HIRAMATSU-G. KATO, IyAMA-K. KATO-MIYACHI ... )

1.1. N-complexes. Our setup is the followings:

e N > 2 is an integer greater than 1.
e R is an algebra over a field k.

For simplicity, in this note N-(A-)complexes are that of R-modules.

Definition 1. An N-compler X (of R-modules ) is a graded R-module ,, X% equipped
with an endomorphism dy of degree 1 (the differential of X) such that d% = 0.

d¥ =dyodxo---dy (N times ).
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The detailed version of this paper will be submitted for publication elsewhere.



